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Abstract 
In this paper, we introduce DLoVe, a new paradigm 

for designing and implementing distributed and non-
distributed virtual reality applications, using one-way 
constraints. DLoVe allows programs written in its 
framework to be executed on multiple computers for 
improved performance. It also allows easy specification 
and implementation of multi-user interfaces. DLoVe hides 
all the networking aspects of message passing among the 
machines in the distributed environment and performs the 
needed network optimizations. As a result, a user of 
DLoVe does not need to understand parallel and 
distributed programming to use the system; he or she 
needs only be able to use the serial version of the user 
interface description language. Parallelizing the 
computation is performed by DLoVe, without modifying 
the interface description.  
 

1. Introduction 
 

We have developed a software model and user interface 
description language (UIDL) for programming interactive 
behaviors in virtual reality (VR) and other non-WIMP 
interfaces [31].  In it, we introduced a language element 
that is essentially a set of one-way constraints or a 
dataflow graph.  We chose it for its expressive power and 
its suitability for describing continuous interaction.  We 
found that, although constraints are often viewed as 
introducing performance penalties compared to 
conventional coding, our approach allowed us to improve 
performance or interactive responsiveness.  This is 
because our constraint-based formalism allows a 
separation of concerns between the desired interactive 
behavior and the implementation mechanism.  The user 
interface designer can thereby concentrate on and express 
the former, in a high-level, declarative, continuous-
oriented way, while our underlying runtime system can 
perform optimization, tradeoffs, conversion into discrete 

steps, and allow parallel execution independently, below 
the level of the UIDL.  

This paper introduces the DLoVe (Distributed Links 
over Variables evaluation) system, which provides a 
UIDL for programming non-WIMP interactions and a 
mechanismfor executing UIDL programs, designed for a 
single machine, on a set of distributed machines where 
updates on DLoVe variables can be executed in parallel 
for performance improvement. DLoVe also provides, as a 
byproduct, the framework for writing multi-user VR 
programs or transforming existing single-user DLoVe 
programs into multi-user ones.  DLoVe addresses issues 
of performance and maintainability, providing 
mechanisms, drivers, and utilities that allow run time 
tuning and network management to be specified in a 
simple manner [16].  
 

2. Background 
 

Most of today’s Graphical User Interfaces (GUI) and 
toolkits are based on serial, discrete, token-based 
paradigms that implement traditional WIMP (Window, 
Icon, Menu, Pointer) interfaces acceptably. These tools 
however, are not suited for next generation, non-WIMP 
interaction styles such as Virtual Reality.  The 
fundamental characteristics of these non-WIMP interfaces 
are common to a more general class of emerging user-
computer environments, including new types of games, 
musical accompaniment systems, intelligent agent 
interfaces, interactive entertainment media, pen-based 
interfaces, eye movement-based interfaces, and ubiquitous 
computing [29] [12].  They share a higher degree of 
interactivity than previous interfaces: continuous 
input/output exchanges occurring in parallel, rather than 
one single-thread, discrete event dialogue. These 
interaction techniques rely upon asynchronous, parallel, 
and continuous user/computer interaction [20]. 

We want to introduce a higher level, cleaner user 
interface description languages into this field, without 



compromising performance.  Constraints are often viewed 
as effective and expressive but too inefficient for a high-
performance application like virtual reality. However, 
using a declarative constraint specification rather than a 
procedural program gives us the freedom to implement 
more sophisticated management of execution time while 
separating this concern from those of the user interface 
designer.  It allows us to tailor the response speeds of 
different elements of the user interface to maximize the 
subjective sense of interactive responsiveness within the 
available computing resources.  All this is specified 
separately from the user interface description; the UIDL 
constraint specification lets the designer describe only the 
ideal desired behavior (as if infinite computing resources 
were available on a single CPU). 

Because the calculations are specified as a constraint 
graph, DLoVe can parallelize the computation to take 
advantage of multiple computers to improve performance. 
It also provides a framework to execute the same VR 
application in a multi-user environment. 
 

3. Specification Language 
 

DLoVe is based on the PMIW specification language 
[31], which uses a two-component model for describing 
and programming the fine-grained aspects of non-WIMP 
or VR interactions. First, we identify the basic structure or 
syntax of non-WIMP interaction as the user sees it.  We 
posit that essence of the sequence of interactions in a non-
WIMP interface is a set of continuous relationships, most 
of which are temporary.  For example, in a virtual 
environment, a user may be able to grasp, move, and 
release an object.  The hand and object positions are thus 
related by a continuous function (say, an identity mapping 
between the two 3-D positions)--but only while the user is 
grasping the object.  This leads to a two-part model of 
user interaction.  One part is a graph of functional 
relationships among continuous variables, much like a 
constraint graph, but only a few of these relationships are 
typically active at one moment.  The other part is a set of 
discrete Event Handlers that can, among other actions, 
cause specific continuous relationships to be activated or 
deactivated.  Most other UIDLs and software systems are 
based on serial, discrete, token-based interaction. DLoVe 
is designed to provide a fundamentally continuous, rather 
than discrete, treatment of naturally continuous 
phenomena such as time and motion.  In addition, it 
handles discrete events as discrete events and it provides a 
mechanism for communication between the continuous 
and the discrete sub-system. Our UIDL is described in 
more detail and with more examples in [28] and [31]; and 
a related, more powerful system based on it, in [1]. 
 

4. Continuous Time 
 

We can now observe that the continuous portion of our 
two-part formalism looks much like a set of one-way 
constraints. We believe that constraints are indeed a useful 
element of a UIDL for developing virtual reality user 
interfaces because of their expressive power [5].  They 
also have the benefit of separating programming of the 
desired behavior from programming the implementation 
engine; this gives us the hook to address VR performance 
issues. Because we use constraints, the user simply 
provides a declarative specification of the desired 
relationships and, if applicable, indicates how they are 
turned on and off.  The underlying system does not need 
to guarantee that it will always update the constraints in 
lockstep fashion, but it will have the freedom to manage 
the available computer time in different ways to achieve 
good interactive responsiveness, without explicit effort on 
the part of the writer of the constraints. Our constraint 
solver is free to handle the task sequentially or in parallel; 
it might also approximate the desired behavior more or 
less closely, depending on the CPU time available on each 
frame. 

DLoVe’s continuous time sub-system consists of object 
elements that define the relationships between variables.  
The entire set of these elements connected together form a 
constraint-like graph.  Changes at one end of the graph 
propagate to the other end.  Interaction that is 
conceptually continuous is encoded directly into these 
elements, and thus the application does not need to deal 
with tracking events from conceptually continuous 
devices.  Examples of conceptually continuous interaction 
include, drinking from a cup in a virtual world, throwing a 
ball in a virtual park, and driving a car in a virtual city. 
Many non-WIMP interfaces must meet severe 
performance requirements in order to maintain their 
perceptual illusions.  For virtual reality, in particular, 
these requirements are the driving force behind the design 
of most current implementations [13].  We found that 
using one-way constraints in our UIDL gave us flexibility 
to manipulate execution, scheduling, and parallel 
processing on the fly and improve the interactive 
responsiveness of our system over that of the equivalent 
hard-coded system sans constraints. Our DLoVe solver 
allows the constraint graph to be distributed over several 
workstations, for faster response time as well as for 
supporting multi-user virtual environments. 

The demand-driven or lazy evaluation algorithm in 
DLoVe is based on the optimal algorithm of Hudson's 
Eval/Vite system [32]  [34].  DLoVe adds some features 
designed specifically for the requirements of VR 
interfaces.  In addition, DLoVe is designed for 
continuous, rapidly updated response to user inputs.  One 
consequence is that it is often reasonable to discard 



queued-up inputs in favor of responding to the latest input.  
Another is that many of the most rapidly-changing inputs 
(the 3-D trackers) are fairly well behaved because they are 
generated by the user’s limb movements.  

Continuous time in DLoVe is handled via Variables and 
Links. Variables are objects in DLoVe that store values 
and know which Links need them as inputs and which for 
output.  They are invariant data flow graph elements that 
serve as both continuous and short-term data repositories.  
Some Variables are directly connected to input devices, 
some to outputs, and some to application semantics.  
Some are used for communication within the user 
interface model and some just hold intermediate results of 
Link calculations.   

Links are objects that contain functions and are 
attached at both ends to Variables.  Links get input from 
Variables and place the result of their calculations into 
other Variables.  The body of a Link specifies how the 
attached Variables are related.  Links can be enabled or 
disabled in response to user inputs.  When a Link is 
disabled, it is as if this Link were not part of the 
constraint network any more.  By enabling and disabling 
Links, we can quickly change the constraint network on 
the fly since only a flag needs to be set or cleared to 
indicate that a Link is enabled or disabled.  This ability to 
enable and disable portions of the data-flow graph in 
response to user inputs is a key feature of the model.  
Links can have multiple outputs and multiple inputs.  In 
other cases, a Link may read input Variables and perform 
some complex function on them over time, which 
eventually generates a token for the Event Handlers.  
This can be useful for gesture recognition or for eye 
tracking applications where, for example, when the user 
looks at an object for a certain time, the object becomes 
selected.  We developed an application where, when the 
user looks toward an object in a virtual world for over 5 
seconds, the object becomes selected [16].  The 
brightness of the object is proportional to the time for 
which the object has been viewed, and when it reaches a 
certain brightness level, the object is selected and the 
user can manipulate it. In addition, a single Variable may 
be used as input or output to multiple Links. Conditions 
are also provided to enable and disable groups of Links 
instead of enabling or disabling Links individually.   

Figure 1 above shows the Variables as circles and the 
Links as rectangles.  When a Link is created, it is enabled 
by default.  In the DLoVe constraint graph we draw a 
crossed circle on top of a Link to indicate that is disabled.  
A DLoVe graph is read from left to right.  For example, 

Variables ‘A’ and ‘B’ are inputs to Link L1, and Variable 
‘C’ is its output Variable.  When L1 is disabled it is as if 
this Link was deleted from the network.  However, a 
disabled Link is still part of the data structure and when it 
becomes enabled again it knows how it is supposed to be 
attached to its Variables.  The relationship between ‘A’, 
‘B’ and ‘C’ is terminated temporarily until ‘L1’ becomes 
enabled again.   

The programmer specifies the input and output 
Variables to each Link.  This is represented as a data-flow 
graph that defines which output Variables will be affected 
by a change in the input Variables.  DLoVe then 
automatically generates a dependency graph where, for 
each output Variable, all relevant input Variables can be 
found by ‘breadth-first’ search.  This enables DLoVe’s 
incremental constraint algorithm to work efficiently 
starting at the requested Variables and working backwards 
to where the change occurred, and start evaluating Links 
in topological order, if needed. 
 

5. Discrete Time 
 

There are other however, interactions that are 
fundamentally discrete (event-based) and, for them, 
DLoVe provides an event-based component.  Such 
examples include button presses, menu choices and 
gesture recognition verifications.  They often result in 
enabling or disabling constraints in the graph; for 
example, TBAG applications [8] generally deal with such 
discrete input events by retracting some existing 
constraints and asserting new ones.  Bramble uses a 
similar mechanism [19].   

DLoVe handles the discrete time using Event Handlers, 
objects that capture tokens and respond to them. DLoVe 
reads all hardware input events from the X Window 
system and any other sources and turns them into tokens 
and sends them to all Event Handlers.  Event Handlers 
contain a user-specified body that describes the response 
to tokens.  The application sends a token to all Event 
Handlers, and only those Event Handlers that are 
interested in the token execute their bodies.  The 
responses might include setting Variables, making custom 
procedure calls, and enabling or disabling Links.  Event 
Handlers recognize states and state transitions, and can 
provide different services depending on the state they are 
in.   

In an example of a factory with moving objects on its 
assembly line, an Event Handler state diagram might look 
like figure 2 (where the communication between the Event 
Handler and the continuous time subsystem is done by 
Enabling and Disabling the L1 and L2 Links): 

L1 L2 
A

B
C E

D

Figure 1. Links and Variables



Start
Follow
Hand

Intersect

Right mouse button Released

Hand-object,
intersect

Right mouse
button

Pressed
Hand-object, do not intersect

¾ Enable
¾ Disable

L1
L2

¾ Disable
¾ Enable

L1
L2

Figure 2. State Diagram of the Event Handler 
 

When the user’s hand intersects with the moving 
object, the Event Handler receives a token (e.g. 
“ENTER”), the object becomes highlighted, and the 
Event Handler transitions to the “Intersect” state.  At this 
state, if the user presses the right mouse button, the Event 
Handler receives another token (e.g. “LEFTDN”), 
transitions to the “Follow Hand” state, enables Link L1, 
and disables Link L2.  Now the hand-object relation has 
been established, and the object follows the movement of 
the hand.  When the mouse button is released, the Event 
Handler receives another token (e.g. “LEFTUP”), 
transitions to the “Start” state, disables Link L1, and 
enables Link L2.  At this point, the hand-object 
relationship is terminated.  Further details of this state 
diagram notation itself are found in [30] [27]. 
 

6. Parallel Processing in DLoVe 
 

One of the major difficulties with parallel processing is 
in transforming a program written for a sequential 
machine into one that executes on multiple machines in 
parallel.  A program written in DLoVe, however, can be 
initially written to execute on a single machine 
sequentially. The same program can then execute in 
parallel on multiple workstations with hardly any source 
code changes.  The only difference between the parallel 
and serial versions is that different libraries are used to 
compile the executables.  When compiling for parallel 
execution, compilation generates two different 
executables, one for the Coordinator (the machine 
responsible for reading input devices and rendering 
graphics), and another for one or more Workers (the 
machines responsible for doing constraint calculations in 
parallel).  The Coordinator is a workstation with a display 
device and input devices, such as polhemus 3D tracker, 
mouse, and eye tracker.  It is responsible for reading all 
data from the input devices and rendering the graphics.  
Workers are only responsible for doing calculations based 
on the requests from the Coordinator.   

In our approach to parallel processing, each Worker and 
the Coordinator own an exact copy of the constraint 
graph.  Each Worker can execute the constraint solver on 
any given Variable.  However, at the initialization phase 
the Coordinator partitions the graph so that it can request 
certain Variables from certain Workers.  In essence, the 

Coordinator assigns ‘tasks’ to individual Workers.  The 
Coordinator partitions the graph so that related Variables 
form a group of Variables in the Workers, and requests to 
these specific Variables are always sent from the 
Coordinator to the Worker that owns this portion/partition 
of the graph.  With this approach to parallel processing, 
distributing the calculations over several machines cannot 
adversely affect correctness since all machines maintain 
the entire graph; it only affects response speed. 

The Coordinator executes the following algorithm to 
partition the graph.  It first finds the number of Variables 
upon which each Variable depends.  Next, it assigns, in 
round-robin, the Variables with the most dependencies, 
recursively,  to different Workers as shown below: 
 

foreach Variable v in AllVariables do 
v.depend = Breadth-first-search(v); 

 
int w = 0; 
Worker worker[total_num_of_Workers]; 
 
foreach Variable v in Next_highest_depend do 

if v.assigned != assigned_to_any_worker then 
worker[w].Recursive_assign(v); 

 w = (w+1) mod total_num_of_Workers; 
 
Because the Coordinator also has a complete copy of 

the constraint graph and can execute the same constraint 
algorithm, it enables it to bring critical Variables up-to-
date locally, when the computations involved are 
inexpensive.  This is useful for Variables that control the 
position and orientation of the user’s head and hand that 
must be updated as quickly as possible to maintain the 
user’s sense of immersion.   

The Coordinator can asynchronously send large 
messages, to reduce network overhead [10].  A message 
can contain multiple requests such as Enable or Disable a 
particular Link, Set a Variable to a value, and requests 
for updated Variables. Workers only reply to the 
Coordinator to requests of updated Variables in a similar 
manner, batching multiple results in a large message. 
There is no communication between the Workers 
themselves.   
 

7. Multiple Users 
 

Since our constraint graph is distributed and the 
Coordinator knows how to request Variables from the 
Workers and how to set the values of Variables in the 
Workers, it is a simple matter to add additional 
Coordinators to support a multi-user interface.  In DLoVe, 
adding another Coordinator (i.e., another user) simply 
requires specifying the number of additional Coordinators 
in DLoVe’s configuration file and running the additional 



Coordinators using the same executable as the original 
Coordinator.   

While multi-user execution is easy, there are several 
issues that arise in designing any multi-user interface.  The 
main issue is that the UIDL must now describe the 
handling of each user’s input individually; for two users, 
we must write a user interface description involving two 
different mice or two hand trackers.  For example, assume 
that there is only one Variable, ‘mouse’, attached to the 
mouse device so that the position of the mouse represents 
the position of the user’s virtual hand in space.  In a multi-
Coordinator environment, each Coordinator can set the 
Variable ‘mouse’ resulting in multiple Coordinators 
manipulating the single virtual hand.  But a multi-user 
interface requires the designer to specify the interaction 
for each user’s mouse; in some interface designs, different 
users might play different, asymmetric roles in the 
interaction.  DLoVe assigns, in its configuration file, 
application layer identification numbers to each physical 
device attached to each machine.  Each device is 
automatically translated into <device>_ID where device is 
the original name of the device, such as mouse, and ID is 
the application layer identification number, yielding a 
different name for each machine’s device such as 
mouse_2 and mouse_6.  Links attached to input devices 
might also need to be duplicated and rewired to handle the 
multiple-user interface.  This allows all users in a multi-
user environment to be able to control their own heads and 
hands and to be able to see all other users participating in 
the simulation.  The application identification numbers 
also allow programmers to write programs and assign 
different roles and responsibilities to different users (such 
as pitcher and catcher).  We developed an application 
where one user can only manipulate ‘red’ objects and the 
other user ‘blue’ objects.  By pressing a keyboard 
command, the roles are reversed and the first user can 
only grab ‘blue’ objects and the second only ‘red’.   

Several applications have been developed using DLoVe 
to demonstrate its strengths and weaknesses.  The Virtual 
Park application was developed to test performance and to 
demonstrate flexibility and efficiency.  The Virtual Park 
consists of several objects such as sliders controlling 
orbiting objects, arms controlling the direction of other 
arms, and Humanoids, which are human-like entities 
walking, wandering, and playing with a virtual ball.  The 
Humanoids look at the ball, avoid collisions with the other 
Humanoids, and when they come close to the ball, they hit 
it.  The virtual ball can travel over the park depending on 
the force with which it was hit, ending finally on the 
ground where gravity pulled it.  The user(s) can grab all 
objects including the Humanoids and the ball.  The users 
can grab and toss the ball the same way the Humanoids 
interact with it.  The behavior of each Humanoid, collision 
behavior, speed, etc, is based on a complex function that 

accounts the location and the age of all other Humanoids, 
much like magnets with different magnetic strengths. A 
snapshot of the DLoVe Virtual Park is shown in Figure 3. 
Part of the constrained graph is shown in Figure 4, 
because of space limitations, that shows the ball object 
and three of the Humanoids.  Each Humanoid is assigned 
as a single task to a single Worker. 

Figure 3. Virtual Park 
 

Figure 4. Constraint Graph of the Virtual Park 
 

8. Evaluation: Performance Measurement 
 

Our final task was to evaluate DLoVe with quantitative 
measurements of the performance improvement it 
provides through parallelism.  Initial measurements 
suggested that conventional measures used to evaluate 
parallel processing systems are less useful in VR [2] [11] 
[7].   

Table 1 shows that by using more Workers we increase 
the throughput of the system but we decrease the frame 
rate.  The throughput increase is due to parallel 
computations performed by the multiple Workers, where 
the decrease in frame rate is due to the fact the DLoVe is 
implemented on top of TCP.  The Coordinator needs to 
send multicasts to all Workers and thus it has to simulate 
multicasting [16], since it is not supported by TCP.  By 
simulating multicasting, the Coordinator spends more 

Worker 3

A Humanoid
The Ball

Worker 2

Worker 1



time trying to send the requests to the Workers and less 
time to render the display.  We measured the number of 
evaluations of one of the Links in the Humanoids which 
was needed in every frame to figure out how many times 
a Humanoid was brought up to date. 

 
Table 1. 

Number of 
Workers 

Number of 
Evaluations 

Frame 
Rate 

1 1700 20 
2 3500 18 
3 4500 15 

Throughput, or total work performed, does not 
accurately capture the interactive performance of a VR 
user interface.  The system might be doing a great deal of 
processing by generating many frames, but displaying 
each of them late.  It would score well by traditional 
parallel processing measures, but would seem very 
sluggish to the user.   

We therefore used total throughput along with total 
latency of a displayed video frame to measure 
performance. That is, when a frame is displayed, what is 
the oldest piece of data that was used to generate that 
frame?  We believe that frame latency, in conjunction with 
frame rate, captures the interactive performance of a VR 
user interface better than total processing throughput.  
Frame latency shows how valid or how late the 
information is at the time the Coordinator renders the 
display. 

To perform this analysis, we tracked each message 
through the network.  Message latency shows how long a 
message spends on the network to get to the Workers and 
then to come back to Coordinator (minus the time required 
by a Worker to evaluate a Link).  We instrumented 
DLoVe so the Coordinator timestamps each request 
before sending it to a Worker.  The Worker also 
timestamps each request with the time it took it to run the 
constraint solver to bring that Variable up-to-date.  When 
the Coordinator receives a request, it calculates the 
elapsed time of each request minus the time the Worker 
needed to bring the Variable up-to-date.  This is the 
message latency measured for each request, that is, the 
time this request spent in the network.  However, this does 
not show how accurate a rendered frame is.  To visualize 
how valid the frames are, we used a statistical clock skew: 
 
skew = (wall clock) - min(time of request of  
 all requested Variables) 
 

For every frame, the minimum time of request of all 
output Variables is subtracted from the current time (wall 
clock).  This skew describes the worst difference between 
what is rendered and what the user is doing.  Figure 5 is 

one of many plotted that shows this (see [16] for many 
additional performance tests). 

Figure 5. Worst Frame Latency 
 
Finally, observe that these speedups are made possible 

by a high-level constraint-based UIDL, which placed no 
assumptions or restrictions on the processing sequence.  
Our experience with DLoVe demonstrates that introducing 
a higher-level, declarative user interface description 
language provided extra degrees of freedom to the 
underlying implementation. Rather than causing a 
performance penalty, the constraint-based language made 
possible the increased performance we obtained through 
parallel processing. 
 

9. Related Work 
 

Our continuous model is similar to a data-flow graph or 
a set of one-way constraints between actual inputs and 
outputs and draws on research in constraint systems [32] 
[34].  The model provides the ability to “re-wire” the 
graph from within the dialogue. Several researchers are 
using constraints for 2-D graphical interfaces [25] [26] 
[33] [6] [4].  Kaleidoscope [3] is a constraint-based 
language motivated by 2-D WIMP interfaces, and it 
explicitly supports temporary constraints. 

VIVA [36] introduced some level-of-detail time 
management techniques in a data-driven, real-time 
constraint application.  The CONDOR system uses a 
constraint or data-flow model to describe interactive 3-D 
graphics [21].  TBAG also uses constraints effectively for 
graphics and animation in the interface [8].  Gleicher 
provides constraints that are turned on and off by events 
[19].  Other recent work in 3-D interfaces uses a 
continuous approach [22] or a discrete, but data-driven 
approach [17]. 

Software architectures for virtual reality interfaces have 
been developed by Feiner and colleagues [35] and by 
Pausch and colleagues [18].  Green and colleagues 
developed a toolkit for building virtual reality systems [9].  
Most of this work has thus far concentrated on the 
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architecture or toolkit level, rather the user interface 
description language.  Lewis, Koved, and Ling, addressed 
non-WIMP interfaces with one of the first UIMSs for 
virtual reality using concurrent event-based dialogues 
[14]. 

Parallel Virtual Machine PVM is a message-passing 
software system that allows the utilization of a 
heterogeneous network of parallel and serial computers as 
a single computational resource [38].  The Message-
Passing Interface (MPI) is a standard specification 
designed for writing distributed memory parallel 
processing utilizing message-passing [23] [24].  There are 
three main differences between DLoVe and other parallel 
systems.  While DLoVe’s tasks appear externally similar 
to those in PVM, task allocation is done at compile time, 
so that there is not appreciable overhead for task 
management.  The purpose of task allocation in DLoVe, is 
to allow the Coordinator to always request the same 
Variables from the same Workers.  In other words, the 
queries the Coordinator sends to the Workers are 
partitioned, so that the Workers can execute multiple 
different queries in parallel. 

DLoVe’s task handling, unlike PVM or MPI, is 
designed to support multi-user, multi-input application 
development.  Adding a second user to DLoVe’s 
framework, adds a second Coordinator.  This means that 
the Workers now have to serve requests for both 
Coordinators making each of the Workers work harder, 
consume more resources, and load the network with more 
messages. 

The third difference concerns performance 
requirements.  DLoVe is designed primarily for Virtual 
Reality applications and thus requires high frame rate.  
Distributed applications using DLoVe’s framework are 
characterized by real-time computations and constraints.  
Thus, not only number of evaluations, but also timing 
factors need to be taken into account when evaluating 
DLoVe [15].   

Timing constraints in DLoVe arise from interaction 
requirements between the Coordinator and the user, and 
between the Coordinator and the Workers.  The 
communication between the Coordinator and the Workers 
is described by three operations: sampling, processing, 
and responding.  The Coordinator continuously samples 
data from the input devices.  Sampled data is sent to the 
Workers that process it immediately.  Then the Workers 
send the processed data back to the Coordinator in 
response to its request.  All three operations must be 
performed within specified times; these are the timing 
constraints [15] [37]. 
 

10. Conclusion 
 

DLoVe was designed to provide a specification 
language and execution environment for rapid, parallel 
execution of non-WIMP interfaces.  Because it uses a 
high-level declarative paradigm, it allows programs to be 
executed in a distributed or non-distributed environment 
where speed is a requirement, with hardly any code 
modifications.  It also allows easy specification of 
functionality for multi-user interfaces, following a simple 
pattern.  Its run-time engine is responsible for 
performance optimization and network control.  It hides 
all the networking aspects of message passing among the 
machines in the distributed environment.  As a result, the 
DLoVe programmer does not need to understand 
distributed and parallel systems to employ DLoVe; he or 
she need only be familiar with the serial UIDL. 

We also introduced a more useful measure of VR user 
interface performance than total throughput.  We defined 
performance as the latency of the data in each frame.  Our 
experience with DLoVe demonstrated that introducing a 
higher-level declarative UIDL provided extra degrees of 
freedom in the underlying implementation.  Rather than 
causing a performance penalty, the constraint language 
made possible the increased performance we obtained 
with parallel processing. 
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