
Fog Seeding Strategies for Information-Centric
Heterogeneous Vehicular Networks

Ion Turcanu∗, Thomas Engel∗ and Christoph Sommer†
∗Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
†Heinz Nixdorf Institute and Dept. of Computer Science, Paderborn University, Germany

{ion.turcanu,thomas.engel}@uni.lu
sommer@ccs-labs.org

Abstract—Content downloading of mobile broadband users
today routinely causes network load to exceed what the
Radio Access Network (RAN) can sustain without degrading
user experience. Many works are therefore considering edge
or fog computing paradigms and Device to Device (D2D)
communication using 4G/5G C-V2X or IEEE 802.11p/bd links
to obtain content. When content originates (or is maintained)
at a central location, however, this requires expensive seeding
of the content into the mobile network. We thus advocate
basing the decision of when and where to perform fog seeding
on a network graph that respects connectivity metrics while
performing community detection and exploiting node centrality.
We present different seeding strategies and investigate their
respective benefits compared to traditional information-centric
networking. Using simulations, we demonstrate that choosing a
suitable strategy can yield substantial benefits – and vice versa.

I. INTRODUCTION

As wireless communication technology matures, it is able
to deliver higher data rates at lower latencies – but it is also
expected to do so by its users [1]. Today, users of mobile
broadband networks are routinely uploading, downloading,
or streaming substantial content over wireless connections
while on the move. This, however, comes at the cost of a
proportional increase of load in the Radio Access Network
(RAN), the core network, as well as the backend services.
Today, this load routinely exceeds what, e.g., the RAN can
sustain [2], [3] – with solutions made even more complex in
networks characterized by high node mobility like the up-and-
coming vehicular networks. Many researchers foresee massive
investments in new infrastructure to enhance spectral efficiency
and smaller cell sizes to improve spectrum reuse as the only
ways to tackling this problem [4].

An alternative option has been gaining increasing interest
recently: moving content closer to where it is consumed and
using multi-hop Device to Device (D2D) communication to
obtain content. Such D2D communication can either rely on the
same access technology (like in 5G NR-V2X or 4G LTE-V2X)
networks, or can be performed using alternative technologies
(such as IEEE 802.11bd, IEEE 802.11p, or Wi-Fi) [5]. These
developments had their beginnings in edge computing [6], [7]
and have continued further with fog computing [8].

When content originates (or is maintained) at a central
location, however, this requires seeding the content into the
mobile network – and this process requires resources as well.

This raises the question of when and where seeding can actually
be beneficial to content retrieval in information-centric networks
characterized by high topology dynamics. To fill this gap,
• we advocate basing the decision of when and where to

perform fog seeding on a network graph that respects con-
nectivity metrics while performing community detection
and exploiting node centrality;

• we present different seeding strategies assuming a central-
ized instance (e.g., an operator or a content provider) for
decision making;

• we investigate their relative benefits and their benefits
with respect to traditional information-centric networking;

• we demonstrate that choosing sub-optimal metrics for
connectivity, community detection, or node centrality can
yield substantial performance loss, whereas following a
suitable strategy can yield substantial benefits.

II. RELATED WORK

In order to overcome the limitations of IP-based host-
centric networks, Information-Centric Networking (ICN) has
been considered as an alternative solution to improve content
distribution [9]. One of the properties that makes ICN so
attractive is the possibility of leveraging in-network storage for
caching and rapid replication of content objects throughout the
network in a peer-to-peer fashion [10]. In ICN, every cache-
equipped network node can store and share with other nodes
the content objects it receives, independent of whether the
node itself is the destination of the content or not. One of the
most important problems that can significantly affect content
distribution performance is content placement, i.e., the strategy
that governs the decision of where, what, and when to cache.

In general, the classical ICN caching approach provides for
nodes to indiscriminately cache the content objects along the
delivery paths. Chai et al. [11] have studied the effects of
such a ubiquitous reactive caching strategy and found that it
is sub-optimal. In particular, they demonstrate that allowing
only a subset of nodes to cache the content can significantly
increase the cache hit rates and improve network performance.
They propose a centrality-based caching strategy that selects
the nodes with the highest betweenness centrality as caching
nodes and compare it with the classical ICN approach, as well
as with a naïve random-based algorithm. The results show that
even the random caching strategy outperforms the pervasive



ICN approach, while the proposed centrality-based algorithm
achieves the best results in terms of hop-count and cache hits.

In order to improve the network efficiency and reduce the
backhaul traffic load, recent works have proposed bringing the
content closer to end users by caching it at the edge of the
network. Chang et al. [12] provide an overview of architectures
and strategies for network edge caching and propose to exploit
big data analytics schemes and machine-learning techniques
in edge caching designs. They introduce and evaluate a hierar-
chical collaborative edge caching architecture, recognizing the
performance gains that can be achieved. Said et al. [13] explore
the concept of community detection in social networks when
designing a proactive edge caching strategy. They propose
a community detection algorithm based on the D2D cellular
network and use an eigenvector centrality measure to select
the most influential users in each community. Their idea is that
influential users generate popular content which is more likely
to be requested in the future by other users. The proposed
approach is shown to satisfy up to 30 % more users when
compared to a reactive caching scheme.

Being mobility friendly, the ICN approach has also gained
significant interest in the vehicular networking domain:
Modesto and Boukerche [14] provide a detailed overview of
existing caching strategies in Information-Centric Vehicular
Networks (ICVN). They identify the importance of strategically
placing the content objects closer to end users to decrease
average hop-count and increase cache hits. They evaluate the
influence of different caching policies and parameters, such as
content popularity, cache size, request frequency, replacement
and coordination policies, and conclude that always caching
the content does not automatically improve content delivery.

An initial study on how to optimally seed the content in an
ICVN has been performed by Bruno et al. [15]. In particular,
this work shows the benefits of pre-distributing the content to
a predefined sequence of access points in order to maximize
the probability of content retrieval. The content is assumed to
be divided into chunks, which are split across different access
points organized in a tree topology. Vehicles can download
the content chunks from different access points while on the
move. The authors formulate an Integer Linear Programming
(ILP) problem of optimally distributing these chunks so as
to maximize the probability that a vehicle can retrieve the
requested content. A similar idea of distributing the content
chunks across the infrastructure edge nodes has been considered
by Mahmood et al. [16]. In this study the authors describe
a mobility-aware probabilistic edge caching mechanism for
vehicular networks, which considers information concerning
the trajectory of vehicles and dwell time under each edge
node. They propose an analytical model that predicts the
probability of vehicles requiring the content at a specific edge
node and develop a caching strategy based on this model.
The proposed approach, evaluated using a realistic mobility
scenario, outperforms existing popularity-based strategies.

The importance of selecting the right node to proactively
cache the content in ICVN has also been acknowledged by
Grewe et al. [17]. This study also leverages information
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Figure 1. An example of unsuccessful content retrieval attempt in heteroge-
neous ICVN via D2D links.

regarding the future position of the vehicles in order to
proactively cache the content chunks at the Road Side Units
(RSUs). The proposed solution uses a centralized algorithm
that requires the exact position of the vehicle, its velocity, the
frequency of requiring the content, as well as the position and
communication range of all the RSUs so as to place the content
chunks in advance one hop away from the vehicle. In more
recent work [18], the same authors propose a fully-distributed
solution as well. Here, the edge nodes gather information
regarding the content request frequency, number of hops to
reach the content, and freshness time. This information is used
to identify and prefetch popular data on the edge nodes in
order to increase network performance and decrease latency.

Summing up related work, it can be seen that most of the
existing solutions focus on proactively placing the content on
fixed infrastructure nodes and leveraging mobility prediction
mechanisms to identify where exactly to cache the content.
Recent works have investigated the idea of fog vehicular
computing [19], i.e., exploiting vehicles’ computation and
storage capabilities to provide services at the edge of the
network [20]. We build on this idea and seed the content on
strategically selected vehicles. In addition, based on recent
studies that demonstrate the advantages of heterogeneous
vehicular networking [21], [22], we propose a strategy that uses
the D2D communication links to retrieve the content from the
vehicular network, falling back on the RAN communication
links only if the content is not found. While also exploiting
network graph centrality measures, we provide a broader
perspective on the effects of different graph connectivity
metrics, and also focus on the impact of – and the trade-offs
between – the RAN and D2D communication channels.

III. PROACTIVE FOG SEEDING STRATEGIES

Figure 1 illustrates the typical process of retrieving content
objects in a heterogeneous ICVN: a vehicle becomes a requester
and queries the network every time it needs new content by
issuing an interest message. This message is propagated in
a multi-hop fashion via D2D links until it reaches another
vehicle that has the content in its local storage, and which
responds to the message by sending back the requested content.
If the content is not found, the requester redirects its query
(via a RAN link) to the content originator/maintainer running
on a backend server. The problem with this approach is
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Figure 2. Proactive content seeding concept.
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Figure 3. Three-layer architecture.

that, if the content is not present or ill-distributed across the
vehicular network, it puts pressure on both D2D and RAN
communication channels – thus impacting network performance
of other applications and increasing operational expenditure.

To address this problem, we adopt the idea of proactively
seeding the content on strategically selected nodes, as shown in
Figure 2. Our proposed seeding approach builds on a centralized
decision mechanism based on graph theory that combines
different connectivity metrics in order to select the seed nodes.
In detail, we propose a three-layer architecture composed of

1) a network connectivity graph,
2) community detection algorithms, and
3) node centrality measures,

each of which offers multiple alternatives for achieving its
respective goals. A high-level overview of this architecture is
illustrated in Figure 3.

The proposed approach aims to select the seed nodes in
such a way that the number of hops to reach the content
from any other node in the network is reduced. The advantage
is twofold: reducing the number of hops to the content, i.e.,
placing the content closer to the potential requesters, increases
the probability of reaching the content via D2D links, which,
in turn, reduces the number of requesters retrieving the content
from the backend service via RAN links. In the following, we
describe the mechanisms employed at each layer in detail.

A. Connectivity Layer

The connectivity layer is at the base of our architecture,
laying the foundation for the other two layers. We assume
a centralized network entity, such as a Software-Defined
Networking (SDN) controller, that has an up-to-date view
of the network connectivity graph. In practice, this can be
obtained by letting vehicles periodically send updated local
neighbour tables such as ETSI Local Dynamic Maps (LDMs)
to the controller. These tables are typically obtained through a
process of periodically exchanging one-hop beacon messages

such as ETSI Cooperative Awareness Messages (CAMs) via
D2D links. Alternative options are exploiting Bloom filter
tables [23] or tapping into the central database available at
no extra networking effort if Vehicle-to-Everything (V2X)
messages are mediated via infrastructure as, for example, in
the 3gpp 4G/5G or Japanese ARIB ecosystems. The choice of
process for keeping these tables up to date on every vehicle
and the upload procedure are out of scope for this article.

The neighbour tables are used to create the graph G =
(V,E) , where V represents the set of vehicles and

E ⊆
{

(u, v) | (u, v) ∈ (V × V ) ∧ u 6= v
}

(1)

is the set of communication links between any two vehicles.
We consider two ways of building the set E, which results

in two connectivity types: weak and strong.1

1) Weak Connectivity: Let Ni be the neighbour table of a
generic vehicle i. We say that G is weakly connected if

E =
{

(u, v) |u ∈ Nv ∨ v ∈ Nu,∀ (u, v) ∈ (V × V )
}
. (2)

2) Strong Connectivity: Considering the previous definition
of Ni, we say that G is strongly connected if

E =
{

(u, v) |u ∈ Nv ∧ v ∈ Nu,∀ (u, v) ∈ (V × V )
}
. (3)

In other words, in case of weak connectivity, we add a link
between two nodes if there is at least a unidirectional link
between them (optimistic approach), while in case of strong
connectivity, we add a link only if there is a bidirectional link
between the two nodes (conservative approach).

B. Community Layer

Network community detection algorithms have been widely
studied in the past [24]. These algorithms generally partition
the network into groups of nodes that are more interconnected
among themselves and less with nodes from other groups.

A core idea of our approach is to detect communities in G
as a basis for determining where to seed the content. As a basis
for discussion, we consider the four prototypical community
detection mechanisms described below.

1) Static Grid: As a baseline method, we consider splitting
the area of interest into static grids, similar to a Military Grid
Reference System (MGRS), and letting vehicles belonging to
the same grid be part of the same community. Notice that this
approach does not need the connectivity graph G as an input,
since the static grids are defined purely based on geographic
coordinates.

2) Connected Components: A connected component of a
graph G is defined as a subgraph H , in which a path (i.e.,
single or multi-hop communication link) exists between any
two nodes of H , and there is no path between the nodes of
H and any other node of G. If G is our network connectivity
graph, then this method detects communities of vehicles which
are completely disconnected from other communities; hence,
there is no D2D path between vehicles belonging to different
communities.

1Note that this means our definitions of weak and strong connectivity differ
from the classic definitions in graph theory.



3) Parallel Louvain Method (PLM): The Louvain
method [25] (like its computationally-optimized implemen-
tation PLM) detects communities in networks by maximizing
the modularity score for each community. The modularity is a
quality function initially introduced by Newman and Girvan
[26], which quantifies the quality of a specific assignment of
nodes to communities. PLM maximizes the modularity score
by measuring the density of connections inside a community
and comparing it with that of a random network. PLM relies on
a greedy algorithm that aims to increase the modularity value
by moving nodes from their community to a neighbouring
community and computing the gain as

∆Q =
dCi
2m
−
di
∑

tot

2m2
, (4)

where di and dCi represent the degree of node i (in general
and when belonging to community C, respectively), m is the
number of edges of the graph G, and

∑
tot denotes the total

number of edges incident to community C.
4) Parallel Label Propagation (PLP): Raghavan et al. [27]

propose a label propagation method that detects communities
through an iterative process in which nodes, initialized with
unique labels, adopt the label that the majority of their neigh-
bours have. Potential ties are solved by uniformly randomly
choosing a label. The process ends when groups of nodes reach
a consensus on a unique label, thus forming a community. In
contrast to the Louvain method, the label propagation approach
does not require any optimization of a predefined objective
function. It does, however, use the network structure defined
by the graph G to guide the label propagation progress.

C. Centrality Layer

In graph theory, the node centrality measures how “central”
a node is within the graph. There is no unique definition of
node centrality – rather, it depends on the purpose and context
in which it is applied. In our case, we want to identify the most
central nodes in every community for seeding content, so as
to bring content closer to any potential requesting vehicle via
D2D links. The centrality layer of our architecture builds on
top of the connectivity and community layers. In the following,
we describe the most prominent centrality measures in graph
theory, which we consider in our performance evaluation.

1) Random: The most straightforward method for selecting
a seeding node inside a community is by uniformly randomly
choosing it. This is our baseline approach that does not depend
on the actual network connectivity graph.

2) Degree: The degree centrality of a generic node u is
defined as:

CD(u) = deg(u), (5)

where deg(u) represents the number of links (edges) attached
to u. According to our definition of G, the degree centrality
measures the number of neighbouring vehicles of u.

3) Closeness: The closeness centrality of a generic node
is the average distance (i.e., shortest path length) between the
node itself and all other nodes in the network. Assuming a
node u, the closeness centrality can be defined as

CC(u) =
1∑

v d(v, u)
, (6)

where d(v, u) represents the distance between nodes v and u.
Notice that in our case the distance is measured as the number
of hops between two vehicles.

4) Betweenness: The betweenness centrality of a node u
quantifies the number of shortest paths passing through u, and
is defined as follows:

CB(u) =
∑

v 6=t 6=u

σvt(u)

σvt
. (7)

Here, σvt represents the total number of shortest paths between
nodes v and t, while σvt(u) is the number of shortest paths
that pass through u.

5) Eigenvector: The eigenvector centrality measures the
“importance” of a node in the network, which depends on the
importance of its neighbours. Let A = (au,v) be the adjacency
matrix of G, i.e., au,v = 1 if there is a direct link between u
and v (and au,v = 0 otherwise). Then, the relative centrality
value of node u can be defined as

xu =
1

λ

∑
v

au,vxv, (8)

where λ is a constant. The eigenvector equation can be written
as Ax = λx. At this point, the largest eigenvalue represents
the desired centrality measure.

IV. SIMULATION SETUP

We investigate our proposed fog seeding strategies using
computer simulation. In particular, we use the open source
vehicular network simulation framework Veins 5.0 [28], the
discrete event simulation engine OMNeT++ 5.4.1, the road
traffic simulator SUMO 0.32.0, and the complex network
analysis tool suite NetworKit 5.0 [29].

We focus on a simulation study that uses IEEE 802.11p for
D2D communication and assumes a channel of infinite capacity
for downloading content from the backend service, if needed.
We note that, aside from the resulting physical network topology
graph, none of our results are tied to a concrete technology
under investigation (i.e., results can be transferred to 5G or
IEEE 802.11bd networks). In particular, the channel busy rate
of our D2D channel remains in the single digit percent range.

For realistic vehicle mobility, we rely on the LuST sce-
nario [30] which models highly realistic mobility in the
city of Luxembourg. We simulate traffic at three different
densities, low, medium, and high, corresponding to 70, 130
and 205 veh/km2, respectively, as well as an average count of
13, 22 and 33 veh reachable via D2D, respectively. Table I
shows an overview of key simulation parameters.



Table I
SIMULATION PARAMETERS

Parameter Value

D2D technology IEEE 802.11p
Channel 5.89 GHz
Transmission power 20 mW
Bandwidth 10 MHz
Bitrate 6 Mbit/s

Simulated area 4 km2

Simulation duration 100 s
Vehicular density (high, medium, low) 205, 130 and 70 veh/km2

Request probability 0.01, 0.2, 0.4, 0.6, 0.8 and 1
Beaconing interval 1 s
Content update interval 10 s
Interest/Acknowledgement size 43 Byte

A. Implementation

The overall protocol functionality can be divided into two
main parts: (i) backend service and (ii) vehicular network
operation.

1) Backend service operation: In order to obtain generaliz-
able results, our application is set up to work as follows: at fixed
intervals of 10 s, new content is created in the backend service.
The centralized controller, based on the updated network
connectivity graph, selects the best vehicles to seed the content
using one of the available alternatives in each of the three
layers of our architecture. Once these vehicles are identified,
the content is proactively seeded via RAN links. This operation
is repeated every time new content is created.

2) Vehicular network operation: The D2D content retrieval
process builds on the classical ICN approach, which consists of
three main components: Content Store (CS), Pending Interest
Table (PIT), and Forwarding Information Base (FIB). At the
beginning of the simulation, every vehicle can become a
requester – that is, a vehicle that is interested in content –
according to a predefined probability (the probability values
are listed in Table I). Starting from a uniformly randomly
chosen time, every 10 s, a requester performs an expanding
ring search for this content. In particular, it incrementally
sets the maximum number of hops the interest message can
travel, starting from 1 and up to a predefined upper bound (in
our case 10), until either the content is found or the upper
bound is reached. Any vehicle that has the content available
in its CS (either having requested and downloaded itself or
having been seeded with the content) can reply. Otherwise,
the vehicle records the 〈senderId, interestId〉 entry in the PIT,
where senderId is the identifier of the vehicle that sent the
interest, and interestId is the message identifier. If the search
fails, the requester downloads the content from the backend
service via the RAN.

In practice, the FIB is not used since maintaining predefined
routes in vehicular networks is not feasible. Instead, we
use a slightly modified version of the ETSI Contention-
Based Forwarding (CBF) protocol [31], a timer-based data
forwarding mechanism to disseminate interest messages across
the vehicular network. In particular, every vehicle includes a

100 Byte Bloom filter [23] containing the list of its one-hop
neighbours in the beaconing process. This allows a receiving
vehicle to check if: (i) the ID of the sender is present in its
local neighbour table, and (ii) its own ID is included in the
sender’s neighbour table. A vehicle is allowed to process an
interest message only if these two conditions are satisfied, i.e.,
there is a bidirectional D2D link.

Our implementation of the content transfer process is
also slightly different from the traditional ICN approach. In
particular, if the interest reaches a vehicle that contains the
content object, this vehicle replies with an acknowledgement
message instead of directly sending the content object, as in the
classical ICN approach. The acknowledgement is propagated
back to the original requester by following the PIT entries
of the intermediate forwarders. The goal of this message is
twofold: (i) to inform the requester that the content was found,
and (ii) to tell intermediate forwarders to switch to the Service
Channel (SCH) for the content transfer process. Notice that the
interest and acknowledgement messages are sent on the D2D
Control Channel (CCH). The choice of the communication
protocols to transfer the content on SCH is out of scope for this
article. We assume the content to be successfully transferred if
the acknowledgement reaches the requester. When the content
reaches the requester, it is locally stored in the CS for a time
duration equal to the remaining lifetime of the content and can
be shared with other potential requesters.

Note that if we consider only the D2D content retrieval
process described in this section (i.e., without the proactive
seeding approach), we end up with a classical ICVN in which
the content is stored/cached in a reactive way only at the
requester side. We call this baseline approach No Seeding and
compare it with the proposed proactive seeding strategies.

B. Metrics

We evaluate the performance of our proposed solution by
measuring the following metrics:

1) Cache miss ratio: This is computed by every requester as
the ratio between the number of non-satisfied content requests
(via D2D links) and the total number of requests sent.

2) Content downloads: This metric measures the total
number of content downloads from the backend service via
RAN for all vehicles during one simulation run. It represents
the sum of downloads triggered by non-satisfied D2D content
requests and downloads triggered by the proactive seeding
strategy. It is a measure of the total load on the RAN.

3) Content hop-count: This is computed by every requester
and measures the number of hops to reach the content via D2D
links. It gives an estimation of the D2D SCH load and latency.

4) Sent control messages: This counts the total number of
sent interest and acknowledgement messages per vehicle. It is
a measure of the overhead placed on the D2D CCH.

5) Community count: This metric measures the total number
of detected communities and depends on the selected commu-
nity detection algorithm.
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V. PERFORMANCE EVALUATION

Naturally, the optimal solution depends on how users and
providers weigh the cost of using the RAN link vs. the D2D
link. For example, it could be assumed that D2D is essentially
free. Then, the only limitation is the channel capacity. In any
case, there is most likely a desired trade-off between the cost
of the RAN resources and the additional load generated on
the D2D links. We investigate this trade-off according to the
presented metrics. It should be noted that in the following
figures we show only the Random and Closeness centralities,
since the results obtained with the Degree, Betweenness, and
Eigenvector centralities are similar to Closeness.

Figure 4 illustrates the performance of the community detec-
tion algorithms considering the strong and weak connectivity
types for various vehicular densities. Notice that we consider a
2x2 static grid, which results in four communities for the
Static Grid approach. The community detection algorithm
that generates a similar number of communities is Connected
Components, which creates between four and five communities,
depending on the connectivity type. In general, given the
fact that it is a more conservative approach, i.e., it creates
fewer links in the graph, the strong connectivity type leads
to more communities being generated. PLM and PLP tend to
generate more communities than the Connected Components
and Static Grid approaches. In particular, it can be noticed
that when the graph is more sparse (i.e., strong connectivity),
PLP creates 14–16 communities, while PLM only creates 13–
14. The situation is reversed for the weak connectivity type,
where PLM generates 11–12 communities while PLP creates
8–9 communities. Here, and in general, we omit results for
medium vehicular density, which always fall in-between those
for low and high densities.

Figure 5 illustrates the cache miss ratio for different
connectivity types, community detection algorithms, centrality
measures, and vehicular densities, when varying the probability
of vehicles becoming requesters. The first thing that can be
observed is the significant decrease in cache misses when

Index

1

0.0

0.2

0.4

0.6

Conn. Comp.

Index

1

PLM

Index

1

PLP

Index

1

Static Grid

H
ig

h
D

en
si

ty

Index

1

0.01 0.50

0.0

0.2

0.4

0.6

Index

1

0.01 0.50

Index

1

0.01 0.50

Index

1

0.01 0.50

L
ow

D
en

si
ty

request probability

ca
ch

e
m

is
s

ra
tio

No Seeding Random Centrality Closeness Centrality
Strong Connectivity Weak Connectivity

Figure 5. Cache miss ratio for different vehicular densities.

using proactive fog seeding strategies. This is especially visible
when the request probability and vehicular densities are low,
where we can see a decrease of up to 94 % with respect to
the No Seeding strategy. As the request probability increases,
the number of requesters that will eventually retrieve and
cache the content also increases. This leads to a better spatial
distribution of the content, hence to a decreased cache miss
ratio. A similar observation can be made for the vehicular
density – the content is better distributed across the network
at high vehicular densities.

A second observation is that the choice of the community
detection algorithm seems to have a greater impact when the
request probability is low. In particular, PLM and PLP tend to
perform better in terms of cache miss ratio with respect to the
Static Grid and Connected Components approaches, mainly
because they create more communities, thus select more seeds,
as can be seen from Figure 4. The difference between the
various centrality and connectivity types is hardly noticeable
for this metric. Only when the number of requesters is low, the
Closeness centrality is a slightly better choice than Random,
and strong connectivity yields an improvement over weak one.

These differences can be explained by analysing Figure 6,
which shows the average number of hops to reach the content.
Given the intrinsic properties of the Closeness centrality metric,
it naturally selects vehicles as seeds which are closer to all
the other vehicles in the community. This can particularly be
seen for low values of request probability, where the Closeness
centrality leads to fewer hops on average to reach the content
than Random. This also true when considering the connectivity
types: strong connectivity leads to fewer hops than weak,
mainly because more communities with fewer vehicles in them
are created. Clearly, all the proactive seeding strategies are
better in terms of hops to reach the content than the No Seeding
strategy. For example, with PLM and PLP, the content is found
on average no further than 1.5 D2D hops when considering
the Closeness centrality and strong connectivity. With the No
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Figure 7. Mean number of content downloads from the RAN.

Seeding strategy, it may take as many as 3.5 hops on average
to find the content. This can make a huge difference in terms
of load on the SCH if the content to be transmitted is very
large. The reason Connected Components performs worse than
other approaches (for low values of request probability) is
because the created communities are not evenly sized – usually
it creates one or two big communities that contain most of the
vehicles and several very small communities. Inside those big
communities it then takes more hops to reach the content.

The load on the RAN in terms of average content downloads
from the backend service is illustrated in Figure 7. An
interesting observation is that the proactive seeding strategies
do not always perform better. In fact, when the number of
requesters is less than 20 %, proactively seeding the content
is actually counterproductive, i.e., not seeding induces fewer
content downloads than all the other approaches. This is
because the number of vehicles interested in the content is
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Figure 8. Mean number of control messages per vehicle sent on the D2D
control channel.

not high enough to justify proactively seeding the content into
the network, even if the cache miss ratio is high. Benefits of
proactive seeding are only visible at higher request probabilities.

The results also show a strong correlation between the
number of content downloads and the number of communities.
In fact, given that the controller proactively and periodically
(every 10 s) seeds the content on one vehicle inside every
community, the algorithms that create fewer communities, i.e.,
Static Grid and Connected Components, perform generally
better. Especially for high values of request probability, a gain
of up to 50 % is achieved when compared to the No Seeding
strategy. Connected Components in conjunction with a weak
connectivity type seems to be the better strategy, achieving
the lowest number of content downloads. In particular, for
higher values of request probability, more than 10 % fewer
content downloads are generated with respect to the Static
Grid approach. PLM and PLP clearly perform worse, given
that they also generate a higher number of communities. The
connectivity type has a significant impact on the number of
downloads, when it influences the number of communities, as
is the case for PLM and PLP. There is no particular difference
between the different centrality metrics.

Figure 8 illustrates the impact of the control messages on
the CCH. It can be seen that on average a vehicle generates a
significantly lower amount of control messages if one of the
proactive seeding strategies is used. The main factors that affect
this metric are the vehicular density and request probability:
the more vehicles that are requesting the content via D2D
links, the more control messages are generated. There are no
significant differences among the various connectivity types,
community detection algorithms, and centrality metrics.

VI. CONCLUSION

In this work we advocated basing the decision of when and
where to perform fog seeding on a network graph that respects
connectivity metrics while performing community detection



and exploiting node centrality. We presented different seeding
strategies assuming a centralized instance (e.g., an operator or
a content provider) for decision making. We investigated their
relative benefits and their benefits with respect to the baseline
of traditional information-centric networking. We demonstrated
that choosing sub-optimal metrics for connectivity, community
detection, or node centrality can yield substantial loss of
performance, whereas following a strategy adapted for the
described use case can yield substantial benefits.

In more detail, we showed that proactive seeding in general
is beneficial for both Radio Access Network (RAN) and Device
to Device (D2D) communication channels. There is a clear
advantage in selecting the seed vehicles based on a network
connectivity graph, and using community detection algorithms
and centrality-based metrics. In particular, by decreasing the
number of hops to reach the content via D2D, latency and load
on both Service Channel (SCH) and Control Channel (CCH)
are significantly reduced. At the same time, proactive seeding
improves D2D content retrieval by decreasing the cache miss
ratio, leading to a significant reduction in the load on the RAN
and, again, latency. However, creating too many communities
and selecting too many seeds can be counterproductive – it can
lead to a higher load on the RAN when compared to traditional
information-centric networking.
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