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*Ulm University, Institute of Distributed Systems
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Abstract—Smart traffic lights systems (STLSs) are a promising
approach to improve traffic efficiency at intersections. They rely
on the information sent by vehicles via C2X communication
(like in cooperative awareness messages (CAMs)) at the man-
aged intersection. While there exists a large body of work on
privacy-enhancing technologies (PETs) for cooperative Intelligent
Transport Systems (cITS) in general, such PETs like changing
pseudonyms often impact the performance of cITS applications.
This paper analyzes the extent to which different PETs affect
the performance of two types of STLSs, a phase-based and
a reservation-based STLS. These are implemented in SUMO
and combined with four different PETs. Through extensive
simulations we then investigate the impact of those PETs on
STLS performance metrics like time loss, waiting time, fuel
consumption, and average velocity. Our analysis shows that the
impact of PETSs on performance varies greatly depending on the
type of STLS. Finally, we propose a hybrid STLS which is a
combination of the two STLS types as a potential solution for
limiting the negative impact of PETs on performance.

Index Terms—smart traffic lights systems, privacy, vehicular
networking, vehicular edge computing

I. INTRODUCTION

Due to the high number of vehicles, long traffic jams
occur regularly in all major cities [1]. This leads to many
negative consequences, such as high air pollution [2], long
waiting times for the drivers [1], and even a less productive
economy [3]. Therefore, there is a need to optimize the traffic
flow in cities, and smart traffic lights systems (STLSs) are
particularly promising in this respect [4]. An STLS is meant
to replace conventional traffic lights and acts as a traffic
management system that will dynamically optimize the traffic
lights scheduling to generate a better traffic flow.

An STLS relies heavily on V2X communication to gather
information about the traffic at the intersection it is managing.
In this paper, we propose a vehicular edge computing (VEC)
architecture where the nearby vehicles regularly send cooper-
ative awareness messages (CAMs) over the V2X network to
the road side unit (RSU) positioned at the intersection. Once
the RSU has pre-processed the CAMs from the vehicles, it
then forwards them to the cloud where the STLS algorithm is
executed upon the data gathered from the CAMs. Such for-
warding and central data processing is necessary to coordinate
multiple intersections. But for the sake of simplicity, we only
simulate one single intersection in this work.

The CAM contains several attributes, including vehicle-IDs
that could allow tracking of all vehicles that have passed
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through the intersection. This obviously raises privacy con-
cerns [5]. In order to better protect the privacy of drivers and
passengers, different privacy-enhancing technologies (PETSs)
can be applied, which can, however, negatively affect the
performance of the STLS on traffic efficiency.

Much research has been done on the development of new
STLS algorithms to optimize traffic efficiency, and much
research has also been done on the development of PETs to
protect the privacy of the vehicular user. However, how various
types of PETs affect STLS performance has not been analyzed
in-depth in other works. To conduct an in-depth analysis, we
analyze how different types of STLSs, different PETs, and
different traffic situations affect the impact of privacy on the
performance of STLSs. For this, we take a three-step approach:
1. A state-of-the-art traffic lights system (TLS) and two dif-
ferent STLSs were implemented to compare the performance
of STLSs with a conventional TLS.

2. Pseudonymization-, perturbation-, generalisation- and
spoofing-based PETs were integrated to investigate how dif-
ferent technologies impact the performance.

3. Various SUMO!-based simulations were conducted to ana-
lyze the performance of STLSs with different traffic volumes
and traffic distributions.

The remainder of this paper is organized as follows: Sec-
tion II discusses existing impact analyses of PETs on cITS-
related applications. In Section III, we describe the system
architecture, the TLS algorithms, and the PETs used in this
architecture. Section IV describes the simulation setup and
the results of the simulations. These results are discussed in
Section V. Finally, in Section VI we draw conclusions and
discuss future work.

II. STATE OF THE ART

The integration of edge computing technologies to improve
vehicular services receives significant attention in the research
and industrial community. One research direction here inves-
tigates how efficient and suitable PETs can be applied to
reduce potential privacy risks for such services [6], [7]. The
majority of the existing works on PETs for vehicular systems
and services is focusing on privacy alone and the evaluation is
mainly analyzing privacy metrics to quantify the impact of the
used technologies on privacy [8], [9]. Only few works tackle
the impact of the used PET on service quality, and most works
are not related to complex cooperative services such as STLSs.
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Some works such as [10] and [11] use differential privacy to
protect the vehicular data in an edge context where vehicles
send their kinematic data continuously to the edge servers.
However, they only evaluate the service utility using generic
metrics such as the average, the absolute or the relative errors.

Emara et al. [12] evaluate the impact of several pseudonym
change strategies on the service quality in a V2X communica-
tion context. The work introduces safety metrics related to two
safety critical applications, namely a Forward Collision Warn-
ing application and a Lane Change Warning application. As a
conclusion, the evaluation demonstrates that some pseudonym
change strategies are able to achieve a trade-off between a
good privacy level and a reasonable quality of service.

Some works also focus on applications in the area of traffic
management. For example, Zhang et al. [13] propose a traffic
monitoring system based on several PETs. Their architecture
is quite similar to ours and is based on RSUs and a backend
Traffic Monitoring Center (TMC). The RSUs and the TMC
are considered as non-fully trusted entities. The RSUs that
are located at the intersections are in charge of aggregating
the individual driving information transmitted by the vehicles
and to send them to the TMC. The vehicles use homomorphic
encryption to encrypt their data and send them to the RSUs.
To avoid privacy statistical attacks, RSUs use differential
privacy on the aggregated data before sending them to the
TMC. Compared to our work, the authors experimentation was
only evaluating the computation time and the communication
overhead. How PETs affect the output and, thus, the quality
of the provided service was not analyzed in this work.

There also exist some works that have conducted a perfor-
mance analysis of STLSs when using PETs. For example, Roth
et al. [14] applied a pseudonym-based PET on an STLS and
analyzed its performance by comparing it with a fixed time
traffic lights systems (FTTLSs) and an actuated traffic lights
system (ATLS) using inductive loops.

Ying et al. [15] used additive secret sharing to protect
the privacy of the vehicles. Here, each vehicle encrypts its
data with two different sharings of a secret and sends the
data to two different RSUs. The RSUs then process the data
to generate the output for the traffic light. To analyze the
performance of the STLS, the average waiting time of the
STLS was compared with an FTTLS.

In the last two described works, the performance of the
STLS was analyzed using one PET and was then compared
with other TLSs. However, an analysis of an STLS with and
without PETSs or with different PETs was not conducted. Thus,
to the best of our knowledge, our work is the first work that
conducts an in-depth analysis of the impact of several PETs
on the performance of STLSs, by analyzing multiple TLSs,
PETs, and traffic situations.

III. SYSTEM MODEL

In this section, the system architecture used in this paper and
the TLSs and PETs that were integrated into this architecture
are described.

A. System Architecture

To realise our STLSs, a vehicular edge computing (VEC)
architecture is used in this paper. We assume that such an
architecture with edge servers and a central cloud will be
common in the V2X environment in the future because ser-
vices in autonomous driving or intelligent traffic management
are very computationally intensive. Thus, a central cloud with
high computing power and edge servers for preprocessing
are necessary to provide a fast response to the vehicles. In
addition, a cloud-based solution allows to synchronize traffic
lights over multiple intersections. However, as synchronized
traffic lights control can become highly complex, we only
analyze a single intersection in this paper.
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Fig. 1. VEC architecture with multiple RSUs and their area of responsibility
(based on [6])

The VEC architecture used in this paper is shown in
Figure 1. The smart vehicles periodically broadcast CAMs
received by an RSU. The RSUs are located in the edge cloud
layer and forward the messages to the cloud layer.

In our system, we assume that the cloud and possibly
also the RSUs are operated by an honest-but-curious type of
attacker that would not actively attack the system but would
use any accessible data to try and track vehicles itineraries.

PETs can therefore be applied to the CAMs either inside the
vehicle before they are broadcasted or in a trustworthy RSU
before being forwarded to the cloud where the STLS algorithm
is executed. When applying privacy mechanisms in the RSU,
a trustworthy RSU or a trustworthy environment within the
RSU is necessary, which could maybe be realised through a
Trusted Execution Environment (TEE).

A more obvious approach would be to apply PETs to CAMs
in the vehicle before sending them out. However, this would
result in surrounding vehicles receiving CAMs with modified
data as PETs were applied to them. For example, location
accuracy could have been reduced.

As the surrounding vehicles use the CAMs also for safety-
related services such as cooperative adaptive cruise control
(CACCQ) [16], this could also have a negative effect on safety,
which should be avoided. Therefore, in the following we
assume that PETs are applied in a trustworthy TEE inside the
RSU and that our attacker does not have access to the original
data from the vehicle before PETs were applied. TEEs have
already been used in the automotive sector, e.g. in [17].



B. TLS algorithms

The TLS algorithms were implemented for an isolated
intersection within a city with right-hand traffic, shown in
Figure 2. For this intersection three TLSs were implemented,
one state-of-the-art TLS which provides a reference value
for the two STLSs. In the two STLSs different approaches
were implemented to analyze whether the impact of privacy
mechanisms differs depending on the approach.

The FTTLS represents a TLS used at many intersections
today. This TLS acts independently of the traffic situation at
the intersection, since the duration of the green, yellow and
red phases and the sequence of when which traffic light is
green are statically defined. To calculate the duration of the
green phases, Webster’s Method [18] was used, assuming here
a medium traffic volume of 1500 vec/h, evenly distributed
among all driveways. For the calculation of the yellow and
red phases, the approach of Beeber et al. [19] was used.

The unidirectional smart traffic lights system (USTLS) is
a modified version of [20]. The STLS is located in the
cloud and regularly receives the data of the vehicles from
the RSU. Based on the position and turning direction of the
vehicles, the vehicle density is calculated for each lane. For
this purpose, 200 meter long capture zones were defined for
each driveway, positioned like the velocity adaptation zones
shown in Figure 2. The vehicles in these areas are taken
into account in the calculation of the vehicle density, since
only these vehicles can pass through the intersection in the
upcoming green phase. The two non-conflicting lanes (e.g.
left-turn lanes coming from east and west) with the highest
vehicle density are set to green for a fixed period of time. After
the end of the green phase, the vehicle density is determined
again and the corresponding lanes are set to green. Since the
green phases are determined dynamically depending on the
traffic situation, the USTLS is called a phase-based approach.
The yellow and red phase duration are the same as in the
FTTLS, since the requirements are the same in both cases.

The USTLS and the ATLS have a similar mode of opera-
tion. The difference is, that the ATLS uses sensors, such as
induction loops, to determine the traffic situation [21]. Since
the USTLS has more detailed information about the traffic
situation, we assume that the performance of the USTLS is
much better than that of the ATLS. Therefore, the ATLS was
not analyzed separately in this paper.

The bidirectional smart traffic lights system (BSTLS) uses
the same VEC architecture as the USTLS. To schedule the
traffic at the intersection, the vehicle-ID, position, length and
turning direction of the vehicles are necessary. Based on this
data, three steps are performed. In the first step, all vehicles
in the 200 m long task capture zone (red area in Figure 2)
are registered. Here, in each driveway to the intersection, left-
turning vehicles are combined into one task and the straight
or right-turning vehicles are combined into one task. This
task generation is performed when an unregistered vehicle
leaves the task capture zone. In this way, the number of tasks
is kept small. In the second step, a time slot is assigned

to each task in which all vehicles of the task can pass the
intersection. For this purpose, all possible task permutations
(but a maximum of 900’000 permutations) are analyzed, each
permutation describing a different sequence in which the
tasks pass the intersection. For each sequence, time slots are
assigned to these tasks, whereas the length of the time slot
is referred to as the processing time in the following. Finally,
the sequence with the lowest total processing time is selected.
In the third step, the computed time slots of the tasks are
sent to the corresponding vehicles so that they can adjust their
velocity in the 290 m long velocity adaptation zone (green
area in Figure 2) to arrive at the intersection exactly when
their time slot starts. Since time slots are reserved for the
vehicles, a reservation-based approach is used here.

Task
capture
zone

Velocity

zone

Fig. 2. Intersection with task capture zones (red) and velocity adaptation
zones (green) used in the BSTLS.

C. Privacy-enhancing technologies

As described above, in the USTLS the position and turning
direction of the vehicle are used. In addition, the vehicle-
ID and the vehicle length are used in the BSTLS. Especially
the vehicle-ID limits the privacy, because with this attribute
several CAMs can be assigned to a vehicle. Therefore, the use
of pseudonyms instead of the real vehicle-ID is already part
of the standard. But since it can be argued that pseudonyms
alone are not sufficient to ensure privacy [22], we investigate
additional PETs that obfuscate position and length of the
vehicle which hinders tracking attacks as discussed in [23]. For
example, the vehicle length is different for different vehicles.
Therefore, this attribute could be used as a pseudo-identifier
to identify a vehicle even if pseudonyms are used.

1) Vehicle-IDs: To protect the vehicle-ID, the RSU gen-
erates a new pseudonym for each CAM so that the cloud
cannot link the messages to the same vehicle. In the standard,
pseudonyms are changed only at certain intervals, which does
not fully protect the vehicles from tracking attacks.

Due to the message-based pseudonyms, adjustments in
the BSTLS were necessary. In the original version, the task



generation was conducted when an unregistered vehicle leaves
the task capture zone. But when using pseudonyms, it is
no longer possible to determine which vehicles have already
been registered. Therefore, we modified the task generation to
generate tasks every 14.4 sec, which is the time it takes for a
vehicle to pass the task capture zone at a speed of 50 km/h.

2) Position and vehicle length: Precise position data could
be used to track a vehicle, while the vehicle length could
be used as a quasi-identifier of the vehicle. Thus, these
two parameters should also be protected. For this purpose,
three different approaches were used to analyze how different
approaches affect the performance of the STLSs.

The first approach is a perturbation-based method where
noise is added to the data. Regarding the position, geo-
indistinguishability [24] was used, which is a form of differ-
ential privacy. Here, noise is added to the position based on
a two-dimensional Laplace distribution, so that depending on
the distance between two positions, they are indistinguishable
with a certain probability. This probability depends on an e-
value. Based on this value, the Laplace distribution and thus
the average amount of noise added to the original position is
different. In our simulations, we used an e-value of 0.5, which
means that on average 4 m of noise is added to the original
position. For different e-values, the performance results are
similar, so that only one e-value was used. The added noise
was limited to a maximum of 15 m, which is only slightly
above the 13 m width of each driveway. In this way, enough
noise can be added that it is indistinguishable in which lane a
vehicle is driving. More noise could be problematic because
new vehicles might otherwise be too far away from the task
capture zone and thus would not be registered in the BSTLS.

To protect the vehicle length, a one-dimensional
Laplace distribution was used, based on which noise is
added to the vehicle length. Here, a scale parameter has to be
specified which is comparable to the e-value described above.
In this paper, a scale parameter of 1.0 was used, resulting
in an average noise of 1 m. Other scale parameters showed
no significant difference in the performance, so that only one
scale parameter was used. The noise was limited to half of
the vehicle length. In this way, more variations of the vehicle
length are possible than when using a fixed maximum noise,
since a fixed maximum noise must be very low so that the
length of smaller vehicles is not reduced to zero.

Because of the added noise, the USTLS and BSTLS had
to be slightly adjusted. The task capture zone was extended
in the width by 15 m so that all vehicles driving towards the
intersection are definitely registered. Similar adjustments were
necessary in the USTLS. However, this leads to the problem
that vehicles in the outgoing lanes that are not driving towards
the intersection are also registered. To address this problem, we
created an optimized version of the BSTLS where we reduced
the number of vehicles in each task by a flat 33% (rounded up).
This value was determined by empirical testing and showed
the best performance. In the USTLS, such an optimization
does not make sense, since the determined vehicle densities
of all lanes entering the intersection are compared.

The second approach is a generalization-based method. To
protect the position, spatial cloaking [25] and k-anonymity
were used. Here, the STLS only receives an area where the
vehicle is located. This area is dynamically defined, so that
there are at least k vehicles in it. The maximum area has the
size of the task capture zone of a driveway. The minimum area
has the same width and a length of 12.5 m. By running several
tests with regard to having both, an acceptable performance
and privacy gain, a k-value of 3 was determined.

The length of each vehicle was generalized by rounding the
actual length to a factor of 3 (e.g. 4.2 m — 3 m). This factor
was derived from the simulation environment where the length
of cars ranges between three and six meters. Thus, the car
lengths are evenly distributed between two values. For trucks,
which also exist in the simulation environment and are longer
than vehicles, a cruder generalization would be appropriate.
However, for the sake of simplicity, a uniform generalization
was conducted for cars and trucks.

Our last approach is a spoofing-based method, which is an
extension of the generalization-based method. For the position
data, the individual lanes were divided into segments of 12.5 m
length and 3.125 m width (equals to the lane width), resulting
in a total of 625 segments. To indicate the position of the
vehicle, the STLS is provided with the actual segment where
the vehicle is located and additional random segments (1 — 3)
where it is claimed that the vehicle would also be located.
The number of these additional dummy segments is referred
to below as the k-value. In addition, segments are provided
where it is stated that the vehicle is not located there, so that
the total number of segments is always 50. Tests have shown
that a lower or higher number of provided segments reduces
performance or makes no difference. By summarizing all
vehicles on each segment and knowing the k-value, the STLS
can estimate the number of vehicles in each segment [26].

To protect the vehicle length, the same approach was used as
in the generalization-based method, since the spoofing-based
method is an extension of the generalization-based method.
Therefore, the adjustments in the STLS algorithms are also
the same as those described above.

3) Turning direction: The turning direction was in all PETs
not protected, although it does contain sensitive data. The
application of privacy mechanisms is difficult here, since
this attribute can only take three discrete values. Thus, if
PETs were used here, the STLSs would not know in which
direction the vehicle wants to go. As a result, no meaningful
vehicle density could be calculated in the USTLS and also no
meaningful time slot could be calculated in the BSTLS.

IV. PERFORMANCE ANALYSIS

In order to investigate performance impacts of the described
TLSs and PETSs, several simulations were conducted. The
simulation setup, performance metrics and results of the sim-
ulations are described in this section.

A. Simulation Setup

The simulation setup is based on the tool SUMO, with
which we simulate vehicle traffic on an isolated intersection



with four driveways (see Figure 2). To simulate the commu-
nication between the vehicles and the VEC architecture, the
Traffic Control Interface (TraCl) provided by SUMO was used,
which allows to obtain information about the vehicle states.

Using this simulation setup, for each STLS and each PET,
simulations were conducted with traffic volumes ranging from
500 veh/h up to 2500 veh/h in 500 increments. This range of
traffic volumes has been observed at real intersections with
similar layouts and is therefore assumed to be realistic [27].
However, once PETs were used in the simulations, the traffic
volume was largely limited to 1500 veh/h, since the inef-
ficiencies caused by the PETs often made it impossible to
realize higher traffic volumes. In addition, different traffic
distributions to the lanes were used (1/2to 1/2,1/4 to 3/4 and
1/8 to 7/8). For example, in the third case, 1/8 of the traffic
volume is originating from the driveways north and south and
7/8 from the driveways east and west. The generated vehicles
have different randomly generated lengths to simulate different
kinds of vehicles (cars and trucks) and are driving towards
the intersection at a maximum speed of 50 km/h, choosing
the outgoing driveways at an equal ratio (1/3). These vehicles
are assumed to be autonomous vehicles. Therefore, a perfect
driving behavior of the vehicles is simulated, so that all traffic
rules are observed and the vehicles drive as fast as it is allowed
and comfortable for the passengers.

For each STLS, each PET, each traffic volume, and each
traffic distribution, multiple simulation runs were performed.
In each simulation run 2000 seconds of traffic were simulated,
where each simulation run was repeated 40 times with different
seed values. Finally, the results of each simulation run were
used to calculate statistics over the performance metrics.

B. Performance metrics

Four performance metrics were used. The first metric is the
time loss, which is the additional time a vehicle needs to travel
from its starting point to its destination point compared to the
time the vehicle would need if there were no other vehicles
at the intersection and the respective traffic light was green.
The second metric is the waiting time, which is the duration
the vehicle was standing still. The last two metrics are the
fuel consumption and the average velocity which describe the
consumed fuel and average velocity from the starting point
to the destination point. The fuel consumption is calculated
based on a standard consumption model from SUMO.

C. Results

The simulation results of the TLSs when using the different
PETs are described in the following.

1) TLSs without PETs: The results of the three TLSs
without PETs and with an equal traffic distribution are shown
in Figure 3. The vertical lines in this figure show the minimum
and maximum values and the data points show the average
values of all simulation runs.

The FTTLS performs similar than the USTLS. The reason
for the good performance of the FTTLS is that the traffic
volume is equally distributed here on all driveways and the
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Fig. 3. Results of TLSs without PETs and a traffic distribution of 1/2 to 1/2

FTTLS is designed for this traffic situation. Since the FTTLS
is a static implementation that cannot adjust its behavior to
different traffic situations, the FTTLS performs much worse
with an unequal traffic distribution, as can be seen in Figure 4.
For the sake of simplicity and space, we only show the time
loss from now on because the time loss correlates with the
other attributes, as can be seen in the previous results. The
bars of the FTTLS in Figure 4 are at different x-axis positions
at higher traffic volumes than in the other two TLSs. The
reason for this is that the FTTLS is so inefficient at high traffic
volumes that higher traffic volumes could not be achieved.
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Fig. 4. Results of the TLSs without PETs and an unequal traffic distribution

The BSTLS performs significantly better than the other
TLSs at low traffic volumes of up to 1500 veh/h. For example,
with an equal traffic distribution, the waiting time here is
almost zero, so that the average velocity is higher and the
fuel consumption is around 20% lower than in the other
TLSs. But the performance of the BSTLS gets worse at higher
traffic volumes of 2000 veh/h and above. With unequal traffic
distributions, the performance of the BSTLS is similar because
it can adjust its behavior to different traffic situations. The
same applies to the USTLS.

After analyzing the performance of the three TLSs without
PETs, in the next step PETs were applied in the BSTLS and



USTLS. Since the FTTLS is not relying on information from
vehicles, no PETs were applied here.

2) PETs in BSTLS: Several PETs were applied here. The
first PET is the pseudonymization of the vehicle-IDs.

a) Vehicle-IDs: The results when using pseudonyms are
shown in Figure 5. Because the results of both unequal traffic
distributions are similar, only 1/8 to 7/8 is shown. With
an equal traffic distribution, the performance difference is
very small, whereas with an unequal traffic distribution and
a high traffic volume, the performance difference is higher.
For example, with a traffic distribution of 1/8 to 7/8 and a
traffic volume of 2500 veh/h, the average time loss is around
25 seconds higher when using changing pseudonyms. In this
case, there is a very high traffic volume in some driveways.
Therefore, vehicles in these driveways can only drive slowly
through the task capture zone and thus are in the capture zone
for a long time. Due to pseudonym changes, vehicles in the
capture zone will be counted multiple times and are registered
in multiple tasks, so that the traffic load is overestimated. This
leads to overly long time slots, which worsens performance.
Depending on how often the pseudonyms are changed and
whether they are changed when the vehicle is in the task
capture zone, the number of vehicles registered in multiple
tasks varies. In this work, we have assumed the worst case,
namely that the pseudonyms are changed in every CAM.
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Fig. 5. Results of the BSTLS with the use of pseudonyms for the traffic
distributions of 1/2 to 1/2 and 1/8 to 7/8

As mentioned above, based on pseudonyms, further privacy
mechanisms for vehicle position and length were investigated
in the next step.

b) Position and length: The results of the perturbation,
generalization and spoofing-based PET are summarized for an
equal traffic distribution in Figure 6, whereas for the other
traffic distributions the results of the BSTLS are similar. For
all three PETs at a traffic volume of 500 veh/h, the BSTLS
performs better than the other TLSs. At a traffic volume of
1000 veh/h, the BSTLS performs slightly worse and at a traffic
volume of 1500 veh/h the BSTLS performs significantly worse
than the other TLSs.

In the perturbation and generalization-based PET, the opti-
mized versions perform significantly better than the original
versions because in the optimized versions estimations of
the actual number of vehicles in a task are made. This is
useful because due to the noisy positions it is unclear which
vehicles are in the capture zone so that sometimes vehicles

are erroneously registered in the tasks. Such an estimation
is performed a-priori in the spoofing-based PET. When one
dummy is generated in the spoofing-based PET, which is
comparable in the privacy level to the first two PETs, the
results are better than in the optimized versions of the other
PETs. Thus, the spoofing-based PET has the lowest impact on
the performance. The reason for this is that in the spoofing-
based PET more accurate estimations of the actual number
of vehicles in the tasks are conducted. When more dummies
are generated in the spoofing-based PET, the privacy level
increases but the performance decreases because the positions
become more inaccurate.

3) PETs in USTLS: To protect the position, the same PETSs
were used in the USTLS than in the BSTLS. The results
of these PETs are shown in Figure 7 for an equal traffic
distribution, whereas the results of the USTLS for the other
traffic distributions are similar.

In contrast to the BSTLS, the impact of PETs is different in
the USTLS, because here for all PETs the impact is very small
and independent of the traffic volume. The best results were
achieved with the generalization-based PET. For example, at
a traffic volume of 500 veh/h, the time loss here is only
about two seconds higher than without the use of PETs. In
the perturbation-based PET and the spoofing-based PET with
one dummy, the time loss is at the same traffic volume about
four seconds higher. When more dummies are generated in
the spoofing-based PET, the time loss is up to eight seconds
higher. So the impact of privacy mechanisms is lower in the
USTLS than in the BSTLS, which is discussed in detail in the
following section.

V. DISCUSSION

The results show that the impact of PETs is different in
the USTLS and BSTLS. In the BSTLS the impact of PETs is
low at low traffic volumes and high at high traffic volumes. It
is low at low traffic volumes because there is a lot of idle
time. If the processing time of the tasks is calculated too
long because there are many erroneously registered vehicles
in the tasks due to the use of PETs, this will not delay later
tasks. Thus, the impact is low at low traffic volumes. This
situation is illustrated in Figure 8 on the left. However, at
higher traffic volumes there is less idle time. Thus, if many
erroneously registered vehicles are in a task and the processing
time is therefore too long, this delays all subsequent tasks.
This situation is illustrated in Figure 8 on the right. So the
reason for the high impact of PETs at high traffic volumes
is that a reservation-based approach is used here, where time
slots are assigned to the vehicles. Thus, if the time slots are
overestimated due to PETs, this leads to a high efficiency loss
in the BSTLS.

In contrast to the BSTLS, the impact of PETs on the USTLS
is only very small. The reason for this is that the impact of
wrong calculations due to PETs is lower in the USTLS than
in the BSTLS. If the actual and the calculated vehicle density
differ because PETs are used and a lane is set to green even
though another lane has a higher vehicle density, this is not
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optimal but does not lead to significant delays. The reason for
this is that vehicles in the lane that was set to green can still
pass through the intersection, as no time slots are assigned to
the vehicles here. Therefore, in the USTLS wrong calculations
do not result in a high efficiency loss.

According to our results, it can be concluded that the
impact of PETs on the STLS depends on the specific STLS
approach. A phase-based approach is more robust against
PETs than a reservation-based approach, because the impact of
incorrect estimates is lower in a phase-based approach than in
a reservation-based approach. Furthermore, the type of specific
PETs and desired level of privacy also affect the performance.
As the accuracy of the position data is different depending
on the privacy mechanism and privacy level, this results in a
different number of erroneously registered vehicles and thus
a different impact on the performance. Finally, at least in a
reservation-based approach, the traffic volume also affects how
much PETs impact the performance.

So overall, we have shown that the impact of PETs on the
STLS can differ substantially and care should be taken when

Actual traffic volume [veh / h]

Actual traffic volume [veh / h]
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selecting a combination of STLSs and PETs.

Although the impact of PETs depends on several param-
eters, our results indicate that a reservation-based STLS is
expected to perform better than a phase-based STLS at low
traffic volumes. On the other hand, a phase-based STLS is
assumed to provide a better performance at higher traffic
volumes compared to a reservation-based STLS. Therefore,
a hybrid STLS using a reservation-based approach for lower
traffic volumes and a phase-based approach for higher traffic
volumes is expected to perform best under varying traffic
conditions.

Since the USTLS implements a phase-based approach and
the BSTLS implements a reservation-based approach, the
described hybrid STLS could be built based on these two
STLSs. At low traffic volumes, the performance of the BSTLS
with PETs is better than the performance of the other TLSs. At
higher traffic volumes, the performance of the USTLSs with
PETs is better than the performance of the BSTLSs but often
worse than that of the FTTLSs. However, this only applies to
the case of equal traffic distributions, where the FTTLS per-
forms best. With unequal traffic distributions, the performance
of the FTTLS decreases sharply so that the USTLS with PETs
performs better than the FTTLS. Furthermore, a rather simple
approach was used in the USTLS. Therefore, we assume that
with more advanced phase-based approaches, the performance
of the USTLS could become significantly better, while the
impact of PETs remains small, since a phase-based approach
is used. In this way, an STLS can be created that performs
significantly better than the FTTLS and thus as a state-of-
the-art TLSs for all traffic situations. So the STLS could still
enhance traffic performance even if PETs are applied.



VI. CONCLUSION AND FUTURE WORK

In this paper, an in-depth analysis of the impact of privacy-
enhancing technologies (PETs) on the performance of smart
traffic lights systems (STLSs) was conducted. For this purpose,
we implemented a state-of-the-art traffic lights system (TLS),
fixed time traffic lights system (FTTLS), and two smart traffic
lights systems (STLSs), unidirectional STLS (USTLS) and
bidirectional STLS (BSTLS). In the next step, a SUMO-based
simulation was created. Then, PETs were applied to the data
transmitted by the vehicles, and the resulting data was even-
tually forwarded to TLSs. Several simulations were run with
and without the use of PETs to analyze the performance of
the considered TLSs, as well as the performance degradation
when PETs are used. Without PETs, the BSTLS performs very
well, resulting in almost no waiting times for the vehicles and
fuel savings of about 20% compared to the FTTLS. Only at
very high traffic volumes the BSTLS performs worse than
the other TLSs, rendering the benefit of reservation-based
STLSs, such as BSTLS, questionable at high traffic volumes.
In contrast, the USTLS performs relatively consistent at all
traffic volumes. When PETs are used, several aspects impact
the performance of STLSs. The impact mainly depends on
whether a reservation-based approach (BSTLS) or a phase-
based approach (USTLS) is used, the type of the PET, the
desired level of privacy, and the traffic volume. For example,
the impact of PETs on the BSTLS is low at a low traffic
volume and higher at a high traffic volume. In contrast, the
impact of PETs in the USTLS is consistently low.

Based on these results, we propose a hybrid STLS that
uses a reservation-based approach for low traffic volumes
and a phase-based approach for high traffic volumes. This
hybrid STLS should perform well in all traffic conditions,
even if PETs are applied. The hybrid STLS could be realized
based on the USTLS and BSTLS and would predominantly
perform better than the FTTLS. Such a hybrid STLS could be
analyzed and optimized in future works. Furthermore, more
complex intersections with more lanes could be analyzed in
future works. Since the STLS is then more complex, the
impact of PETs could be different. Another interesting aspect
for future work is the analysis of PETs in the context of
several interconnected intersections. In this case, the STLS
also becomes much more complex, so that the impact of PETs
could again be different.
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