
1

Parallel and Successive Resource Allocation for

V2V Communications in Overlapping Clusters

Luis F. Abanto-Leon, Arie Koppelaar, Sonia Heemstra de Groot

Abstract

The 3rd Generation Partnership Project (3GPP) has introduced in Rel. 14 a novel technology

referred to as vehicle–to–vehicle (V2V) mode-3. Under this scheme, the eNodeB assists in the resource

allocation process allotting sidelink subchannels to vehicles. Thereupon, vehicles transmit their signals in

a broadcast manner without the intervention of the former one. eNodeBs will thereby play a determinative

role in the assignment of subchannels as they can effectively manage V2V traffic and prevent allocation

conflicts. The latter is a crucial aspect to be enforced in order for the signals to be received reliably

by other vehicles. To this purpose, we propose two resource allocation schemes namely bipartite graph

matching-based successive allocation (BGM-SA) and bipartite graph matching-based parallel allocation

(BGM-PA) which are suboptimal approaches with lesser complexity than exhaustive search. Both

schemes incorporate constraints to prevent allocation conflicts from emerging. In this research, we

consider overlapping clusters only, which could be formed at intersections or merging highways. We

show through simulations that BGM-SA can attain near-optimal performance whereas BGM-PA is subpar

but less complex. Additionally, since BGM-PA is based on inter-cluster vehicle pre-grouping, we explore

different metrics that could effectively portray the overall channel conditions of pre-grouped vehicles.

This is of course not optimal in terms of maximizing the system capacity—since the allocation process

would be based on simplified surrogate information—but it reduces the computational complexity.

Index Terms

weighted bipartite graph matching, radio resource allocation, broadcast vehicular communications,

sidelink

I. INTRODUCTION

In the last months we have been witness to an enormous effort from academia and industry

in developing novel techniques across the many fronts of vehicle–to–vehicle (V2V) communica-

tions, which is to become a pivotal role player in the fifth generation of wireless systems. Within
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the many use cases of V2V communications, safety-related services are unquestionably among

the most important and challenging. Further enhancements capable of guaranteeing low latency

and high reliability would become inestimable assets for deployment of fully-connected vehicle

systems with the potential to reduce the amount of road traffic accidents [1]. Nevertheless, due

to extreme mobility and highly varying channel conditions, the stringent requirements for this

type of scenario are not so straightforward to fulfill [5]. Hence, V2V communications calls for

further research and comprehensive field tests before it can become a trustworthy technology.

In this work, we consider that vehicles periodically broadcast short-term signals called coop-

erative awareness messages (CAMs) [2]. A CAM message—which is transported over a sidelink

subchannel—contains meaningful information of a vehicle, e.g. speed, position, direction, that

drivers and /or autonomous vehicles can harness for making improved and more rational deci-

sions. In V2V mode-3, a crucial target that eNodeBs must guarantee is a time-domain conflict-free

assignment of subchannels [4]. Conversely to traditional cellular systems where communications

are controlled by the eNodeB and are virtually point–to–point links between mobile users, in V2V

mode-3 data traffic is not subject to management. For instance, if we consider a cellular system

with 4 users and therefore two point–to–point links, the eNodeB can allocate the two uplink

transmit users in the same time subframe but in different frequency subchannels. Afterwards, via

downlink the other two users may even receive in the same subframe the corresponding data from

the senders. On the other hand, V2V mode-3 operates in a broadcast manner where transmission

and reception are implemented without intervention of eNodeBs. Therefore, due to the absence

of a controller that dictates the uplink and downlink instants, only one vehicle in the cluster can

transmit at a time while the others receive. If two or more vehicles transmit concurrently, the

data sent by one will not reach the other, thus originating a conflict. Nevertheless, a subchannel

that serves a vehicle in a certain cluster can be repurposed by other, if the latter vehicle belongs

to a different cluster. Thus, eNodeBs will play a determinative role in effectively allocating

subchannels to in-coverage vehicles.

We formulate the resource allocation problem as a weighted bipartite graph matching where

the aim is to find a perfect one–to–one vertex assignment with maximal sum-rate capacity. We

propose two suboptimal resource allocation approaches, namely (i) bipartite graph matching-

based successive allocation (BGM-SA) and (ii) bipartite graph matching-based parallel allocation

(BGM-PA). The former one is a cluster-wise sequential scheme that performs allocation with

priority, from the most to the least constrained cluster. The latter algorithm is based on a primary
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stage of random vehicle pre-grouping followed by a secondary resource allocation stage. In BGM-

PA, we have experimented with different metrics in order to discover one that could effectively

depict the channel conditions of a set of pre-grouped vehicles, while still providing an acceptable

sum-rate capacity value. We have employed the Kuhn-Munkres algorithm [6] as a basis for both

algorithms. Moreover, modifications have been considered to enforce intra-cluster constraints

and thus prevent conflicts.

Our paper is structured as follows. In Section II, we explain the motivation of our work and

succinctly describe our contributions. In Section III, we describe the sidelink channel structure

for V2V broadcast communications. In Section IV, we formulate the resource allocation problem.

In Section V and Section VI, the proposed approaches BGM-SA and BGM-PA are presented,

respectively. In Section VII, we discuss simulation results in detail for several scenarios. Finally,

Section VIII is devoted to summarizing our conclusions.

II. MOTIVATION AND CONTRIBUTIONS

The motivation of this paper can be clearly explained through Fig. 1. We observe two

communications clusters; one consisting of 7 vehicles, namely {v1, v2, v3, v4, v5, v6, v7}, whereas

the remaining cluster consists of 6, i.e. {v5, v6, v7, v8, v9, v10}. While there are no conflicts in the

7-vehicle cluster—as vehicles have been assigned orthogonal time-domain subchannels—in the

remaining cluster we can identify a conflict. Observe that in subframe t = 4, vehicles v8 and

v10 have been assigned subchannels located in the same subframe. Thus, these subchannels are

non-orthogonal in time domain and therefore, v8 and v10 will not be able to receive each other’s

information (assuming that vehicles are equipped with half-duplex PHY). In order to prevent this

kind of issues from occurring, we propose two resource allocation schemes. Our contributions

are summarized in the following points.

• In Section IV, we introduce a compact matrix formulation for the resource allocation

problem when multiple clusters are considered.

• The mentioned formulation includes additional constraints to prevent intra-cluster time-

domain conflicts. It also contemplates a notation for representing vehicles with multiple

cluster memberships, which facilitates modeling of vehicles at intersections.

• In Section V, we propose a scheme called BGM-SA which allocates subchannels to vehicles

in a sequential and hierarchical manner. BGM-SA is capable of attaining near-optimal

performance at lower complexity than exhaustive search.
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Fig. 1: Sidelink V2V broadcast communications scenario

• In Section VI, we introduce a second approach called BGM-PA which is based on (i)

inter-cluster vehicle pre-grouping and (ii) subchannel assignment. Due to pre-grouping, the

performance of BGM-PA is modest compared to BGM-SA but with lower complexity.

• We also devise six simple metrics to optimize the allocation of subchannels in BGM-PA

and the performance of each is evaluated.

III. SIDELINK RESOURCES CHANNELIZATION

We consider that uplink/downlink and sidelink spectrum resources are decoupled from each

other. We assume that the resources utilized for V2V sidelink communications are located in the

intelligent transportation systems (ITS) band [3] whereas uplink/downlink spectrum resources are

located in bands that usually serve cellular users. As mentioned before, in V2V mode-3 vehicles

periodically broadcast CAM messages to their counterparts via sidelink [7]. However, uplink is

used by vehicles to report their own channel conditions to the eNodeB. Downlink is employed

for (i) signaling and for (ii) notifying vehicles on the subchannels they have been assigned. The

channelization of sidelink spectrum resources can be regarded as a time-frequency arrangement
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Fig. 2: Channelization for V2V communications

of non-overlapping subchannels as shown in Fig. 2. The dimensions of each subchannel are

T = 1 ms in time and B = 1.26 MHz in frequency, which to the best of our understanding is

sufficient for conveying a CAM message. Moreover, there are L subframes and each contains K

subchannels. Therefore, the total number of subchannels in this formation is KL. Furthermore,

each subchannel rk (for k = 1, 2, . . . , KL) consists of 7 resource blocks (RBs), where 5 RBs

are used for data and 2 RBs for control.

IV. PROBLEM FORMULATION

Let J denote the total number of partially overlapping clusters. Thus, each cluster can be

denoted as a set of vehicles V(j), each consisting of Nj vehicles (for j = 1, 2, . . . , J). To illustrate

this description, consider Fig. 3, where the scenario is constituted by J = 4 partially overlapping

clusters such that V(1) = {v1, v2, v3, v4, v5}, V(2) = {v1, v2, v6, v7}, V(3) = {v1, v2, v8, v9}, V(4) =

{v1, v2, v10} and cardinalities N1 = |V(1)|= 5, N2 = |V(2)|= 4, N3 = |V(3)|= 4, N4 = |V(4)|= 3

with vehicles {v1, v2} lying at the intersection. Notice that each vehicle has an absolute labeling

and a corresponding relative one which is with respect to the clusters a vehicle is members of 1.

In addition, there exists a set of allotable subchannels which are managed by the eNodeB. In sum,

there exists a whole set of vehicles V distributed into J clusters which are seeking to be assigned

1In this section only the absolute labeling is employed. The relative notation will be used in Section V, where Fig. 3 is

repurposed to illustrate an example.
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Fig. 3: Overlapping vehicular clusters

a resource from a set of allotable subchannels R. Considering the absolute labeling, this problem

can be represented as a weighted bipartite graph matching between two disjoint sets: vehicles

and subchannels. Such a graph is denoted by G(V ,R, E), where V = ∪jV(j) = {v1, v2, . . . , vN},

R = {r1, r2, . . . , rKL} and E = V × R = {e11, e12, . . . , eN(KL)} is the set of edges. The total

number of vehicles is denoted by N =
∑

j |V(j)| −
∑

j′ |V(j) ∩ V(j′)| for j 6= j′, whereas

N̂ = |
⋂
j V(j)| represents the number of vehicles at the intersection.

We can thereby represent vehicles and subchannels as vertices. Thus, the line connecting two

vertices—a vehicle vi ∈ V with a subchannel rk ∈ R—is called an edge eik. Each edge eik has

a corresponding weight cik that in our case represents the achievable capacity that vehicle vi

can attain in subchannel rk. Therefore, cik = B log2(1 + SINRik), where B is the subchannel

bandwidth and SINRik is the signal–to–interference–plus–noise ratio (SINR) that vehicle vi senses

in subchannel rk. The objective function is the maximization of the system sum-rate capacity

subject to satisfying the allocation constraints. The two types of constraints that must be enforced

are (a) the intra-cluster allocation restrictions, which prevent time-domain conflicts and (b) the

one–to–one vertex matching conditions, which impose that each vehicle is assigned exactly one

subchannel. This is equivalent to finding a vector x that maximizes (1a) while satisfying the



7

constraints (1b). Thus,

max cTx (1a)

subject to

( IN×N ⊗ 11×L

QJ×N ⊗ IL×L

⊗ 11×K

)
︸ ︷︷ ︸

constraint matrix

x = 1 (1b)

where ⊗ represents the tensor product operator, c ∈ RM ,x ∈ BM with M = NLK. IN×N

and IL×L are identity matrices whereas 11×L and 11×K are vectors whose elements are all

1. Q ∈ BJ×N is the membership matrix which portrays the association of vehicles to several

clusters. Thus, if a vehicle vi belongs to cluster V(j), the element qji is set to 1; otherwise it is zero.

Also, x = [x1,1, . . . , x1,KL, . . . , xN,1, . . . , xN,KL]
T , c = [c1,1, . . . , c1,KL, . . . , cN,1, . . . , cN,KL]

T are

the solution vector and weight vector, respectively. The relation between the graph edges eik and

the solution vector x is the following. First, we have assumed that the graph vertices are fully

connected, i.e. there are no prohibited assignments at the beginning of the resource allocation

process, and therefore eik = 1 ∀i, k. The solution to the problem x is a subset of edges eik called

matching whose weights cik provide a maximal sum while respecting the constraints. Therefore,

if the edge eik is part of such optimal matching, then xik = 1 otherwise xik = 0.

V. PROPOSED ALGORITHM BGM-SA

Without recurring to exhaustive search to solve (1), we propose to perform the allocation

process in an ordered and sequential manner, which will lead to a suboptimal solution. It should

be noted that, the degree of constrainedness in allocating subchannels is related to the cardinality

of the cluster. Hence, the assignment of subchannels becomes more complicated when the number

of vehicles in the cluster is large. Considering the foregoing facts, the allocation process in BGM-

SA starts by assigning subchannels to the cluster with largest cardinality and terminates when

the cluster with smallest cardinality has been processed. To illustrate this idea with an example,

we consider Fig. 3. Based on the cardinality criterion, the ordered clusters are |V(1)|≥ |V(3)|≥

|V(2)|≥ |V(4)|. Thus, once each of the 5 vehicles in V(1) has been alloted a subchannel, the

process will continue with cluster V(3), where only v8 and v9 should be allocated since v1 and v2

obtained their own subchannels when V(1) was processed. Afterwards, v6 and v7 will receive their

respective subchannels. And the last vehicle to be serviced is v10. At every allocation phase,

vehicles must be accommodated such that they do not generate conflicts to vehicles already

alloted.
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To prepare the ground for the formulation of BGM-SA, we start by isolating a single cluster

V(j) as shown in Fig. 4, where vehicles and subchannels are represented by black and white

vertices, respectively. The set R is constituted by KL vertices which are grouped into L disjoint

vertex subsets {Rl}Ll=1 that we call macro-vertices, i.e. R = ∪Ll=1Rl, Rl ∩ Rl′ = ∅, ∀l 6= l′.

Each macro-vertex Rl is a congregation of K vertices, i.e. a collection of K subchannels in the

same time subframe. Considering the relative labeling, the bipartite graph shown in Fig. 4 is

denoted by G(V(j),R, E (j)). Thus, the edge e
(j)
ik connects vehicle v

(j)
i ∈ V(j) with a subchannel

rk ∈ R. Also, the edge weights are defined as c
(j)
ik = B log2(1 + SINR

(j)
ik ). Instead of solving

the allocation for the whole system in (1), we solve a graph matching subproblem for each

cluster V(j), for j = 1, 2, . . . , J . Therefore, we optimize an objective function that maximizes

the sum-rate capacity of each cluster V(j), which is expressed by

max cTj xj (2a)

subject to

( INj×Nj
⊗ 11×L

11×Nj
⊗ IL×L

⊗ 11×K

)
︸ ︷︷ ︸

constraint matrix

xj = 1 (2b)

where cj ∈ RMj ,xj ∈ BMj with Mj = NjKL and L ≥ Nj . For completeness, we add a number

of virtual vehicles with zero-valued edge weights, such that Nj = L and Mj = M = KL2 ∀j.
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Therefore, the solution and weight vectors are given by xj = [x
(j)
1,1, . . . , x

(j)
1,KL, . . . , x

(j)
L,1, . . . , x

(j)
L,KL]

T

and cj = [c
(j)
1,1, . . . , c

(j)
1,KL, . . . , c

(j)
L,1, . . . , c

(j)
L,KL]

T , respectively. It is important to notice that the two

types of allocation constraints mentioned in Section IV are also enforced in (2b). This means that

each vehicle will be alloted exactly one subchannel and the resource allocation will guarantee

that no two vehicles—in the same cluster—transmit in subchannels of same subframe. Although

the constraint matrices (1b) and (2b) are similar, it is possible to exploit the structure of (2b) and

further simplify the allocation problem. Recall that the time-domain orthogonality requirement

on alloted subchannels is compulsory for vehicles in the same communication cluster only. It

can be shown that enforcing this requirement is equivalent to aggregating vertices into macro-

vertices, which in addition simplifies the complexity of (2), since the dimensionality is reduced.

Such said vertex aggregation can be modeled as a matrix transformation, which is depicted in

Fig. 5. Thus, the problem in (2) can be recast as (3)

max dTj yj

subject to

 IL×L ⊗ 11×L

11×L ⊗ IL×L

yj = 1
(3)

where yj = [(yj)1,1, . . . , (yj)1,L, . . . , (yj)L,1, . . . , (yj)L,L]
T ∈ BL2 and dj = limβ→∞

1
β

◦
log
{
(IM×M⊗

11×K)e
◦βcj
}
∈ RL2 . The function

◦
log{·} represents the element-wise natural logarithm whereas

e◦{·} is the Hadamard exponential [8]. Note that (3) is equivalent to finding a maximal matching

in a graph G̃(j) = (V(j), R̃, Ẽ (j)) where R̃ = {r̃1, r̃2, . . . , r̃L}. Also, the edge weights between

vertices in this resultant problem is dj , whose elements d
(j)
il depict the weight between vertices

v
(j)
i and r̃l, for l = 1, 2, . . . , L. Approaching (3) by means of finding a maximal matching in G̃(j)

is less complex than solving (2) through G(j) because |R̃| is K times smaller than |R|. Thus,

instead of solving either (1) via exhaustive search in an optimal manner or (2) sub-optimally

through any available method, we can attain the same performance as (2) by solving (3) at lesser

computational complexity.

IM×M ⊗ 11×K

IM×M ⊗ 11×K×diag(·)

xj

cj

yj

dj

Fig. 5: Transformation process
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Algorithm 1: Bipartite Graph Matching-based Successive Allocation (BGM-SA)

Input: A bipartite graph G̃(j) = (V(j), R̃, Ẽ (j)) for each cluster, such that
∣∣V(j)

∣∣ = ∣∣R̃∣∣ for

completeness.

Output: A set of perfect matchings M(j), j = 1, . . . , J .

begin

for j = 1 : J do

Step 1a:
Generate an initial feasible label-

ing lj .

Step 1b:
Compute the equality subgraph

G
(j)
l =

{evr | lj(v)+lj(r) = dvr} for ∃v ∈

V(j),∃r ∈ R̃, evr ∈ Ẽ (j).

Step 1c:
Find an arbitrary matching M(j)

in G
(j)
l .

Step 2:
Terminate the algorithm if the

matching

M(j) is perfect.

Step 3:
Find a vertex v′ ∈ V(j) that has not

been

matched in M(j) and set S(j) =

{v′}, T (j) = {∅}.

Step 4:Go to Step 6 if N(S(j)) 6= T (j).

Step 5a:
Compute the labeling l′j, ∀ vertex

z

l′j(z) =


lj(z)− ε, if z ∈ S(j)

lj(z) + ε, if z ∈ T (j)

lj(z), otherwise

where

ε = min
v∈S(j)

r∈R̃\T (j)

{
lj(v) + lj(r)− dvr

}

Step 5b:
Compute the equality subgraph

G
′(j)
l .

Step 5c:Update the equality subgraph and

labeling: G(j)
l ← G

′(j)
l , lj ← l′j .

Step 6a:Find a vertex r ∈ N(S(j)) \ T (j).

Step 6b:Perform S(j) ← S(j)∪{u}, T (j) ←

T (j) ∪ {r} and go to Step 4 if

∃eur ∈M(j) such that u ∈ V(j).

Step 7a:
Find an alternating

path

〈ev̂0r̂0 7→ev̂1r̂1 7→ . . . 7→ev̂mr̂m〉 such

that v̂n ∈ V(j), r̂n ∈ R̃, r̂m =

r, ev̂nr̂n ∈ {G
(j)
l \M(j)} for n =

0, 1, . . . ,m, ev̂nr̂n−1 ∈ M(j) for

n = 1, 2, . . . ,m.

Step 7b:
Augment the previous matching

M(j) ←{
M(j) ∪

{ev̂nr̂n}n=mn=0

}
\{ev̂nr̂n−1}n=mn=1

.

Step 7c:Go to Step 2.

Step 8:
Update the edges in R̃ such that

ev′r′ ←

0, ∀r′ ∈ R,∀v′ ∈
{
{V(jk1 ) ∩

V(jk2 )∩· · ·∩V(jkq )}\V(j)
}

if ev′r′ ∈

M(j).
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In order to solve (3), we propose BGM-SA which is based on [6] and shown in Algorithm 1.

Recall that since the allocation is performed in a hierarchical and sequential manner, we first sort

the clusters according to their cardinality. Thus, we assume that the clusters have been labeled

such that |V(j)|≥ |V(j+1)|. We believe that the algorithm is self-explanatory and therefore we

will not discuss the steps in detail. Instead, we introduce the following definitions in case they

were necessary for its understanding.

Labeling: A feasible vertex labeling in the bipartite graph G̃(j) is a real-valued function

lj : V(j) ∪ R̃ → R such that lj(v) + lj(r) ≥ dvr, ∀v ∈ V(j), ∀r ∈ R̃. An initial feasible

labeling lj can be obtained by assigning lj(v) = max
r∈R̃

dvr and lj(r) = 0. Because Algorithm 1

operates in a sequential manner processing one cluster Ṽ (j) at a time, the j indexing has been

dropped to simplify the notation and thus dvr is equivalent to d
(j)
vr .

Equality subgraph: An equality subgraph G
(j)
l obtained from a labeling lj contains edges

evr ∈ Ẽ (j) such that lj(v) + lj(r) = dvr holds, as described in Step 1b.

Perfect matching: A matching M(j) is said to be perfect when every vertex of a graph is

linked to only one edge of the matching.

Neighborhood of a set: In a bipartite graph, the neighborhood of a vertex v ∈ V(j) is defined

by N(v) = {r | evr ∈ G
(j)
l }. Therefore, N(S) = ∪tN(st), ∀st ∈ S (See Step 6).

For each cluster V(j), the input is a bipartite graph G̃(j) = (V(j), R̃, Ẽ (j)) and the output is a

matching M(j) that will contain the association of vehicles
(
in V(j)

)
and subchannels

(
in R̃

)
.

Such matchingM(j) is a collection of edges e(j)il that can be mapped to yj . Thus, if e(j)il ∈M(j),

then (yj)il = 1 or (yj)il = 0 otherwise.

VI. PROPOSED ALGORITHM BGM-PA

The target of inter-cluster vehicle pre-grouping in BGM-PA is to decrease the computational

complexity of BGM-SA. In this regard, the allocation problem can be completed in one run

by forming a virtual single cluster of vehicles, in contrast to BGM-SA that requires to allot

subchannels for each cluster on a consecutive basis. Thus, each vehicle group is denoted byWu,

such that W = ∪uWu and Wu∩Wu′ = ∅, ∀u 6= u′, u = 1, 2, . . . , |W|. Such scenario is depicted

in Fig. 6, where the outcome of pre-grouping is shown. R̃ is the set of subchannels whereas
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r̃l (l = 1, 2, . . . , L) are the same resources we referred to in (3). Hence, there are |W|= 5 groups

of vehicles:W1 = {v1},W2 = {v2},W3 = {v5, v6, v8, v10},W4 = {v4, v7, v9},W5 = {v3}. Note

that grouping is applied only to those vehicles that do not lie at the intersection. The selection

of vehicles per cluster is done randomly but aiming at assembling as many vehicles as possible.

For instance, W3 contains 4 vehicles because that was the maximum number allowable, i.e.

one vehicle per each cluster at most. On the other hand, W4 consists of 3 vehicles. Finally, v3

was the last vehicle remaining and therefore, it by itself constitutes W5. Although pre-grouping

is beneficial for decreasing the allocation complexity, it also originates difficulties on how to

represent the overall channel conditions of each collection of vehicles Wu. The formulation of

this problem is similar to (2), except that J = 1, because after pre-grouping there will exist one

cluster only. Therefore, the problem can be further reduced and thus adopt a form identical to

(3). Nevertheless, instead of employing Algorithm 1, we use Algorithm 2, which in essence is

similar. A central issue to take into consideration is that the resultant edge weights d̃ul between

Wu and r̃l, must be a joint metric that can fairly represent the overall channel conditions of

a group of vehicles. Therefore, if such a group is defined by Wu = {wu1, wu2, . . . , wu(mu)}

with mu representing the number of vehicles in the group, then the resultant edge weight is

d̃ul = metric(d(u1)l, d(u2)l, . . . , d(umu)l). To this purpose, we have devised six different metrics

that are defined as follows.

Minimum (MIN): For each r̃l, select the smallest edge weight d̃ul among all the vehicles

v′ ∈ Wu. This is a plausible metric because if fair allocation can be guaranteed for the least
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favored vehicle, then the other vehicles in the group will at least experience equal or better

channel conditions.

Maximum (MAX): This metric is similar to the previous one, except that the maximum value

is chosen instead of the minimum.

Average (AVE): This metric considers the average channel conditions of all the vehicles in the

group.

Inverse of variance (IVAR): This metric measures the deviation of the channel conditions in a

group of vehicles. If IVAR is large, then the channel conditions span a large range of qualities.

When IVAR is small, we can only infer that the channel conditions are similar for the vehicles

but it is difficult to know whether these are good or not.

Minimum plus maximum (MPM): This is a merged metric that considers the overall effect of

MIN and MAX metrics.

Combined metrics (COMB): This metric combines some of the metrics described above. Specif-

ically to overcome the shortcoming of IVAR and exploit the reasoning behind MIN, we define

COMB = AVE + MIN -
√

VAR, where VAR denotes variance.

The computational complexity of exhaustive search is O(|R|!/(|R| − |V|)!). On the other

hand, when BGM-SA is solved through Algorithm 1 after dimensionality reduction via (3),

the complexity is O(max{J |V|, J |R̃|}3) = O(max{J |V|, J
K
|R|}3) whereas the complexity of

BGM-PA is O(max{|V|, 1
K
|R|}3).

VII. SIMULATIONS

In this section, we experiment with several configurations considering different number of

clusters and vehicles. We also vary the number of vehicles at the intersection in order to

understand the impact on the allocation performance. We evaluate exhaustive search, BGM-

SA and BGM-PA using its six variants. In our system, we consider a message rate of 10

Hz and therefore, a new allocation is performed every 100 ms for all the vehicles. In all the

experiments shown onwards, we have averaged the results over 1000 simulations. In Fig. 7, we

have considered J = 3 clusters with N1 = 100, N2 = 90 and N3 = 80 vehicles. The number of
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Algorithm 2: Bipartite Graph Matching-based Parallel Allocation (BGM-PA)

Input: A bipartite graph G = (W , R̃, E).

Output: A perfect matching M.

begin
Drop the index j from Algorithm 1.

Perform random pre-grouping of vehicles.

Select an edge metric for the grouped sets of vehicles.

Perform from Step 1 to Step 7.
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Fig. 7: Data rate for N = 210, L = 100 and K = 7 with J = 3, N1 = 100, N2 = 90, N3 =

80, N̂ = 30
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Fig. 8: Data rate for N = 130, L = 100 and K = 7 with J = 3, N1 = 100, N2 = 90, N3 =

80, N̂ = 70

vehicles at the intersection is N̂ = 30 whereas the amount of vehicles in the system is N = 210.

We have also chosen K = 7 and L = 100.
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In Fig. 7, we show 5 different criteria to evaluate the performance of the approaches. We can

observe that BGM-SA attains near-optimality as its performance is within 0.5% of error. As we

had presumed, BGM-PA-MIN exhibits an acceptable performance compared to all other variants,

being surpassed only by BGM-PA-COMB in most cases. Because BGM-PA-COMB is based on

BGM-PA-MIN and in addition employs statistical information of the group of vehicles, it can

in general achieve superior performance under all the five criteria. However, under the criterion

system average rate, the best performance within the BGM-PA variants is attained by BGM-

PA-AVE. This behavior results logical because BGM-PA-AVE considers—by definition—the

average channel conditions. Therefore, if BGM-PA-COMB had not been introduced, we could

have expected BGM-PA-MIN to perform best under the worst-rate vehicle criterion, for the same

reasons explained above. The variant BGM-PA-MPM, which is based on BGM-PA-MIN, can

also attain acceptable performance under most of the criteria. On the other hand, BGM-PA-MAX

and BGM-PA-IVAR are not capable of attaining good performance under worst-rate vehicle and

system rate standard deviation. These two criteria would usually exhibit a favorable behavior

when the method can provide fairness. Nevertheless, since BGM-PA-MAX is based on a greedy

principle and BGM-PA-IVAR is by itself insufficient, both variants perform poorly.

Fig. 8 illustrates a setup similar to Fig. 7 but with a change in the number of vehicles at the

intersection, namely N̂ = 70. Thus, the number of vehicles in the system is N = 130. We can

observe that because of the increment of N̂ , the performance of all the approaches have changed.

In some cases the performance improves whereas in others degradation can be identified. Notice

that BGM-SA still attains near-optimality but with a comparatively increased error of 3% in

contrast to the previous case. However, some BGM-PA variants have undergone a considerable

upturn. The reason why the performance of BGM-SA has suffered degradation, is essentially due

to the increase of number of vehicles at the intersection. More specifically, this means that when

the first cluster V(1) is processed, the best subchannels will be selected for its N1 = 100 vehicles.

When the turn of V(2) comes, there will be N̂ = 70 time subframes already in use, leaving only

N1−N̂ = 30 available. Thus, the N2−N̂ = 20 unalloted vehicles of V(2) must be accommodated

in those 30 remaining subframes. Notice that the remaining free subframes may not necessarily

have subchannels with high SINR for the vehicles in V(2), as this was never enforced during

the allocation of V(1). If there were fewer vehicles at the intersection, e.g. N̂ = 30 as in Fig.

7, BGM-SA would be able to achieve higher performance as more unused subframes would be

available. On the other hand, we observe the opposite effect in BGM-PA. When the number
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Fig. 9: Worst-rate vehicle for L = 100, K = 7 with J = 4, N1 = 100, N2 = 100, N3 = 100, N4 =

100 and varying N̂ .

of vehicles at the intersection N̂ increases, its performance is boosted. The explanation to this

outcome is that vehicles at the intersection are not grouped (this is done in order to prevent

conflicts). Thus, there are N̂ = 70 vehicles at the intersection and at most 30 lying outside the

that area (prior to pre-grouping). And as we may infer, the main performance degradation source

for BGM-PA is grouping due to the difficulty of representing channel conditions of a group with

a single metric. Thus, since there are fewer groups of vehicles compared to the previous case, the

performance is improved. If we had considered a larger number of vehicles at the intersection

such as N̂ = 95 with N1 = N2 = N3 = 100, the performance of both BGM-PA-MIN and

BGM-PA-COMB would have been within 6% of optimality.

Fig. 9 shows the data rate experienced by the worst-rate vehicle. In the abscissa, we vary

the ratio N̂/Nj which represents the proportion of vehicles at the intersection to vehicles in

each cluster. In this setup, we have considered that N1 = N2 = N3 = N4 = 100 and J = 4

clusters. For the reasons explained above, we expect that as the ratio N̂/Nj approaches unity

the performance of BGM-SA will decrease whereas the performance of BGM-PA will increase.

In our opinion, leveraging the worst-rate vehicle is a most important criterion as it guarantees

a minimum achievable rate for the least favored vehicle. Thus, judging from the results, we

can say that the proposed BGM-SA, BGM-PA-MIN and BGM-PA-COMB are robust allocation

schemes that are not prone to influence stemming from the diversity of possible scenarios.

Fig. 10 shows the cumulative distribution function (CDF) of the achievable rates. In this
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Fig. 10: Cumulative distribution function (CDF) of rate values for L = 100, K = 7 with J =

3, N1 = 100, N2 = 90, N3 = 80 and N̂ = 50.

scenario, we have considered J = 3 clusters with N1 = 100, N2 = 90, N3 = 80. Also, we have

chosen N̂ = 50 as it is an intermediate value between the most and least favorable scenarios

for BGM-SA. We observe that BGM-SA is similar in performance to exhaustive search, and is

undoubtedly superior to all other approaches. We know, however, that such additional gain is

achieved at the expense of higher complexity. We also observe that the second and third best

schemes are BGM-PA-COMB and BGM-PA-MIN, respectively. Specifically, these two variants

perform well in the low regime whereas they do not excel in the large regime. On th other hand,

BGM-PA-MAX only performs well in the large regime. For this reason, BGM-PA-MPM—which

uses both the MAX and MIN metrics—also performs acceptably right in the whole range.

VIII. CONCLUSION

We have presented two resource allocation schemes for V2V broadcast communications. BGM-

SA is based on successive matchings of weighted bipartite graphs whereas BGM-PA is capable of

accomplishing the allocation—for all the clusters in the system—in a parallel fashion. We showed

through simulations that BGM-SA can attain near-optimality with a complexity that increases

proportionally to the number of clusters. On the other hand, BGM-PA has a lower complexity but

achieves inferior performance. We also presented six different metrics to improve the matching

performance of BGM-PA. Thus, the variants BGM-PA-COMB and BGM-PA-MIN are the most

robust since they are not influenced by the system setup. In the allocation process, we always

considered the enforcement of constraints in order to avoid intra-cluster allocation conflicts. A
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naive assumption of this work is that clusters can always be perfectly defined although in practice

this might be complicated to guarantee.
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