
DLoVe: Using Constraints to Allow Parallel Processing
in Multi-User Virtual Reality

Leonidas Deligiannidis

Department of Electrical Engineering and
Computer Science

Tufts University, MA
ldeligia@eecs.tufts.edu

Robert J.K. Jacob
Department of Electrical Engineering and

Computer Science
Tufts University, MA
jacob@eecs.tufts.edu

Abstract
In this paper, we introduce DLoVe, a new paradigm

for designing and implementing distributed and non-
distributed virtual reality applications, using one-way
constraints. DLoVe allows programs written in its
framework to be executed on multiple computers for
improved performance. It also allows easy specification
and implementation of multi-user interfaces. DLoVe hides
all the networking aspects of message passing among the
machines in the distributed environment and performs the
needed network optimizations. As a result, a user of
DLoVe does not need to understand parallel and
distributed programming to use the system; he or she
needs only be able to use the serial version of the user
interface description language. Parallelizing the
computation is performed by DLoVe, without modifying
the interface description.

1. Introduction

We have developed a software model and user interface
description language (UIDL) for programming interactive
behaviors in virtual reality (VR) and other non-WIMP
interfaces [31]. In it, we introduced a language element
that is essentially a set of one-way constraints or a
dataflow graph. We chose it for its expressive power and
its suitability for describing continuous interaction. We
found that, although constraints are often viewed as
introducing performance penalties compared to
conventional coding, our approach allowed us to improve
performance or interactive responsiveness. This is
because our constraint-based formalism allows a
separation of concerns between the desired interactive
behavior and the implementation mechanism. The user
interface designer can thereby concentrate on and express
the former, in a high-level, declarative, continuous-
oriented way, while our underlying runtime system can
perform optimization, tradeoffs, conversion into discrete

steps, and allow parallel execution independently, below
the level of the UIDL.

This paper introduces the DLoVe (Distributed Links
over Variables evaluation) system, which provides a
UIDL for programming non-WIMP interactions and a
mechanismfor executing UIDL programs, designed for a
single machine, on a set of distributed machines where
updates on DLoVe variables can be executed in parallel
for performance improvement. DLoVe also provides, as a
byproduct, the framework for writing multi-user VR
programs or transforming existing single-user DLoVe
programs into multi-user ones. DLoVe addresses issues
of performance and maintainability, providing
mechanisms, drivers, and utilities that allow run time
tuning and network management to be specified in a
simple manner [16].

2. Background

Most of today’s Graphical User Interfaces (GUI) and
toolkits are based on serial, discrete, token-based
paradigms that implement traditional WIMP (Window,
Icon, Menu, Pointer) interfaces acceptably. These tools
however, are not suited for next generation, non-WIMP
interaction styles such as Virtual Reality. The
fundamental characteristics of these non-WIMP interfaces
are common to a more general class of emerging user-
computer environments, including new types of games,
musical accompaniment systems, intelligent agent
interfaces, interactive entertainment media, pen-based
interfaces, eye movement-based interfaces, and ubiquitous
computing [29] [12]. They share a higher degree of
interactivity than previous interfaces: continuous
input/output exchanges occurring in parallel, rather than
one single-thread, discrete event dialogue. These
interaction techniques rely upon asynchronous, parallel,
and continuous user/computer interaction [20].

We want to introduce a higher level, cleaner user
interface description languages into this field, without

compromising performance. Constraints are often viewed
as effective and expressive but too inefficient for a high-
performance application like virtual reality. However,
using a declarative constraint specification rather than a
procedural program gives us the freedom to implement
more sophisticated management of execution time while
separating this concern from those of the user interface
designer. It allows us to tailor the response speeds of
different elements of the user interface to maximize the
subjective sense of interactive responsiveness within the
available computing resources. All this is specified
separately from the user interface description; the UIDL
constraint specification lets the designer describe only the
ideal desired behavior (as if infinite computing resources
were available on a single CPU).

Because the calculations are specified as a constraint
graph, DLoVe can parallelize the computation to take
advantage of multiple computers to improve performance.
It also provides a framework to execute the same VR
application in a multi-user environment.

3. Specification Language

DLoVe is based on the PMIW specification language
[31], which uses a two-component model for describing
and programming the fine-grained aspects of non-WIMP
or VR interactions. First, we identify the basic structure or
syntax of non-WIMP interaction as the user sees it. We
posit that essence of the sequence of interactions in a non-
WIMP interface is a set of continuous relationships, most
of which are temporary. For example, in a virtual
environment, a user may be able to grasp, move, and
release an object. The hand and object positions are thus
related by a continuous function (say, an identity mapping
between the two 3-D positions)--but only while the user is
grasping the object. This leads to a two-part model of
user interaction. One part is a graph of functional
relationships among continuous variables, much like a
constraint graph, but only a few of these relationships are
typically active at one moment. The other part is a set of
discrete Event Handlers that can, among other actions,
cause specific continuous relationships to be activated or
deactivated. Most other UIDLs and software systems are
based on serial, discrete, token-based interaction. DLoVe
is designed to provide a fundamentally continuous, rather
than discrete, treatment of naturally continuous
phenomena such as time and motion. In addition, it
handles discrete events as discrete events and it provides a
mechanism for communication between the continuous
and the discrete sub-system. Our UIDL is described in
more detail and with more examples in [28] and [31]; and
a related, more powerful system based on it, in [1].

4. Continuous Time

We can now observe that the continuous portion of our
two-part formalism looks much like a set of one-way
constraints. We believe that constraints are indeed a useful
element of a UIDL for developing virtual reality user
interfaces because of their expressive power [5]. They
also have the benefit of separating programming of the
desired behavior from programming the implementation
engine; this gives us the hook to address VR performance
issues. Because we use constraints, the user simply
provides a declarative specification of the desired
relationships and, if applicable, indicates how they are
turned on and off. The underlying system does not need
to guarantee that it will always update the constraints in
lockstep fashion, but it will have the freedom to manage
the available computer time in different ways to achieve
good interactive responsiveness, without explicit effort on
the part of the writer of the constraints. Our constraint
solver is free to handle the task sequentially or in parallel;
it might also approximate the desired behavior more or
less closely, depending on the CPU time available on each
frame.

DLoVe’s continuous time sub-system consists of object
elements that define the relationships between variables.
The entire set of these elements connected together form a
constraint-like graph. Changes at one end of the graph
propagate to the other end. Interaction that is
conceptually continuous is encoded directly into these
elements, and thus the application does not need to deal
with tracking events from conceptually continuous
devices. Examples of conceptually continuous interaction
include, drinking from a cup in a virtual world, throwing a
ball in a virtual park, and driving a car in a virtual city.
Many non-WIMP interfaces must meet severe
performance requirements in order to maintain their
perceptual illusions. For virtual reality, in particular,
these requirements are the driving force behind the design
of most current implementations [13]. We found that
using one-way constraints in our UIDL gave us flexibility
to manipulate execution, scheduling, and parallel
processing on the fly and improve the interactive
responsiveness of our system over that of the equivalent
hard-coded system sans constraints. Our DLoVe solver
allows the constraint graph to be distributed over several
workstations, for faster response time as well as for
supporting multi-user virtual environments.

The demand-driven or lazy evaluation algorithm in
DLoVe is based on the optimal algorithm of Hudson's
Eval/Vite system [32] [34]. DLoVe adds some features
designed specifically for the requirements of VR
interfaces. In addition, DLoVe is designed for
continuous, rapidly updated response to user inputs. One
consequence is that it is often reasonable to discard

queued-up inputs in favor of responding to the latest input.
Another is that many of the most rapidly-changing inputs
(the 3-D trackers) are fairly well behaved because they are
generated by the user’s limb movements.

Continuous time in DLoVe is handled via Variables and
Links. Variables are objects in DLoVe that store values
and know which Links need them as inputs and which for
output. They are invariant data flow graph elements that
serve as both continuous and short-term data repositories.
Some Variables are directly connected to input devices,
some to outputs, and some to application semantics.
Some are used for communication within the user
interface model and some just hold intermediate results of
Link calculations.

Links are objects that contain functions and are
attached at both ends to Variables. Links get input from
Variables and place the result of their calculations into
other Variables. The body of a Link specifies how the
attached Variables are related. Links can be enabled or
disabled in response to user inputs. When a Link is
disabled, it is as if this Link were not part of the
constraint network any more. By enabling and disabling
Links, we can quickly change the constraint network on
the fly since only a flag needs to be set or cleared to
indicate that a Link is enabled or disabled. This ability to
enable and disable portions of the data-flow graph in
response to user inputs is a key feature of the model.
Links can have multiple outputs and multiple inputs. In
other cases, a Link may read input Variables and perform
some complex function on them over time, which
eventually generates a token for the Event Handlers.
This can be useful for gesture recognition or for eye
tracking applications where, for example, when the user
looks at an object for a certain time, the object becomes
selected. We developed an application where, when the
user looks toward an object in a virtual world for over 5
seconds, the object becomes selected [16]. The
brightness of the object is proportional to the time for
which the object has been viewed, and when it reaches a
certain brightness level, the object is selected and the
user can manipulate it. In addition, a single Variable may
be used as input or output to multiple Links. Conditions
are also provided to enable and disable groups of Links
instead of enabling or disabling Links individually.

Figure 1 above shows the Variables as circles and the
Links as rectangles. When a Link is created, it is enabled
by default. In the DLoVe constraint graph we draw a
crossed circle on top of a Link to indicate that is disabled.
A DLoVe graph is read from left to right. For example,

Variables ‘A’ and ‘B’ are inputs to Link L1, and Variable
‘C’ is its output Variable. When L1 is disabled it is as if
this Link was deleted from the network. However, a
disabled Link is still part of the data structure and when it
becomes enabled again it knows how it is supposed to be
attached to its Variables. The relationship between ‘A’,
‘B’ and ‘C’ is terminated temporarily until ‘L1’ becomes
enabled again.

The programmer specifies the input and output
Variables to each Link. This is represented as a data-flow
graph that defines which output Variables will be affected
by a change in the input Variables. DLoVe then
automatically generates a dependency graph where, for
each output Variable, all relevant input Variables can be
found by ‘breadth-first’ search. This enables DLoVe’s
incremental constraint algorithm to work efficiently
starting at the requested Variables and working backwards
to where the change occurred, and start evaluating Links
in topological order, if needed.

5. Discrete Time

There are other however, interactions that are
fundamentally discrete (event-based) and, for them,
DLoVe provides an event-based component. Such
examples include button presses, menu choices and
gesture recognition verifications. They often result in
enabling or disabling constraints in the graph; for
example, TBAG applications [8] generally deal with such
discrete input events by retracting some existing
constraints and asserting new ones. Bramble uses a
similar mechanism [19].

DLoVe handles the discrete time using Event Handlers,
objects that capture tokens and respond to them. DLoVe
reads all hardware input events from the X Window
system and any other sources and turns them into tokens
and sends them to all Event Handlers. Event Handlers
contain a user-specified body that describes the response
to tokens. The application sends a token to all Event
Handlers, and only those Event Handlers that are
interested in the token execute their bodies. The
responses might include setting Variables, making custom
procedure calls, and enabling or disabling Links. Event
Handlers recognize states and state transitions, and can
provide different services depending on the state they are
in.

In an example of a factory with moving objects on its
assembly line, an Event Handler state diagram might look
like figure 2 (where the communication between the Event
Handler and the continuous time subsystem is done by
Enabling and Disabling the L1 and L2 Links):

L1 L2
A

B
C E

D

Figure 1. Links and Variables

Start
Follow
Hand

Intersect

Right mouse button Released

Hand-object,
intersect

Right mouse
button

Pressed
Hand-object, do not intersect

¾ Enable
¾ Disable

L1
L2

¾ Disable
¾ Enable

L1
L2

Figure 2. State Diagram of the Event Handler

When the user’s hand intersects with the moving
object, the Event Handler receives a token (e.g.
“ENTER”), the object becomes highlighted, and the
Event Handler transitions to the “Intersect” state. At this
state, if the user presses the right mouse button, the Event
Handler receives another token (e.g. “LEFTDN”),
transitions to the “Follow Hand” state, enables Link L1,
and disables Link L2. Now the hand-object relation has
been established, and the object follows the movement of
the hand. When the mouse button is released, the Event
Handler receives another token (e.g. “LEFTUP”),
transitions to the “Start” state, disables Link L1, and
enables Link L2. At this point, the hand-object
relationship is terminated. Further details of this state
diagram notation itself are found in [30] [27].

6. Parallel Processing in DLoVe

One of the major difficulties with parallel processing is
in transforming a program written for a sequential
machine into one that executes on multiple machines in
parallel. A program written in DLoVe, however, can be
initially written to execute on a single machine
sequentially. The same program can then execute in
parallel on multiple workstations with hardly any source
code changes. The only difference between the parallel
and serial versions is that different libraries are used to
compile the executables. When compiling for parallel
execution, compilation generates two different
executables, one for the Coordinator (the machine
responsible for reading input devices and rendering
graphics), and another for one or more Workers (the
machines responsible for doing constraint calculations in
parallel). The Coordinator is a workstation with a display
device and input devices, such as polhemus 3D tracker,
mouse, and eye tracker. It is responsible for reading all
data from the input devices and rendering the graphics.
Workers are only responsible for doing calculations based
on the requests from the Coordinator.

In our approach to parallel processing, each Worker and
the Coordinator own an exact copy of the constraint
graph. Each Worker can execute the constraint solver on
any given Variable. However, at the initialization phase
the Coordinator partitions the graph so that it can request
certain Variables from certain Workers. In essence, the

Coordinator assigns ‘tasks’ to individual Workers. The
Coordinator partitions the graph so that related Variables
form a group of Variables in the Workers, and requests to
these specific Variables are always sent from the
Coordinator to the Worker that owns this portion/partition
of the graph. With this approach to parallel processing,
distributing the calculations over several machines cannot
adversely affect correctness since all machines maintain
the entire graph; it only affects response speed.

The Coordinator executes the following algorithm to
partition the graph. It first finds the number of Variables
upon which each Variable depends. Next, it assigns, in
round-robin, the Variables with the most dependencies,
recursively, to different Workers as shown below:

foreach Variable v in AllVariables do
v.depend = Breadth-first-search(v);

int w = 0;
Worker worker[total_num_of_Workers];

foreach Variable v in Next_highest_depend do

if v.assigned != assigned_to_any_worker then
worker[w].Recursive_assign(v);

 w = (w+1) mod total_num_of_Workers;

Because the Coordinator also has a complete copy of

the constraint graph and can execute the same constraint
algorithm, it enables it to bring critical Variables up-to-
date locally, when the computations involved are
inexpensive. This is useful for Variables that control the
position and orientation of the user’s head and hand that
must be updated as quickly as possible to maintain the
user’s sense of immersion.

The Coordinator can asynchronously send large
messages, to reduce network overhead [10]. A message
can contain multiple requests such as Enable or Disable a
particular Link, Set a Variable to a value, and requests
for updated Variables. Workers only reply to the
Coordinator to requests of updated Variables in a similar
manner, batching multiple results in a large message.
There is no communication between the Workers
themselves.

7. Multiple Users

Since our constraint graph is distributed and the
Coordinator knows how to request Variables from the
Workers and how to set the values of Variables in the
Workers, it is a simple matter to add additional
Coordinators to support a multi-user interface. In DLoVe,
adding another Coordinator (i.e., another user) simply
requires specifying the number of additional Coordinators
in DLoVe’s configuration file and running the additional

Coordinators using the same executable as the original
Coordinator.

While multi-user execution is easy, there are several
issues that arise in designing any multi-user interface. The
main issue is that the UIDL must now describe the
handling of each user’s input individually; for two users,
we must write a user interface description involving two
different mice or two hand trackers. For example, assume
that there is only one Variable, ‘mouse’, attached to the
mouse device so that the position of the mouse represents
the position of the user’s virtual hand in space. In a multi-
Coordinator environment, each Coordinator can set the
Variable ‘mouse’ resulting in multiple Coordinators
manipulating the single virtual hand. But a multi-user
interface requires the designer to specify the interaction
for each user’s mouse; in some interface designs, different
users might play different, asymmetric roles in the
interaction. DLoVe assigns, in its configuration file,
application layer identification numbers to each physical
device attached to each machine. Each device is
automatically translated into <device>_ID where device is
the original name of the device, such as mouse, and ID is
the application layer identification number, yielding a
different name for each machine’s device such as
mouse_2 and mouse_6. Links attached to input devices
might also need to be duplicated and rewired to handle the
multiple-user interface. This allows all users in a multi-
user environment to be able to control their own heads and
hands and to be able to see all other users participating in
the simulation. The application identification numbers
also allow programmers to write programs and assign
different roles and responsibilities to different users (such
as pitcher and catcher). We developed an application
where one user can only manipulate ‘red’ objects and the
other user ‘blue’ objects. By pressing a keyboard
command, the roles are reversed and the first user can
only grab ‘blue’ objects and the second only ‘red’.

Several applications have been developed using DLoVe
to demonstrate its strengths and weaknesses. The Virtual
Park application was developed to test performance and to
demonstrate flexibility and efficiency. The Virtual Park
consists of several objects such as sliders controlling
orbiting objects, arms controlling the direction of other
arms, and Humanoids, which are human-like entities
walking, wandering, and playing with a virtual ball. The
Humanoids look at the ball, avoid collisions with the other
Humanoids, and when they come close to the ball, they hit
it. The virtual ball can travel over the park depending on
the force with which it was hit, ending finally on the
ground where gravity pulled it. The user(s) can grab all
objects including the Humanoids and the ball. The users
can grab and toss the ball the same way the Humanoids
interact with it. The behavior of each Humanoid, collision
behavior, speed, etc, is based on a complex function that

accounts the location and the age of all other Humanoids,
much like magnets with different magnetic strengths. A
snapshot of the DLoVe Virtual Park is shown in Figure 3.
Part of the constrained graph is shown in Figure 4,
because of space limitations, that shows the ball object
and three of the Humanoids. Each Humanoid is assigned
as a single task to a single Worker.

Figure 3. Virtual Park

Figure 4. Constraint Graph of the Virtual Park

8. Evaluation: Performance Measurement

Our final task was to evaluate DLoVe with quantitative
measurements of the performance improvement it
provides through parallelism. Initial measurements
suggested that conventional measures used to evaluate
parallel processing systems are less useful in VR [2] [11]
[7].

Table 1 shows that by using more Workers we increase
the throughput of the system but we decrease the frame
rate. The throughput increase is due to parallel
computations performed by the multiple Workers, where
the decrease in frame rate is due to the fact the DLoVe is
implemented on top of TCP. The Coordinator needs to
send multicasts to all Workers and thus it has to simulate
multicasting [16], since it is not supported by TCP. By
simulating multicasting, the Coordinator spends more

Worker 3

A Humanoid
The Ball

Worker 2

Worker 1

time trying to send the requests to the Workers and less
time to render the display. We measured the number of
evaluations of one of the Links in the Humanoids which
was needed in every frame to figure out how many times
a Humanoid was brought up to date.

Table 1.

Number of
Workers

Number of
Evaluations

Frame
Rate

1 1700 20
2 3500 18
3 4500 15

Throughput, or total work performed, does not
accurately capture the interactive performance of a VR
user interface. The system might be doing a great deal of
processing by generating many frames, but displaying
each of them late. It would score well by traditional
parallel processing measures, but would seem very
sluggish to the user.

We therefore used total throughput along with total
latency of a displayed video frame to measure
performance. That is, when a frame is displayed, what is
the oldest piece of data that was used to generate that
frame? We believe that frame latency, in conjunction with
frame rate, captures the interactive performance of a VR
user interface better than total processing throughput.
Frame latency shows how valid or how late the
information is at the time the Coordinator renders the
display.

To perform this analysis, we tracked each message
through the network. Message latency shows how long a
message spends on the network to get to the Workers and
then to come back to Coordinator (minus the time required
by a Worker to evaluate a Link). We instrumented
DLoVe so the Coordinator timestamps each request
before sending it to a Worker. The Worker also
timestamps each request with the time it took it to run the
constraint solver to bring that Variable up-to-date. When
the Coordinator receives a request, it calculates the
elapsed time of each request minus the time the Worker
needed to bring the Variable up-to-date. This is the
message latency measured for each request, that is, the
time this request spent in the network. However, this does
not show how accurate a rendered frame is. To visualize
how valid the frames are, we used a statistical clock skew:

skew = (wall clock) - min(time of request of
 all requested Variables)

For every frame, the minimum time of request of all
output Variables is subtracted from the current time (wall
clock). This skew describes the worst difference between
what is rendered and what the user is doing. Figure 5 is

one of many plotted that shows this (see [16] for many
additional performance tests).

Figure 5. Worst Frame Latency

Finally, observe that these speedups are made possible

by a high-level constraint-based UIDL, which placed no
assumptions or restrictions on the processing sequence.
Our experience with DLoVe demonstrates that introducing
a higher-level, declarative user interface description
language provided extra degrees of freedom to the
underlying implementation. Rather than causing a
performance penalty, the constraint-based language made
possible the increased performance we obtained through
parallel processing.

9. Related Work

Our continuous model is similar to a data-flow graph or
a set of one-way constraints between actual inputs and
outputs and draws on research in constraint systems [32]
[34]. The model provides the ability to “re-wire” the
graph from within the dialogue. Several researchers are
using constraints for 2-D graphical interfaces [25] [26]
[33] [6] [4]. Kaleidoscope [3] is a constraint-based
language motivated by 2-D WIMP interfaces, and it
explicitly supports temporary constraints.

VIVA [36] introduced some level-of-detail time
management techniques in a data-driven, real-time
constraint application. The CONDOR system uses a
constraint or data-flow model to describe interactive 3-D
graphics [21]. TBAG also uses constraints effectively for
graphics and animation in the interface [8]. Gleicher
provides constraints that are turned on and off by events
[19]. Other recent work in 3-D interfaces uses a
continuous approach [22] or a discrete, but data-driven
approach [17].

Software architectures for virtual reality interfaces have
been developed by Feiner and colleagues [35] and by
Pausch and colleagues [18]. Green and colleagues
developed a toolkit for building virtual reality systems [9].
Most of this work has thus far concentrated on the

100

80

60

40

20

0

Latency
(milliseconds)

0 5000 10000 15000 Frame
Number

architecture or toolkit level, rather the user interface
description language. Lewis, Koved, and Ling, addressed
non-WIMP interfaces with one of the first UIMSs for
virtual reality using concurrent event-based dialogues
[14].

Parallel Virtual Machine PVM is a message-passing
software system that allows the utilization of a
heterogeneous network of parallel and serial computers as
a single computational resource [38]. The Message-
Passing Interface (MPI) is a standard specification
designed for writing distributed memory parallel
processing utilizing message-passing [23] [24]. There are
three main differences between DLoVe and other parallel
systems. While DLoVe’s tasks appear externally similar
to those in PVM, task allocation is done at compile time,
so that there is not appreciable overhead for task
management. The purpose of task allocation in DLoVe, is
to allow the Coordinator to always request the same
Variables from the same Workers. In other words, the
queries the Coordinator sends to the Workers are
partitioned, so that the Workers can execute multiple
different queries in parallel.

DLoVe’s task handling, unlike PVM or MPI, is
designed to support multi-user, multi-input application
development. Adding a second user to DLoVe’s
framework, adds a second Coordinator. This means that
the Workers now have to serve requests for both
Coordinators making each of the Workers work harder,
consume more resources, and load the network with more
messages.

The third difference concerns performance
requirements. DLoVe is designed primarily for Virtual
Reality applications and thus requires high frame rate.
Distributed applications using DLoVe’s framework are
characterized by real-time computations and constraints.
Thus, not only number of evaluations, but also timing
factors need to be taken into account when evaluating
DLoVe [15].

Timing constraints in DLoVe arise from interaction
requirements between the Coordinator and the user, and
between the Coordinator and the Workers. The
communication between the Coordinator and the Workers
is described by three operations: sampling, processing,
and responding. The Coordinator continuously samples
data from the input devices. Sampled data is sent to the
Workers that process it immediately. Then the Workers
send the processed data back to the Coordinator in
response to its request. All three operations must be
performed within specified times; these are the timing
constraints [15] [37].

10. Conclusion

DLoVe was designed to provide a specification
language and execution environment for rapid, parallel
execution of non-WIMP interfaces. Because it uses a
high-level declarative paradigm, it allows programs to be
executed in a distributed or non-distributed environment
where speed is a requirement, with hardly any code
modifications. It also allows easy specification of
functionality for multi-user interfaces, following a simple
pattern. Its run-time engine is responsible for
performance optimization and network control. It hides
all the networking aspects of message passing among the
machines in the distributed environment. As a result, the
DLoVe programmer does not need to understand
distributed and parallel systems to employ DLoVe; he or
she need only be familiar with the serial UIDL.

We also introduced a more useful measure of VR user
interface performance than total throughput. We defined
performance as the latency of the data in each frame. Our
experience with DLoVe demonstrated that introducing a
higher-level declarative UIDL provided extra degrees of
freedom in the underlying implementation. Rather than
causing a performance penalty, the constraint language
made possible the increased performance we obtained
with parallel processing.

11. References

[1] S. A. Morrison, "A Specification Paradigm for Design and
Implementation of non-WIMP Human-Computer Interactions,"
Doctoral dissertation, Tufts University (1998).
[2] Amdahl, G.M. Validity of the single-processor approach to
achieving large scale computing capabilities. In AFIPS
Conference Proceedings vol. 30 (Atlantic City, N.J., Apr. 18-
20). AFIPS Press, Reston, Va., 1967, pp. 483-485.
[3] B. Freeman-Benson and A. Borning, “The Design and
Implementation of Kaleidoscope'90, a Constraint Imperative
Programming Language,” Proc. IEEE Computer Society
International Conference on Computer Languages, pp. 174-180,
April 1992.
[4] B. Vander Zanden, B.A. Myers, D.A. Giuse, and P. Szekely,
“Integrating Pointer Variables into One-Way Constraint
Models,” ACM Transactions on Computer-Human Interaction,
vol. 1, no. 2, pp. 161-213, June 1994.
[5] B.A. Myers et al., “The Garnet Toolkit Reference Manuals:
Support for highly Interactive, Graphical User Interfaces in
Lisp.” Tech. Report CMU-CS-90-117, Carnegie Mellon
University, Computer Science Department, Mar. 1990.
[6] B.A. Myers, D.A. Giuse, R.B. Dannenberg, B. Vander
Zanden, D.S. Kosbie, E. Pervin, A. Mickish, and P. Marchal,
“Garnet: Comprehensive Support for Graphical, Highly-
Interactive User Interfaces.” IEEE Computer, vol. 23, no. 11,
pp. 71-85, November 1990.
[7] Berman, Kenneth A. and Paul, Jerome L. “Fundamentals
of Sequential and Parallel Algorithms”. PWS Publishing
Company, 1997.
[8] C. Elliot, G. Schechter, R. Yeung, and S. Abi-Ezzi, “TBAG:
A High Level Framework for Interactive, Animated 3D Graphics

Applications,” Proc. ACM SIGGRAPH'94 Conference, pp. 421-
434, Addison-Wesley/ACM Press, 1994.
[9] C. Shaw, M. Green, J. Liang, and Y. Sun, “Decoupled
Simulation in Virtual Reality with the MR Toolkit,” ACM
Transactions on Information Systems, vol. 11, no. 3, pp. 287-
317, 1993.
[10] Chris Lewis, “Cisco TCP/IP Routing Professional
Reference (second edition)”, McGraw-Hill Companies, Inc.
1998
[11] Hesham El-Rewini & Ted G. Lewis, “Distributed and
Parallel Computing”. Mannining Publications Co. 1998.
[12] J. Nielsen, “Noncommand User Interfaces,” Comm. ACM,
vol. 36, no. 4, pp. 83-99, April 1993.
[13] J. Rohlf and J. Helman, “IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics,” Proc. ACM SIGGRAPH'94 Conference, pp. 381-
394, Addison-Wesley/ACM Press, 1994.
[14] J.B. Lewis, L. Koved, and D.T. Ling, “Dialogue Structures
for Virtual Worlds,” Proc. ACM CHI'91 Human Factors in
Computing Systems Conference, pp. 131-136, Addison-
Wesley/ACM Press, 1991.
[15] Jeffrey J. P. Tsai, Yaodong Bi, Steve J. H. Yang, and Ross
A. W. Smith, “Distributed Real-Time Systems”, John Wiley &
Sons, Inc. 1996.
[16] L. Deligiannidis, “DLoVe: A Specification Paradigm for
Designing Distributed VR Applications for Single or Multiple
Users,” Doctoral dissertation, Tufts University (2000).
[17] L.D. Bergman, J.S. Richardson, D.C. Richardson, and F.P.
Brooks, “VIEW - An Exploratory Molecular Visualization
System with User-Definable Interaction Sequences,” Proc. ACM
SIGGRAPH'93 Conference, pp. 117-126, Addison-
Wesley/ACM Press, 1993.
[18] M. Conway, R. Pausch, R. Gossweiler, and T. Burnette,
“Alice: A Rapid Prototyping System for Building Virtual
Environments,” Adjunct Proceedings of ACM CHI'94 Human
Factors in Computing Systems Conference, vol. 2, pp. 295-296,
1994.
[19] M. Gleicher, “A Graphics Toolkit Based on Differential
Constraints,” Proc. ACM UIST'93 Symposium on User Interface
Software and Technology, pp. 109-120, Addison-Wesley/ACM
Press, Atlanta, Ga., 1993.
[20] M. Green and R.J.K. Jacob, “Software Architectures and
Metaphors for Non-WIMP User Interfaces,” Computer
Graphics, vol. 25, no. 3, pp. 229-235, July 1991.
[21] M. Kass, “CONDOR: Constraint-Based Dataflow,” Proc.
ACM SIGGRAPH'92 Conference, pp. 321-330, Addison-
Wesley/ACM Press, 1992.
[22] M.P. Stevens, R.C. Zeleznik, and J.F. Hughes, “An
Architecture for an Extensible 3D Interface Toolkit,” Proc.
ACM UIST'94 Symposium on User Interface Software and
Technology, pp. 59-67, Addison-Wesley/ACM Press, Marina
del Rey, Calif., 1994.
[23] MPI Message Passing Interface Forum. “MPI: A
Message-Passing Interface Standard”. International Journal of
Supercomputer Applications and High Performance Computing,
8(3/4), 1994.
[24] Peter S. Pacheco, Parallel “Programming with MPI”,
Morgan Kaufman Publishers, Inc. 1997.

[25] R.D. Hill, “The Rendezvous Constraint Maintenance
System,” Proc. ACM UIST'93 Symposium on User Interface
Software and Technology, pp. 225-234, Atlanta, Ga., 1993.
[26] R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W.
Wilner, “The Rendezvous Architecture and Language for
Constructing Multiuser Applications,” ACM Transactions on
Computer-Human Interaction, vol. 1, no. 2, pp. 81-125, June
1994.
[27] R.J.K. Jacob, “A State Transition Diagram Language for
Visual Programming,” IEEE Computer, vol. 18, no. 8, pp. 51-
59, 1985.
[28] R.J.K. Jacob, “A Visual Language for Non-WIMP User
Interfaces,” Proc. IEEE Symposium on Visual Languages, pp.
231-238, IEEE Computer Society Press, 1996.
[29] R.J.K. Jacob, “Eye Movement-Based Human-Computer
Interaction Techniques: Toward Non-Command Interfaces,” in
Advances in Human-Computer Interaction, Vol. 4, ed. by H.R.
Hartson and D. Hix, pp. 151-190, Ablex Publishing Co.,
Norwood,N.J.,1993.
[30] R.J.K. Jacob, “Using Formal Specifications in the Design
of a Human-Computer Interface,” Communications of the ACM,
vol. 26, no. 4, pp. 259-264, 1983. Also reprinted in Software
Specification Techniques, ed. N. Gehani and A.D. McGettrick,
Addison-Wesley, Reading, Mass, 1986, pp. 209-222.
[31] R.J.K. Jacob, L. Deligiannidis, and S. Morrison, ”A
Software Model and Specification Language for Non-WIMP
User Interfaces” ACM Transactions on Computer-Human
Interaction, Vol. 6(1) pp. 1-46 (March 1999).
[32] S. Hudson and I. Smith, “Practical System for Compiling
One-Way Constraint into C++ Objects,” Technical Report,
Georgia Tech Graphics, Visualization, and Usability Center,
1994.
[33] S.E. Hudson, “Graphical Specification of Flexible User
Interface Displays,” Proc. ACM UIST'89 Symposium on User
Interface Software and Technology, pp. 105-114, Addison-
Wesley/ACM Press, Williamsburg, Va., 1989.
[34] S.E. Hudson, “Incremental Attribute Evaluation: A
Flexible Algorithm for Lazy Update,” ACM Transactions on
Programming Languages and Systems, vol. 13, no. 3, pp. 315-
341, July 1991.
[35] S.K. Feiner and C.M. Beshers, “Worlds within Worlds:
Metaphors for Exploring n-Dimensional Virtual Worlds,” Proc.
ACM UIST'90 Symposium on User Interface Software and
Technology, pp. 76-83, Addison-Wesley/ACM Press, Snowbird,
Utah, 1990.
[36] S.L. Tanimoto, “VIVA: A Visual Language for Image
Processing,” Journal of Visual Languages and Computing, vol.
1, no. 2, pp. 127-139, June 1990.
[37] Selic, Bran and Gullekson, Garth and Ward, Paul T. “Real
Time Object Oriented Modeling”. John Wiley & Sons, Inc.,
1994.
[38] V. S. Sunderam, “PVM: A Framework for Parallel
Distributed Computing, Concurrency: Practice and Experience”,
2, 4, pp 315--339, December, 1990.
[39] Sandeep Singhal and Michael Zyda, “Networked Virtual
Environments”Design and Implementation, Addison-Wesley,
ACM Press, New York NY 1999.

