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Abstract— Semi-automated Controller Area Network (CAN)
reverse engineering has been shown to provide decoding accuracy
comparable to the manual approach, while reducing the time
required to decode signals. However, current approaches are
invasive, as they make use of diagnostic messages injected through
the On-Board Diagnostics (OBD-II) port and often require a
high amount of non-CAN external data. In this work, we present
a non-invasive universal methodology for semi-automated CAN
bus reverse engineering, which is based on the taxonomy of CAN
signals. The data collection is simplified and its time reduced
from the current standard of up to an hour to few minutes. A
mean recall of around 80 % is obtained.

[. INTRODUCTION

Controller Area Network (CAN) is a master-less message-
based protocol dedicated for communication among Electronic
Control Units (ECUs) within a vehicle [1]. The payload of
each message, or frame, sent by any ECU carries signals,
which encapsulate real-time information regarding vehicle
functions. Despite being the world’s most adopted protocol for
in-vehicle communication, CAN does not provide encryption.
Nonetheless, to secure the information transiting in their vehicle
models, car manufacturers encode the CAN data according
to their secret proprietary format. The most common way
to disclose this format is through reverse engineering (RE).
Traditionally, CAN bus RE is performed by a trained human
operator who triggers events in the vehicle and visually inspects
the CAN traffic to spot changes in real time.

As decoded CAN data is in high demand among researchers
and companies providing automotive after-market solutions, the
research is focusing on automating the RE process. Automated
CAN bus RE can be divided in two main phases: tokenization,
which consists of identifying the boundaries of every signal
within a frame [2] and, translation, whose goal is to disclose
the actual format of the signals [3]-[5]. Existing solutions are
semi-automated (i.e. manual operations have to be performed at
data collection time) and typically optimized by using specific
Inertial Measurement Unit (IMU) sensors and often rely on
intrusive injection of diagnostic messages [2], [4], [5]. In
addition, the required data collection time is usually in the
order of hours [4].

In this paper, we present a pipeline to perform semi-
automated CAN bus RE methodologically and at an unprece-
dented speed. The novelties introduced in this work concern
the data collection and translation phases, which are driven by
an extended categorization of the CAN signals.
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Figure 1. Taxonomy of CAN signals

II. PROPOSED CAN BUS RE APPROACH

CAN signals are typically divided in three main categories:
physical, status, and counters [2], [4], [5]. Physical signals
describe the dynamic behavior of the vehicle at driving time.
We propose to further divide these signals in two subcategories:
directly coupled and indirectly coupled. Directly coupled
signals exhibit a similar behavior among them (e.g. wheel
speed) and/or are tied by a clear principle of cause and effect
(e.g. the throttle pedal position and the engine RPM). Indirectly
coupled signals are those whose correlation with any other
physical signal has to be inferred in a non-trivial way (e.g.
brake pedal position and engine RPM). Status signals are
related to vehicle functions whose values represent a limited
set of options. In related work, they are subdivided in two
sets, binary (on/off) and multi-value. We propose to further
sub-categorize binary signals into discrete and blinking. Once
triggered, the former maintain their new value (until the status
changes again), while the latter periodically change their value
from on to off and vice versa. Finally, counter signals display
a cyclic behavior. The key to perform an accurate and time-
efficient CAN bus RE is to take into consideration the taxonomy
of the signals, shown in Figure 1, during the data collection.

Regarding physical signals, it is necessary to collect a CAN
log, or trace, for each group of directly and indirectly coupled
signals. Specific actions have to be performed to capture the
dynamic behavior of the searched signal or group of signals.
Then, each trace must be tokenized considering the byte
order, or endianness. Executing the tokenization on traces
from multiple driving sessions likely results in finding slightly
different sets of tokens, due to the fact that the most significant
bits of some signals might be stimulated more in a scenario
rather than in others. We recommend establishing the final set
of tokens through a likelihood score that takes into account
the nature of the signals addressed in each trace. Physical
signals can be unsigned or signed, based on whether they can
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Table 1
EVALUATION PHYSICAL AND COUNTER SIGNALS

| TI T2 T3 T4
Mean Recall 85.0% 888% 66.7% 80.0%
Mean NRMSE 2.1% 4.9 % 4.5% 1.0%

assume only positive or negative values. An efficient way to
assess the signedness of a signal is to parse its information into
raw unsigned decimal values throughout the trace, and spot
eventual incoherent behavior. To make sense of the information
contained in a signal s, it is necessary to parse its binary format
into a raw decimal value r, and apply a scale factor f and
an offset o, such that vy = f5 - rs + 0s. This can be done
by correlating the signal with external real-time information
providing reference values, e.g. GPS speed.

Similarly to physical signals, one trace has to be collected for
an individual status signal or group of them. Also, a trace where
no operation is performed, called reference trace, provides the
ground truth to compare any other trace with and, thus, identify
changes in the CAN traffic. Usually, while it is easy to spot
these changes, correctly identifying the signals of interest is
not straightforward. In fact, a single action in the vehicle can

trigger multiple signals other than the ones currently researched.

Noise can be preliminarily reduced by discarding signals based
on temporal patterns that cannot reflect a human action, e.g. a
signal switching on and off in 0.1 s cannot possibly represent
a door being opened and closed. The next step consists in
distinguishing between discrete and blinking signals. For this
task, it is essential to preliminarily identify their default value
(the value of the signal when it is not triggered), which can
be 0 (inactive) or 1 (active).

Finally, counters can be identified based on the a monotonic
growth followed by a drop in their value (reset) that they
cyclically display. This behavior enhances both the tokenization
(as all their bits are activated) and translation.

III. PERFORMANCE EVALUATION

We have designed a CAN bus RE tool able to decode signals
carrying a total of 24 distinct vehicle functions, based on the
methodology presented in Section II. It is to be noted that a
number of status signals are not present in some vehicles. For
instance, high-end cars typically have one dedicated ECU for
each seat belt, while some low-end cars have only one for the
front-left seat belt. For this reason, we assess the performance

based on the signals that can actually be found in each vehicle.

To test our tool, we have collected 10 CAN traces for each of
5 vehicle models from 5 distinct manufacturers. Three of these
traces are collected to decode the following physical signals:
vehicle/wheels speed (T1), throttle pedal position/engine RPM
(T2), and steering wheel angle (T3). One trace is to decode
the fuel consumption counter (T4). Six traces are used for
status signals: doors (T5), seat belts (T6), indicators (T7), air
conditioning (T8), and wipers (T9). One trace is the reference
trace. The data collection was conducted using a Raspberry
Pi 3, equipped with a Pican 2 Duo interface and synchronized

Table 1T
EVALUATION STATUS SIGNALS

| T5 T6 T7 T8 T9
Mean Recall \ 958% 728% 571% 800% 87.5%

with a Xee Connect! providing GPS speed information. For
the validation, we use the ground truth provided by a partner
company expert in car data telematics and reverse engineering.

Tables I and II present the aggregated performance obtained
on all vehicles. The recall corresponds to the number of
correctly translated signals over the number of signals to
translate. The Normalized Root Mean Squared Error (NRMSE)
is the difference between the time series of the physical signal
parsed with its reference format (i.e. ground truth factor and
offset) and the calculated format (i.e. outputted factor and
offset), on a test CAN trace. With an average of 25 s per trace,
or 5min in total, the data required to identify and decode up
to 27 vehicle functions is one order of magnitude inferior with
respect to current state-of-the-art solutions, while achieving
similar performance [4], [5].

IV. CONCLUSION

We present a methodology to perform fast and scalable
semi-automated CAN bus RE, based on the taxonomy of
CAN signals. Particular attention is paid to the data collection
process, which is decomposed in multiple steps and reflects
systematically the semantic of the researched signals. In
addition, we offer indications on how to identify and translate
signals based on their characteristics and format. We validate
this approach by implementing a CAN bus RE tool based
on it. Our solution requires significantly less time for data
collection compared to other state-of-the-art solutions. Future
work includes testing on a wider number of signals and further
optimization of the RE process.
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