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Abstract—Fully autonomous driving has been widely studied
and is becoming increasingly feasible. However, such autonomous
driving has yet to be achieved on public roads, because of
various uncertainties due to surrounding human drivers and
pedestrians. In this paper, we present an end-to-end learning-
based autonomous driving system named SuperDriver AI, where
Deep Neural Networks (DNNs) learn the driving actions and
policies from the experienced human drivers and determine the
driving maneuvers to take while guaranteeing road safety. In
addition, to improve robustness and interpretability, we present
a slit model and a visual attention module. We build a data-
collection system and emulator with real-world hardware, and
we also test the SuperDriver AI system with real-world driving
scenarios. Finally, we have collected 150 runs for one driving
scenario in Tokyo, Japan, and have shown the demonstration of
SuperDriver AI with the real-world vehicle.

I. INTRODUCTION

Since the DARPA Urban Challenge for autonomous driving
in 2007 [1], many researchers and engineers have worked
for autonomous driving systems. For example, Carnegie Mel-
lon University has outfitted a Cadillac SRX to drive itself
and has also developed a tool-chains to aid the testing of
autonomous driving systems [2]. In fact, there are multiple
commercial products for autonomous driving, made by Tesla
and comma.ai, and traditional automakers have offered driver-
assistance systems. Although autonomous driving technologies
have been deployed into the real world, fully autonomous
driving has yet to be achieved on public roads, due to the
two challenges: (i) Cooperation with the surrounding humans
and (ii) Unexpected road scenarios. First, autonomous driving
systems might be difficult to determine their behaviors in front
of human drivers and/or pedestrians [3]. Typically, there are
traffic rules to guarantee road safety on public roads, but hu-
man drivers and pedestrians may violate the traditional traffic
rules for operational purposes. Secondly, due to construction,
traffic control, blocking obstacles, and/or potholes, roads might
have dynamic intersection [4], in which unexpected road sce-
narios might happen and each driver might require to cooperate
with by using combination of traffic rules, culture, courtesy,
social norms, and hand gestures. Hence, autonomous driving
systems navigate themselves under such dynamic situations
while understanding the explicit and implicit driving behaviors
of the surrounding human drivers.

In this paper, we present an end-to-end learning-based
autonomous driving system named SuperDriver AI, in which
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Deep Neural Networks (DNNs) determine the driving behav-
iors and policies to guarantee road safety under the mixed
traffic of human-driven vehicles and automated vehicles. In
the SuperDriver AI system, we take image data as input, and
outputs the values for actuating a steering wheel, a throttle,
and a brake system. SuperDriver AI learns the driving policies
from the collected data of human drivers. This approach is
to envision an end-to-end learning-based autonomous driving
system [5]–[7]. As shown in Figure 1-(a), the traditional
autonomous driving systems [1], [2] get the data from on-
board perception systems and map database, and process
them for lane marking & detection, object detection, route
planning, and path planning in each module. One of the major
advantages is interpretability for unexpected system behavior,
and we can easily investigate the internal systems. Above all,
such autonomous driving systems are still far from complete
autonomy on public roads. As shown in Figure 1-(b), the end-
to-end learning-based autonomous driving systems [5]–[7] get
the data for the perception systems and road networks and
process them with DNNs to determine the driving behaviors.
Although such systems might be difficult to provide the
interpretability, we provide a visual attention module to allow
us to understand what the systems focus on and how the
decision is determined. In addition, to show the feasibility of
SuperDriver AI, we collect and process driving data and test
the system with real-world hardware and a vehicle. First, we
build a cloud-based data collection and learning system with
the vehicle for human drivers. Secondly, the trained networks
are processed on the real-world vehicle with real-world driving
scenarios. To design and develop a robust model in real-world
driving scenarios, we also develop a slit model.

The primary contributions of this paper are as follows.
1) We present a SuperDriver AI to envision an end-to-end

(a) Traditional Approach. (b) End-to-End
Learning-based Approach.

Fig. 1. Overall System Architecture for Autonomous Driving.
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learning-based autonomous driving system.
2) We present a data collection and learning system for

SuperDriver AI with real-world hardware and a vehicle.
3) We demonstrate SuperDriver AI using real-world driving

data and real-world hardware.

II. RELATED WORKS

In autonomous driving software, as shown in Figure 1-
(a), the vehicle system gets the information from the map
database and the on-board perception systems that include
vision cameras, LiDARs, and radars. Also, the highly-accurate
map module might be essential to such traditional autonomous
driving systems. These systems have already been deployed for
factory automation and delivery robots, but they are still not
deployed on public roads, mainly due to the unexpected sce-
narios led by human drivers and/or pedestrians [8], [9]. These
traditional approaches might be called modular approach [8].

In contrast, some researchers and engineers have started
to develop an end-to-end deep learning-based autonomous
driving system [5], [9], [10]. In such approach, the entire
pipeline for autonomous driving is processed by a single
neural network. For example, NVIDIA [5] has presented a
deep neural networks-based autonomous driving with their
products and they have driven a vehicle both on highways
and on a smaller test field. In addition, in [10], the authors
proposed an end-to-end autonomous driving framework with
imitation learning to mimic human drivers by using simulators.
They have focused on a bird-view representation as the input,
and calculated vehicle trajectory as the output of the DNNs.
Also, their system includes a safety and tracking controller to
guarantee safety for a testing phase. While many researchers
have worked on the end-to-end approaches for autonomous
driving, there are very few works using real vehicles and real-
world driving scenarios, mainly because of the expensive costs.
In this paper, we design a practical imitation learning-based
approach and implement it in a real-world vehicle.

III. END-TO-END LEARNING-BASED
AUTONOMOUS DRIVING

For end-to-end learning-based autonomous driving, there are
two major techniques to learn driving policies: (i) imitation
learning and (ii) reinforcement learning. First, in imitation
learning, a model is trained to mimic expert human drivers to
learn the driving commands and timings to actuate a vehicle
steering, a throttle, and a brake system. Since the imitation
learning-based autonomous driving system determines its be-
haviors and policies from the human driving data, the system
can be difficult to navigate under traffic conditions that rarely
occur. Secondly, in reinforcement learning, a model is trained
online, and the driving behaviors are determined by states
and rewards. Generally speaking, reinforcement learning is
less efficient than imitation learning for learning, and it uses
simulations to collect learning data because it improves driving
policies from scratch.

Such learning-based autonomous driving systems might be
difficult in terms of interpretability for malfunctions, but there

are multiple techniques to enable us to investigate what is
happening inside the models. In fact, Kim et al. [11] have
showed a visual attention module that highlights important
regions for the target image. The model predicts a spatial mask
of weights and this mechanism can provide the regions where
the model attends. Autonomous driving systems can provide
vehicle speed, acceleration, drivable area, and positions of the
surrounding objects, by using the same inputs for the main
task that determines the driving maneuvers and policies.

IV. SUPERDRIVER AI

In this section, we present the overall architecture and
design concepts for SuperDriver AI, and also present slit
model to improve the robustness of the system for physical-
world deployment. SuperDriver AI is based on the imitation
learning, in which we train the model with expert driving data.
The optimal model is to produce the same driving actions
and maneuvers as an expert human, by learning from the
data collected from human drivers, including the data for a
vision camera and a vehicle. Hence, SuperDriver AI provides
the commands for a steering wheel, a throttle, and a brake
system to actuate the vehicle. Also, we configure SuperDriver
AI to mimic human drivers in terms of two factors: (i)
a monocular camera and vision-only models and (ii) time-
continuous inputs. We show the feasibility of the vision-based
autonomous driving systems in this paper. Also, we understand
driving conditions with the driving contexts and past moments.
Likewise, SuperDriver AI needs to consider the combination
of past frames for driving data.

A. Architecture for SuperDriver AI

As shown in Figure 2, we have 2 phases to train and test
SuperDriver AI: (A) Data collection & learning with real-
world hardware and (B) Real-world deployment and testing.
To simplify the real-world implementation in these phases,
we use the same hardware sets, including a vehicle and a
camera. First, to train the SuperDriver AI model, the driving
data of experienced human drivers are required. In this phase,
the model uses the data from an on-board vision camera,
a GPS receiver, a steering wheel, a throttle, and a brake
system. Then, the trained SuperDriver AI model determines
the driving actions and policies for real-world vehicles. To

Fig. 2. Data Flow for End-to-End Learning-based Autonomous Driving.



Fig. 3. Slit Model for Robust End-to-End Autonomous Driving System.

drive a real vehicle with SuperDriver AI, we need to collect
sufficient training data. Also, stereo-vision cameras and/or
surroundview might be useful for practical driving scenarios,
but we simply use monocular camera in this paper to show the
feasibility of the system. Secondly, to test the SuperDriver AI
model, a real vehicle and real-world driving scenarios might be
important. In fact, compared to software simulation, there are
many uncontrollable factors to reduce the driving quality and
accuracy in the physical world. For example, the embedded
cameras may be slightly misaligned during the testing phase.
Also, tire friction can be changed as weather changes, and
subsequently, the same input may lead to different outputs.
To enhance the robustness against such real-world factors, we
present a slit model next.

B. Slit Model: For Robust Design

This section presents the slit model that improve the ro-
bustness of the end-to-end learning-based autonomous driving
system. The slit model is designed to tolerate the misalignment
of sensor installation and the system failures/delays of real-
world hardware. In the slit model, as shown in Figure 3, we
crop the camera view and generate a pseudo-displacement
and/or pseudo-misalignment. Then, we train the model with
such cropped views and pseudo-displacement. By moving
the cropped regions for the image data, we can train the
SuperDriver AI model to recover the path taken.

As shown in Figure 3, we present the overview of the
slit model, including the cropped views and paths. Here, the
vehicle has slightly shifted from the original planned path and
the vehicle body is off to the left in the example. Hence, the
vehicle has to recover its path by turning the steering wheel
to the right. In Figure 3, the shaded regions are removed to

Fig. 4. Depth Estimation with Single Camera.

(a) Model sees road markers. (b) Model sees garden trees.
Fig. 5. Visual Explanations for SuperDriver AI Model.

generate the pseudo-displacement data. When we remove the
right-half of the original view, the vehicle is in a pseudo-left
shifting position. We can use such data to train the SuperDriver
AI model.

C. Visual Attention

Since end-to-end autonomous driving systems might be
difficult to explain how the systems determine the maneuvers
and what the systems focus on, the visual attention module
for human riders/users are highly required. To improve the
interpretability, we implement the depth estimation module
with the monocular camera embedded on the vehicle, as shown
in Figure 4. As shown in Figure 4, we can easily estimate
the physical distance from the camera to the road blocks by
using one camera and deep neural networks. In addition, we
implement Grad-CAM (Gradient-weighted Calss Activation
Mapping) [12] to highlight important regions in the image,
as shown in Figure 5. In Figure 5-(a), the SuperDriver AI
model sees the road surface to determine the driving actions.
Also, in Figure 5-(b), the model checks the neighboring garden
trees to determine actions. In fact, by using the output of
Grad-CAM, we can know that the SuperDriver AI model
uses the variety of visual information to determine the driving
actions. Such visual attention modules are indirectly relevant
for the autonomous driving, but these tasks provide the internal
representations of the model. The human riders/users might be
comfortable to know what the SuperDriver AI model focuses
on in real time. Also, these tasks might be helpful to analyze
the root causes when the autonomous driving systems have
unexpected behavior.

V. REAL-WORLD DEPLOYMENT AND DEMONSTRATION

In this section, we present the real-world data collection,
deployment, and implementation. We have implemented the
SuperDriverAI system, and for safety purposes, we keep the
vehicle speed constant by actuating only the steering wheel.

A. Data Collection and Deployment

As shown in Figure 2, we have collected the variety of
data from experienced human drivers, and we have used such
data for autonomous driving in practice. We have developed a
cloud-based data platform to automatically upload the driving
data and to download the SuperDriver AI model. Hence, once
the human driver completes the driving, the data are uploaded
to the cloud server without effort.

In addition, we use Toyota Previa to collect the driving
data and to deploy our SuperDriver AI model. We have



Fig. 6. DNN Architecture for Autonomous Driving.

implemented the hardware tools to collect the data from the
vehicle system, and we also have an embedded vision camera
to collect the time-continuous image data. Also, to test the
vehicle, we have used a practical test field at Kawasaki City,
Japan. We have collected 150 runs for one driving scenario
that involves both straight and turning.

B. Implementation & Evaluation

In this section, we present the DNN implementation and
real-world demonstration with the real vehicle. First, we show
the DNN architecture for the SuperDriver AI model, as shown
in Figure 6. The baseline model is ResNet18 [13] that is one of
the most prevalent architecture for deep neural networks. Since
the driving tasks are timely-continuous ones, the network
models use multiple frames (t = 1...n) as input data, which
is approximately for 3 seconds. In addition, the model outputs
the values for steering wheel as a angle for several time steps.

For the evaluation of the system, we show the data from
the vehicle systems when we use the SuperDriver AI model,
as shown in Figure 7. Figure 7 presents the values for
PID (Proportional-Integral-Derivative) controller, for an actual
steering degree, and for a target steering degree. As shown in
the figure, the desired value and actual value are sufficiently
close. This means that the vehicle actuation is accurately
conducted. The vehicle contains the multiple computers to
run the SuperDriver AI model in real time. Here, one concern
might be hardware flexibility and diversity. In fact, through the
learning and testing phases, we use the same hardware sets to
show the feasibility of SuperDriver AI, but the sensory values
might be different based on the hardware.

VI. CONCLUSION

In this paper, we presented an end-to-end learning-based
autonomous driving system named SuperDriver AI, where
Deep Neural Networks (DNNs) determine the driving ma-
neuvers while ensuring road safety. To improve robustness

Fig. 7. Data from Vehicle Systems for Actuation.

and interpretability, we also designed and developed a visual
attention module.

In future work, we will extend the imitation learning-
based autonomous driving systems for more practical sce-
narios, in order to show the scalability of the end-to-end-
based approaches. In addition, we will study and test the
SuperDriver AI model to understand the driving policies and
intentions of the surrounding vehicles, in order to enable safe
cooperation between autonomous vehicles and human-driven
vehicles. Since we might require a long transition period to
replace all vehicles with autonomous vehicles, such abilities
would become important in the mixed traffic environments.
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