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Abstract—Time Sensitive Network (TSN) standards are
gaining traction in the scientific community and automotive
Original Equipment Manufacturers (OEMs) due their promise
of deterministic Ethernet networking. Among these standards,
Generalized Precision Time Protocol (gPTP) - IEEE 802.1AS -
allows network devices to be synchronized with a precision far
higher than other synchronization standards, such as Network
Time Protocol (NTP). gPTP is a profile of Precision Time Protocol
(PTP) which, due to its robustness to delay variations, has been
designated for automotive applications. Nonetheless, gPTP was
designed without security controls, which makes it vulnerable to
a number of attacks. This work reveals a critical vulnerability
caused by a common implementation practice that opens the
door to spoofing attacks on gPTP. To assess the impact of this
vulnerability, we built two real gPTP-capable testbeds. Our results
show high risks of this vulnerability destabilizing the system
functionality.

Index Terms—Connected Vehicles, Time Sensitive Networking,
Cybersecurity, Automotive Ethernet

I. INTRODUCTION

Today’s vehicles feature an increasing number of services
for drivers and passengers, such as smartphone integration,
infotainment, connectivity to infrastructure, Advanced Driver
Assistance Systems (ADAS), and autonomous driving [1]. All
of these services can only be made possible with effective
in-vehicle communication systems. These systems, such as
CAN, FlexRay, and CANopen have traditionally been de-
veloped to meet strict end-to-end latency and deterministic
requirements for in-vehicle communications [2]. However, they
lack flexibility in reconfigurability and struggle to meet the
bandwidth requirements of future automotive applications. To
cope with this, automotive Ethernet has been proposed as a
in-vehicle communication system with a physical layer tailored
to automotive services. Automotive Ethernet enables high
bandwidth and higher flexibility to integrate with external
services [3]. It is also empowered with a set of Time Sensitive
Network (TSN) standards to guarantee tight end-to-end latency
for meeting safety-critical functions. However, TSN has no
security controls inherently embedded [4]. Creating a secure
automotive TSN profile is critical for future vehicles in terms
of safety, security, and comfort [5]. The IEEE 802.1DG group
[6], who works on such a profile, recognizes the importance
of security controls for TSN in automotive networks.

Accurate time synchronization, provided by Generalized
Precision Time Protocol (gPTP) — IEEE 802.1AS [7] —, is an
integral part of TSN. gPTP is a Precision Time Protocol (PTP)

profile for Audio Video Bridging (AVB) and TSN released
in 2011. PTP — IEEE 1588 [8] — is a protocol for highly
accurate time synchronization, which relies on a master-slave
architecture. The architecture consists of multiple nodes, also
called clocks (Section 6 of [8]). A device with a single access
to the network is referred to as an Ordinary Clock (OC).
This device can either act as a master, i.e. the source of
synchronization packets, or as a slave, i.e. the recipients of these
messages. A Boundary Clock (BC) has numerous connections
to the network and is able to precisely synchronize one network
segment with another. Transparent Clock (TC), instead, simply
relays messages to the other clocks.

The root timing reference clock is called the Grand Master
(GM). The GM sends synchronization information which is
propagated through the network. The GM is not fixed, but
it is elected dynamically following the Best Master Clock
Algorithm (BMCA). This algorithm ranks the clocks according
to their features, such as the priority number, the class, etc.
Iteratively the clock with the highest ranking becomes the GM.
Following the election of the GM, a synchronization master
clock is selected for each network segment in the system. A
BC forwards accurate time to the other segments to which it
is connected.

The management and synchronization in a PTP system is
achieved with the exchange of the following PTP messages:

« Event messages — are the messages through which
Boundary Clocks and Ordinary Clocks exchange time-
related information with one another in order to syn-
chronize clocks located throughout the network. The
event messages are Sync, Follow_Up, Delay_Req and
Delay_Resp.

« General messages — clocks make use of them in order to
assess delays over the network and allow the system to
correct for such delays. The messages are Pdelay_Req,
Pdelay_Resp and Pdelay_Resp_Follow_Up.

« Announce messages — are used to establish a clock
hierarchy and elect the GM, following the BMCA.

gPTP improves certain properties of PTP and restrains some
options. When compared to PTP, gPTP is far more resistant
to fluctuations in latency since it requires that every switch
in the network support gPTP at the MAC layer. This means
that we can expect a (almost constant) propagation delay, but
no queueing delay. gPTP packets are sent via Link Layer
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Discovery Protocol (LLDP) — a protocol for the link layer that
nodes use to advertise their identity, capabilities, and neighbors
in an asynchronous congested Local Area Network (LAN).

The capability of guaranteeing tight end-to-end delays and
a sub-microsecond clock accuracy makes gPTP particularly
suitable for in-vehicle communication. Nonetheless, PTP (and,
therefore, gPTP) is not equipped with security controls by
default and, thus, it is exposed to a number of attacks,
which are described in RFC 7384 [9]. PTP version 2 (IEEE
1588-2008) includes an experimental security enhancement
in Annex K; nevertheless, it has been demonstrated that the
proposed modification is not adequate to prevent a number of
attacks on the protocol [10]. These attacks affect also gPTP.
In particular, the impact of successful attacks against gPTP is
significant due to the fact that many safety-critical services,
such as autonomous driving and Vehicle to Everything (V2X)
applications are dependent on time assurances.

In this paper, we reveal a critical security breach found in a
common implementation practice facilitating spoofing attacks.
Then, we evaluate the effects of high-risk spoofing attacks, i.e.
which have severe consequences, on real testbeds. The results
achieved in this paper provide a deeper understanding of the
security threats linked to the lack of security controls in TSN.
The contributions of this paper can be summarized as follows:

e« We set up two physical testbeds which includes time-
aware endpoints with hardware timestamping capable
network interfaces.

e We report a vulnerability caused by a common design
practice that allows attackers to conduct spoofing attacks
without accessing the network domain.

o To the best of our knowledge, we are the first to
demonstrate and assess the impact of this attack on a
real testbed.

o We discuss a set of countermeasures to mitigate the
vulnerabilities presented in the paper.

The remainder of this paper is organized as follows. In
Section II we discuss related work on gPTP security. In
Section III we present our novel testbeds. The spoofing
attacks and their impacts are described in Section IV and
Section V respectively.Section VI lists a set of countermeasures.
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

IEEE 1588 (PTP) standard has been designed for precise
clock synchronization in networked measurement and control
systems. Since its first release in 2002, the standard has been
revised twice to improve procedures and fix shortcomings
found in the original version [8], [11]. In 2011, the gPTP
profile was introduced aiming at becoming the standard for
in-vehicle Time Synchronization.

RFC 7384 [9] identified a list of cybersecurity threats on time
synchronization protocols and defined their threat models and
security requirements. PTP security has been widely studied
[12]-[14] and different attacks have been conducted, such as:

+ Rogue master — the attacker has gained control of one

node in the network and is granted the GM position via

the BMCA by sending Announce packets with high GM
priority [15].

« Packet manipulation - an attacker with a Man-In-The-
Middle (MITM) position manipulates packets sent by
other nodes [16].

o Packet delay manipulation — an attacker with a MITM
position forwards the received packets with a delay,
but without modifying the packets’ CorrectionField,
a field which indicates the residence of the packet in the
switch[17]-[19].

« Spoofing — an attacker without privileged position in the
network sends spoofed PT P packets impersonating a
legitimate node, with the aim of providing false time to
the slave nodes, desynchronizing them or causing Denial
of Service (DoS).

While rogue master, packet manipulation and packet delay
manipulation attacks have been successfully performed on
PTP, at the time of writing spoofing attacks have not been
completely demonstrated. Han and Crossley [20] were the first
to attempt spoofing attacks on a real PTP testbed. In their
paper, the authors present three attacks scenarios:

« a node with a MITM position (between the GM and a
TC) filters out, retains and modifies specific frames;

« anode in the same position overflows the network sending
frames at a high rate, thus causing DoS;

« a node is granted GM position by sending Announce
packets with high GM priority.

However, we argue that, in accordance to RFC 7384,
the presented attacks are packet manipulation, packet delay
manipulation and rogue master attacks.

Given that gPTP is the chosen PTP profile for automotive
TSN, its lack of security can harm significantly human lives and
property. With the aim of raising further awareness regarding
this threat, in this work we conduct spoofing attacks on realistic
gPTP testbeds and assess their impacts.

III. TESTBED

Network devices and equipment with gPTP capabilities
are already available on the market. Currently, data centers
use this technology to offer precise time synchronization
throughout their networks. In addition many industries, such
as the automotive, are considering implementing this network
protocol. However, studies on gPTP security have been mostly
conducted in a simulated environment. Since it has not been
evaluated on a real testbed, the security of gPTP in the real
world remains largely unknown. For this reason, in this work
we chose to employ a physical testbed.

In this section, we describe the two testbeds that we set up
to perform security analysis on gPTP. Specifically, we built a
physical testbed based with real gPTP-capable switches and
a testbed that uses a software implementation of gPTP on an
Accelerated Processing Unit (APU) as network switch.

For the endpoint APUs of both testbeds, we have used
LinuxPTP (version 3.1-00116-g24220e8), an open-source
repository for the development of PTP on Linux [21]. Finally,



Figure 1. Picture of the testbed with real gPTP capable switches.
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Figure 2. Architecture of the testbed with real gPTP capable switches.

to ensure that our evaluation of the attacks relies only on the
internal clocks of the testbed, we have blocked the access of
the devices to external time resources, such as Network Time
Protocol (NTP).

A. Testbed with real gPTP-capable switch

The hardware components of the physical testbed are listed
as follows:

o Three gPTP capable Netgear switches (GS716Tv3 ProSafe
16-port Gigabit Ethernet Smart Switch, 6.3.1.19-39,
B1.0.0.4) [22].

o Four APUs apu2e4 [23] each with three Intel Ethernet
Controller 210 and running Ubuntu 16.04. One of the

APUs is dedicated to the attack tool as an attacking device.

Other three APUs are considered as gPTP endpoints.

Figure 1 shows a picture of the aforementioned testbed,
while Figure 2 describes its architecture.

B. Testbed with LinuxPTP software-based switches

To ensure that the results are not limited to a specific
hardware, we created a parallel software-based testbed. This
testbed contains the three PC Engine APUs (apu2e4) used in
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Figure 3. Architecture of the testbed with LinuxPTP software-based switches.

the physical testbed and one laptop as the attacker’s device
running LinuxPTP. While one of the APUs was configured to
work as a gPTP relay instance, the second and third APUs
were configured to work as the GM and the slave endpoints
respectively. In Figure 3, we show the architecture of the
testbed with LinuxPTP software-based switches.

C. Monitoring

gPTP daemons only synchronize the PTP Hardware Clocks
(PHCs). In order to monitor the impact of the attacks, we use
the PHC time instead of the system clock on interfaces. To
monitor the PHC time directly on each endpoint the following
command is used:

$while :;do sudo phc_ctl [NIC] —--get;done

*#[NIC] = Network Interface Name

To observe clock offsets and delays, we use the real-time
report generated by the LinuxPTP daemon at running time.
Given that a slave node is considered synchronized with the
GM if the clock offset is below 100 ns [24], we constantly
monitor that this requirement is met.

Moreover, through the control panel of the switches, we
keep track of the states of the ports (slave or master), as well as
the joining status to the gPTP domain (port enabled/disabled),
the propagation delay, and the gPTP packets dropped by the
switch. Finally, Tcpdump [25] is used on each endpoint to
sniff packets sent from or received by a device. The captured
packets are then analyzed with Wireshark [26].

D. Attack Tool

To conduct attacks against the testbed, we require a trustwor-
thy attack tool that can produce, alter, and process PTP packets.
We implemented our attack tool, PTPAttack, in Rust, i.e. a
system-level programming language specialized for low levels
of network stacks and operating system access. PTPAttack can
join the gPTP domain by delivering legitimate Pdelay responses
with appropriate and stable latency. PTPAttack may also
generate Pdelay, Announce, Sync, and Followy p messages
with arbitrary values by parsing PTP packets. PTPAttack



enables the attacker to execute several attacks from an internal
injector point.

IV. ATTACK DESCRIPTION

In this section, we report the characteristics of the rogue
master and spoofing attacks and the methodology followed to
conduct them against the testbeds.

A. Threat Model

The threat model is the one of an internal attacker, i.e.
an adversary who knows the encryption/authentication keys
and/or who is capable of manipulating legitimate traffic in
the network and/or generating its own traffic while making it
appear legitimate to the attacked nodes. Since the protocol does
not include any security control, the adversary can exploit this
vulnerability by simply eavesdropping and analyzing the traffic
to obtain sensitive information. To achieve such an advantage,
the adversary must gain access to a segment of the network.
Alternatively, the adversary can inject its own traffic into the
network, which can be used in a variety of attacks, such as
DoS, replay attacks, or impersonation attacks. In this work,
we assume that the adversary has already gained access to the
network. The methodology to perform such an access is out
of the scope of this paper.

B. Rogue Master Attack

In the rogue master attack, the malicious slave pretends
to be time-aware and joins the gPTP domain by respond-
ing to the Pdelay_req packets properly received from the
switch. The malicious node keeps listening to the net-
work for Pdelay_req packets and generates Pdelay_resp
and Pdelay_resp_follow_up packets by modifying received
Pdelay_req packets.

In order to join the domain successfully, it is essential for
the attacker to have the switches calculating a low propagation
delay. After joining the domain, the attack tool seeks to obtain
the GM position. To make other nodes believe that it is the
most accurate clock in the domain and, thus, be elected as the
GM, the malicious node generates high-priority Announce
packets. Once it has achieved the status of GM, the malicious
node completes the rogue master attack by sending arbitrary
timestamps to the slaves in Sync/Follow_up packets, thus
producing a false time in their clock and/or desynchronizing
them.

C. Spoofing Attack

According to the gPTP protocol, Sync/Follow_up packets
should be forwarded by a switch only if they are sent from
a port in a master state. Therefore, it should not be possible
for an adversary to send malicious Sync/Follow_up packets
without being in a MITM position or being the GM, e.g. by
conducting a Rogue Master attack [9]. However, in both the
testbeds described in Section III we identified a vulnerability
that permits spoofing attacks regardless of the position of the
attacker. This vulnerability is linked to a wrong design choice
made with respect to the Ethertype field. The Ethertype
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Figure 4. Implementation of security control for gPTP packet forwarding by
LinuxPTP and Netgear. When the address check fails, the Ethertype control
and further steps are bypassed and the packet is forwarded.

is a two-octet field in an Ethernet frame that indicates how
the payload should be processed. The gPTP profile identifies
Ethertype as an essential field in the packets, but it does not
provide detailed instructions on how to process it.

In Figure 4, we illustrate how the Netgear and the LinuxPTP-
based switches process a gPTP packet.

gPTP packets are sent via LLDP Multicast MAC address
01 : 80 : C2 :00: 00 : OF (Step 1). Switches receiving
packets with this address must check the Ethertype field
(Step 2a). If Ethertype indicates a gPTP packet, the switch
passes it to the gPTP layer (Step 3) and, subsequently, it
checks the ingress port state (Step 4). If the port is in a
slave state, the switch forwards the gPTP packet (Step Sa),
otherwise it drops it (because the switch is not expected to
receive Sync/Follow_up packets from a slave node). It is
to be noted that if the packet is an Announce packet with
a higher priority in BMCA, the switch accepts that packet
and changes the port state to the slave state. Moreover, if the
packet is an Pdelay packet the switch will process but not
forward it as the Pdelay mechanism in gPTP is hop by hop.

We found that both the Netgear and the LinuxPTP software-
based switches do not check FEthertype correctly, thus
identifying gPTP packets only by considering the destination
address (Step 1). As a consequence, it is sufficient for an
attacker to change the destination MAC address to an arbitrary
address, so that the switch does not identify the packet as a
gPTP packet and forwards it to its destination without further
processing (Step 2b).

This vulnerability implies that, in order to conduct a
successful spoofing attack against the gPTP, the attacker only
needs to find the ClockIdentity of each master port. This
can be achieved:

(a) Through path trace Type, Length, Value (TLV) values in
multicasted Announce messages.

(b) By eavesdropping.

(c) By scanning the network for MAC addresses and building
the clocking identity of each node using its own MAC
address.
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Figure 5. Example of spoofing attack with Broadcast MAC address. The flow
of the spoofed packets is coloured in red. The switch is not considering the
Ethertype value in the packet header and gives priority to the MAC address
for detecting the gPTP packets. As a consequence, the attacker can bypass
the gPTP port state limits and send spoofed sync & follow up packets with
arbitrary MAC address.

Subsequently, to bypass the master or the disabled ports
on the switches, the attacker sets the packet destination MAC
address to an arbitrary address — except for the LLDP MAC
Address. For example, the attacker can use the Broadcast MAC
address F'F : FF : FF : FF : FF : FF to send the packet
to all connected endpoints or the MAC address of a single
endpoint for a selective attack.

This causes the switch to forward Sync/Follow_up mes-
sages to other nodes. Since gPTP endpoints do not match
the PTP Ethertype and LLDP MAC address, the packet is
considered as a valid gPTP packet. Figure 5 illustrates the
details of this attack.

D. Attack Scenarios

Once an adversary has ensured that the malicious traffic
can propagate through the network by following the rogue
master or the spoofing attack mentioned in Section IV-B and
Section IV-C respectively, the attack can be injected. The
attacker can generate new Sync/Follow_up, Announce or
Pdelay packets or simply modify the timestamp, destination
address, clock identity, port number and sequence id of the
packets received from the GM and broadcast them. In particular,
the attack can aim at achieving three objectives:

(a) False Time - the attacker changes the clock of the
slaves to any arbitrary date and time by sending spoofed
Sync/Follow_up packets.

(b) Desynchronization - the attacker makes the slaves
desynchronized from the GM node or from each other.
This is achieved by either unicasting different spoofed
Sync/Follow_up packets to each slave or broadcasting
highly variable, e.g. random, timestamps to all packets.

(c) DoS - The attacker can produce DoS by using the spoofing
attack under various scenarios. In this work, we consider
two scenarios: i) the Announce packets of a legitimate
GM are spoofed and sent with low priority values. ii) the

adversary spoofs the Announce packets of a slave node
containing high priority values.

It is to be noted that when desynchronization is carried out,
the adversary also achieves false time. For instance, if the
adversary continuously sends Sync/Follow_up packets with
a tampered time, he can firstly achieve false time and then
desynchronization. Vice versa, false time does not necessarily
imply desynchronization. In gPTP, the messages are sent as
multicasts by default. So, when an attacker spoofs the GM,
Sync and Follow_up messages are multicasted to all nodes.
This means that they can all be synchronized at the same
tampered time.

V. IMPACT EVALUATION

As described in Section IV-D, rogue master and spoofing
attacks have similar capabilities in achieving false time,
desynchronization and DoS. In this section, we evaluate the
impact of the performed attacks by analyzing false time,
desynchronization and DoS independently.

A. False Time

In LinuxPTP, the amount of time needed by the slaves to
adjust their clocks depends on the specific configuration chosen.
For instance, in the default options of LinuxPTP, the offset
and clock frequency gradually increase until the new target
time is reached. However, if LinuxPTP is set with the option
step_threshold = n — where n is the maximum tolerable
difference that can occur between the current clock and the
requested clock (in seconds) — and the threshold is overcome,
the PHC clock is adjusted to the attacker’s arbitrary time [24].

We observed that when the GM is an endpoint, the slaves
continuously change their time to the spoofed time and then
reset to the legitimate GM clock time. Also, decreasing the
spoofed packets sending intervals increases the attack efficiency.
Additionally, the attacker can produce a certain time difference
between the slaves and the GM clock by adding desired time
difference to the timestamp sent by the GM.

In Figure 6, we show the impact that a multicast spoofing
attack aiming at false time has on the target slaves. The target
slaves abruptly change their timestamp to follow the infor-
mation contained in the spoofed Sync/Follow_up messages.
The two slaves node keep being synchronized to each other,
but to the wrong time. It is to be noted that, in the case
of a spoofing attack, the attacker does not manage to keep
the slaves continuously synchronized to the desired time, due
to the presence of the original GM which keeps sending its
own Sync/Follow_up packets. By contrast, in a rogue master
attack, being the malicious node the official GM, the slaves
are uninterruptedly synchronized to the desired time.

We argue that this attack does not only impact gPTP, but
TSN as whole. In fact, slaves synchronized at a false timestamp
might be dropped in the case of high priority traffic, thus
causing DoS.
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Figure 6. Example of multicast false time attack conducted on our testbed
against Slave 1 and 2. The x-axis represents the sequence of Sync messages
collected by the daemons in the slaves, while the y-axis represents the
timestamp to which each node is synchronized. Following the attack, which
in our example occurs after the 700th Sync packet, the two slaves are
synchronized to a spoofed timestamp. However, the synchronization of the
slaves to the new timestamp is not constant due to the presence of packets
from the original GM. When the attack is over, the clocks are synchronized
again to the original GM. It is to be noted that, due to the high granularity
of the plot, the timestamps to which the clocks are synchronizing appear
constant, but they are actually increasing.

B. Desynchronization

The attacker can send different times to the nodes. For
instance, a node can receive the fabricated time 71, while
another node receives the fabricated time 7'2. In this scenario,
slave clocks can no longer remain synchronized, and each
follows a unique time.

The impact of the desynchronization not only depends on
the attacking scenario, i.e. unicast or multicast, but also on
the configuration of the daemon running on each slave clock
(such as the step_threshold = n option for LinuxPTP).

In Figure 7, we demonstrate the impact of a unicast
desynchronization attack on a target slave, which is the only
one being desynchronized. Similarly to the false time attack,
the attacker struggles to keep the target slaves continuously
synchronized to the desired time, as the original GM keeps
sending its own Sync/Follow_up packets.

C. DoS

While rogue master and spoofing attacks follow a similar
logic for what concerns False Time and Desynchronization,
different degrees of DoS can be achieved by these two attacks.

Spoofing attacks can aim at sending false Announce packets.
The slaves receive Announce packets with different priority
values from two sources, i.e. the original GM and the adversary,
and they get stuck in the master selection mode. As a
consequence, they cannot process the received time packets
anymore. Figure 8 illustrates an example of this DoS attack
conducted on our testbed. Alternatively, the adversary can spoof
Announce packets of a legitimate GM with low priority values.
This scenario causes the slaves to choose the wrong node
(the spoofed slave) as the GM while no Sync/Follow_up
packets are sent. In particular, in the first testbed, when the
switch receives no Sync/Follow_up packets, it generates
new packets and sends them through the egress ports in the
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Figure 7. Example of unicast desynchronization attack conducted on our
testbed against Slave 2. The x-axis represents the sequence of Sync messages
collected by the daemons in the slaves, while the y-axis represents the
timestamp to which each node is synchronized. Following the attack, which in
our example occurs after the 700th Sync packet, only Slave 2 is synchronized
to a spoofed timestamp and, thus, desynchronized from the rest of the network.
Similarly to Figure 6, the synchronization of Slave 2 to the new timestamp is
not constant due to the presence of packets from the original GM. When the
attack is over, the clock of Slave 2 is synchronized again to the original GM.
It is to be noted that, due to the high granularity of the plot, the timestamps
to which the clock are synchronizing appear constant, but they are actually
increasing.
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Figure 8. Example of the impact of an Announce packets-based DoS attack
on a slave node. When the attack starts, the slave gets in master selection
mode and does not process Sync/Follow_up packets anymore.

master state. In this context, the Follow_up packets generated
by the switch contain a constant value — the last received
timestamp — in the preciseOriginTimestamp field, while
the Correctionkield reports a wrong value. Furthermore,
we observed that the slaves discard the received Follow_up
packets after 16 s. Subsequently, they reset to the time when
the attack started. This mechanism prevents the slaves from
running free, but it causes false time.

In the case of a rogue master attack, the adversary can split
the gPTP domain into sub-domains using the path route TLV
in Announce packets. In this attack, the attacker chooses a
switch as a segmentation point and puts its clock identity as the
8th clockIdentity in the route path TLV of Announce packets
(see Figure 9). In the switch, this causes a change in the ingress
port state from the slave to the master state. Therefore, the
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Figure 9. Announce packet with malformed route path TLV caused by
a rogue master attack. The adversary fills out the path trace TLV with
arbitrary data except for the last record (highlighted in blue), which is set to
the victim’s clockIdentity. As a consequence, the victim node rejects all
Sync/Follow_up packets because they appear coming from the same node.

switch not only rejects all the Sync/Follow_up packets, but
also the Announce packets even when they have high priority.
The consequence is that the domain is split into two different
segments, each having a specific GM. Also, the attacker can
make more segments by generating customized Announce
packets for each switch.

D. Impact on TSN and on the vehicles

Attacking time protocols makes delay measurement non-
deterministic, increase the consumption of resources, and
cause data disruption in TSN [27]. In automotive scenarios,
the consequences of these attacks might hinder the proper
functioning of the vehicle, be critical for the safety of the
passengers, and produce financial loss and damage.

Inaccuracies in time synchronization within the automotive
TSN can have critical consequences. A timing-based attack
can potentially lead to synchronization issues, communication
failures, up to safety concerns. In particular, such an attack
may potentially cause the failure of the braking or steering
systems of a vehicle that rely on time-sensitive communication
and lead to an accident. However, the further exploration of
such automotive threat scenarios, including safety-related ones,
is not in scope of this work. Additionally, false time may
result in incorrect certificate validation and potential bypassing
of security controls ensuring the integrity and security of
digital certificates and secure communication, such as SSL/TLS
encryption.

VI. COUNTERMEASURES

In this section, we discuss how to reduce the risks associated
with the attacks presented in Section IV.

A. Configuration changes

Typically, the GM is elected dynamically through the
BMCA. However, the gPTP protocol allows the GM to be
pre-configured and unchangeable. Clearly, relying on a single
node for the time synchronization consistently reduces the
fault tolerance of the network, but it is an effective prevention
mechanism against rogue master attacks.

B. gPTP Implementation Improvement

As previously discussed, many gPTP implementations seem
to be fundamentally based on PTP, and are adapted to run
gPTP by inputting some configuration parameters. This practice
increases the security risks, as an attacker may lead to a PTP
state that is unknown in the gPTP state machine. To protect
the gPTP network from such threats the gPTP-capable device
manufacturers and gPTP stack designers should perform a
thorough check to verify that their products fully comply with
gPTP.

In particular, to protect the network from the discussed
spoofing attacks, the gPTP packets not only should be limited
to the LLDP MAC address and gPTP Ethtertype. Rather, the
Ethertype should be checked before the MAC address to make
sure that all gPTP messages are identified correctly. If not, the
MAC address should be dropped. This should be done both
in gPTP-capable switches and endpoint devices.

C. Other Security Mechanisms

Other security control mechanisms can be added to gPTP in
order to increment its robustness against a variety of threats,
including those We identify four categories of security control
mechanisms:

o Integrated Security Mechanisms — AUTHENTICATION
TLV are appended to the PTP messages in order to
provide source authentication and message integrity, and
prevent replay attacks [8]. For instance, spoofing attacks
from external attackers on gPTP could be prevented
with authentication and integrity checks. In this case,
the attacker would not be able to produce valid gPTP
packet, thus making malicious packets to be dropped.

« External Security Mechanisms — IEEE 1588 [8] suggests
using some security mechanisms, such as IEEE 802.1AE
MACSec [28] and/or IPSec [29], which were not originally
included in PTP, but can be used to address some security
requirements.

« Architectural Security Mechanisms — PTP offers architec-
tural solutions for threat detection and mitigation, such
as redundancy of time and paths.

« Key Management — key management is currently not
covered by PTP. It would be required to manage and
distribute keys and other security parameters in the
authentication and message verification process.



D. Intrusion detection

Intrusion Detection Systems (IDSs) could also be used as
countermeasures complementary to the previously mentioned
security mechanisms. IDSs allow the detection of any suspi-
cious deviation from normal behaviors. For example, IDSs
could monitor devices’ clocks to detect desynchronizations.
However, advanced internal attacks may require more sophisti-
cated IDSs. Here Machine Learning (ML) is a key enabler in
detecting such behaviors [30]. More specifically, ML models
could be built based on normal data and tuned to detect
malicious behaviors.

VII. CONCLUSION

In this paper, we have described a security vulnerability
on automotive Ethernet caused by the incorrect check of the
Ethertype field in gPTP packets by switches. This vulnerabil-
ity seems a common design flaw in the implementation of the
gPTP protocol. This security breach can allows adversaries to
easily bypass the gPTP layer and conduct high-risk spoofing
attacks even without joining the gPTP domain.

Based on two real testbeds, we tested different attacking
scenarios resulting from this vulnerability. Our tests highlighted
the major negative impact that this vulnerability has on gPTP
with respect to time accuracy, synchronization and service
availability.

This work shows that the poor design of gPTP-enabling
features in network switches raises consistently the risk of
attacks. Given that gPTP is the chosen PTP profile for
automotive applications, these attacks raise concerns regarding
the health of the vehicles and their passengers.

Future work includes assessing the impact of a diverse set of
attacks on real testbeds, with the aim of providing fundamental
information useful for the implementation of security controls
for gPTP.
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