

Design of the Server Cluster to Support Avatar Migration

Jiung-yao Huang* and Yi-chang Du
Department of CS&IE

Tamkang University, Tamsui 251, Taiwan
E-mail: jiungyao@ms45.hinet.net*

Chien-Min Wang
Institute of Information Science

Academia Sinica, Nankang 115, Taiwan
E-mail: cmwang@iis.sinica.edu.tw

Abstract

In this paper, we identified an important issue when
supporting a large scale networked virtual
environment(NVE) with a server cluster. This issue is
similar to the process migration issue on the parallel
computing study and we refer it as the avatar migration
problem. That is, when an avatar of an NVE is moving
from one region managed by a server to another region
managed by a different server, the client site may
perceive abrupt screen change due to the different
contents managed by these two servers. This paper
proposes equations to solve this problem and elaborates
the proposed avatar migration mechanism with state
diagrams. The implementing architecture is also given in
this paper. Our experiments that successfully show the
efficiency of the proposed mechanism are given at the
last.

1. Introduction

“Scalability and interest management” is an important
research topic on the Networked Virtual
Environment(NVE). One of the essential concepts to
achieve the scalability of the NVE is to partition the
clients among multiple servers and each server will
manage a moderate number of participants. Singhal and
Zyda[1] pointed out that this partition can be based upon
the geographical location of the participants, or the
coordination of the avatars within the virtual world.
Furthermore, the users within a server can be further
classified so that the messages flowing among them are
filtered based upon their respective interests, called
Area-Of-Interest(AOI). This AOI approach can increase
the number of simultaneous participants by reducing
network bandwidth requirement. Moreover, the
deployment of multiple servers will also significantly
affect the scalability of the simultaneous participants.

For the AOI technique, it can be performed either by
logical separation or by physical division based upon

their corresponding avatars’ coordinates. The logical
separation is to compute the message interest scope of
every avatar on-the-fly and exchange the messages
among the users when their interest scopes are
intersected. For example, MASSIVE used the Aura[2] to
compute the awareness of an avatar. Different quantities
of messages will be transmitted among clients depending
upon the awareness of each avatar. The physical division
is to partition a virtual world into cells beforehand.
AOI[3] of an avatar is then dynamically computed based
upon the cell that it resides in. AOI represents the ambit
in the virtual world that a client is interested in receiving
messages. Therefore, how to determine the AOI of a
client to filter the messages and, hence, reduce the
network bandwidth and computational load is the key to
build a scalable NVE.

Locale[4] by the Spline system proposed a different
approach to filter the messages and, therefore, control the
data flow. Each locale has its own coordinate system and
the entire virtual world is constituted of numbers of
Locales. The clients within the same Locale will then
receive messages from each other. PARADISE[5]
proposed a “projection aggregation” approach that
consists of organization aggregation and grid
aggregation. This approach provides a high-level method
to establish the AOI based on the general spatial area and
entity class. Interleaved Squaring method[6] is another
approach of the spatial culling method for the data flow
management. The Interleave squaring method partitions
the virtual world into interleaved squares. This approach
aims to adopt the advantage of uniformly updating in
AOI change provided by the hexagonal approach[3],
while without its complexity in computing the resident
cell.

Among the previously proposed AOI techniques, the
fixed-sized and -shaped spatial culling method is a
popular approach among them. It partitions the virtual
world into cells of regular sizes and shapes first. The
interest management is then computed by estimating the
number of the cells that compose the AOI of an avatar. In
this way, the computation load of the interest

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

management is alleviated while the network bandwidth
requirement is reduced. However, this approach raises a
problem when an avatar migrates from one server to
another. We refer it as “the avatar migration issue”. When
an avatar locomotes to an adjacent region that is managed
by another server, the client site may perceive abrupt
scene change due to different contents on that server.
This paper aims to study this problem and attempts to
propose a general solution to it. In the following sections,
the discussion of avatar migration issue for the
AOI-based server cluster is given first. The proposed
avatar migration mechanism then follows. The
architecture and implementation of the server cluster is
presented afterwards. Finally, the performance of the
designed server cluster is discussed.

2. The issue of avatar migrating among

server cluster

There are four issues that will affect the scalability
and performance of the networked virtual
environment[1]. Among them, controlling visibility of
data and changing the net-VE network software
architecture are two issues related to the server site. In
addition, AOI is the technique that is often used to solve
the issue of “controlling visibility of data”. Hence,
previous researches were focused on the server cluster
with the AOI technique to reduce the message flow in the
network.

However, care must be taken when the AOI technique
is applied to the server cluster system. Since the entire
virtual world is partitioned into different regions and
managed by respective servers, the migration of an avatar
from one server to another is an important issue for the
multiple server approach of the networked virtual
environment. The simplest solution is to discharge the
avatar from the original server first and then login it to
another server. However, this approach has a serious
problem of abrupt visual effect on the client site. That is,
the user will suddenly perceive an empty virtual world
followed by a gradual emersion of other avatars. For
example, as illustrated in Figure 1, avatar a is moved

from region β, which is managed by server β, to region χ,

which is managed by server χ. When avatar a is within

region β, its controlling client is able to receive the status
information of avatar b. When avatar a is moved to

region χ, the visible avatars on the client site a should
become avatars f and g while avatar b should be dropped
out from the display.

Hence, in order to provide a smooth transition of
visual effect on the client site, the status information of
the avatar must be transmitted from one server to another
progressively. Since the client site continuously receives
avatars’ update messages from the server site, the client
site must be able to receive messages from both servers

when its avatar is migrating between these two servers. In
this way, the avatars will not suddenly disappear when
their managing server is disconnected to the client and
another set of avatars will not suddenly emerge after a
new server is connected. This paper identifies this issue
into problems as follows:

LAN

Net-VE
Avatar f

Avatar g
Avatar a

Server βServer α Server δServer χ

Avatar b

Avatar a

Avatar c

Avatar e

Avatar d

Avatar a

Migration

(α)

(β) (χ)

(δ)

α β χ δ

Figure 1. Illustration of the avatar migration problem

1. On the server site, how should we instantaneously
migrate an avatar’s status from one server to another
without delay?

2. On the client site, how should we eschew the user
from perceiving abrupt scene change and frame delay
while migrating the avatar?
This avatar migration issue on the sever site is similar

to the process migration[7] of the distributive computing.
However, the avatar migration issue is more complicated
than the process migration problem. Since the avatar is
interactively controlled by the user, the motion of the
avatar within the virtual world is unpredictable and its
migration process must also be executed interactively.

3. The mechanism for the avatar migration

3.1. The proxy object and the shadow object

In order to provide a seamless avatar migration from
one server into another, we overlap the cells on the
border of the region managed by a server with its
adjacent server. Based upon the spatial AOI technique,
each server of the server cluster for NVE manages a
region of the virtual world. In addition, each region is
composed of a set of adjacent cells. By overlapping the
border cells of two adjacent servers, we can use these
border cells as the buffer zone for avatar migration. We
call these two servers with overlapped cells as the
logically chained server of each other. For example, as
illustrated in Figure 2, let sub-region B be the border
region that is managed by both server m and server n.

Hence, the region managed by server m is A�B and

region B�C is managed by server n. Server m is the

chained server of server n, and vice versa.
As shown in Figure 2, when an avatar enters the

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

border, its AOI will cover the cells from both chained
servers. Both servers will be aware of the existence of
that avatar and a copy of its information must then exist
in both chained servers. We model the copy of avatar
information on the station server as the proxy object and
the avatar information on the migrating server as the
shadow object[8]. Hence, an avatar controlled by the
client is represented as a proxy object on the server site
and, when an avatar reaches the border district of a
server, its shadow object is then created on the migrating
server.

Server n

CB

Server m

A B

Proxy object: Shadow object:

AOI AOI'

Message Tunnel

AOI'

A

B

C
AOI

Border

Consecutive

virtual

world

Figure 2. A border region between two servers

The proxy object and the shadow object provide a
seamless mechanism to enable the avatar to perform
migration among the chained servers. For example, as
shown in Figure 2, when an avatar enters the border area,
its AOI is updated to AOI’. While an avatar is in the
border area, this situation signifies the possibility that it
will migrate into a chained server. To provide a smooth
migration, this chained server needs to have this avatar’s
status information when it is in the border. Hence, when
the server is aware of the event of an avatar entering the
border and it will notify its chained server, a shadow
object of that avatar is then created by the chained server.
Since the shadow object is a replicate of a proxy object,
while an avatar remains in the border, the station server
will automatically copy the proxy object’s information to
its shadow object on the chained server. The chained
server will then forward the received information to the
clients within the spatial AOI of this shadow object. In
this way, the clients on the chained server can be aware
of the existence of this migrating avatar, and, similarly, it
will receive other clients’ message with the help of its
shadow object. When this avatar eventually migrates into
the chained server, it is then taken over by the chained
server immediately since its information already exists in
that server.

The shadow object is similar to a clone of that proxy
object on the chained server. With the help of the shadow
object and the proxy object, we can model the interest
management that supports the avatar migration as

follows. Let Oi represent the proxy object of an avatar
with index i on server m, which is controlled by client ci,
and Ói is its shadow object on the chained server n. Then,
the interest management for the proxy object Oi can be
modeled by Eq.(1).

F(AOI(Oi))={ k
c | ∀ Ok ∝ AOI(Oi) and ∀ Ók ∝ AOI(Oi)

where Ok is the proxy object and Ók is the shadow object
in server m } .. (1)

Eq.(1) computes a set of clients whose avatars are in
server m and a set of clients whose shadow objects are in
server m but are managed by server n. For example, as
shown in Figure 2, Eq.(1) computes the set of clients
whose proxy object or shadow object is located in the

region of AOI�A and AOI�B. In addition, the interest

management for the shadow object Ói can be modeled by
the following Eq.(2).

F(AOI(Ói))={ k
c |∀Ok∝AOI(Ói) where Ok is the proxy

object in server n that is within AOI of shadow object Ói
but is not located in the border} (2)

Eq.(2) computes the set of clients whose avatar is in
server n but are not within the border. For example,
Eq.(2) will derive a set of clients who have their proxy

objects located in region AOI�C in Figure 2. Hence,

Eq.(1) and Eq.(2) together provide a mechanism to
perform interest management with spatial AOI technique
on a server cluster. The detail mathematical proof of the
correctness and completeness of Eqs.(1) and (2) is given
in [9].

3.2. The state diagram

The proposed avatar migration mechanism can be
best described by the state diagram. For the legacy server
cluster for NVE, the virtual world is partitioned into
several regions that are managed by different servers and
there is no border area between two adjacent regions.
Hence, the migration of an avatar from one server into
another can be illustrated by Figure 3.

S2: Avatar crosses the boundary

and the migration begins

S3: Status update in

the immigrated server

S1: Status update in

 the original server

Figure 3. The avatar migration without the border area

The server performs avatar migration immediately
after this avatar across the regional boundary between
two servers. However, since this situation is similar to the
process migration for the distributed computing[7], the
avatar information is transformed to another region that is

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

managed by a different server. The client site needs to
remove its contents from the original server and wait for
the information from the immigrated server to display.
This situation will perceptually cause the client site’s
display to produce an abrupt view change. That is, the
display will first exhibit a blank screen, followed with
gradually emerging of new objects and avatars.

S2: Enter border

S1: Status update in

the original Server

S2.1: The chained server

creates a shadow object

S2.2: Both servers perform status

update for the same avatar

S3: Migration is abandon and the shadow

object is removed from the chained server

S4: The avatar crosses the border and the migration process is

completed by changing a shadow object into a proxy object

S5: Status update in the mmigrated server

Figure 4. Avatar migration with the help of the border

To solve this problem, the concept of border is
proposed and an extra state is introduced to represent the
work when the avatar is in the border. As depicted in
Figure 4, state S2 represents the situation when the avatar
enters the border. State S2 is further modeled by two
sub-states, S2.1 and S2.2, to represent the process after
the avatar enters the border. The avatar migration process
is completed when the avatar crosses the border as shown
in state S4 in Figure 4. This state simply changes the
shadow object in the immigrated server into a proxy
object and removes the proxy object from the original
server. However, another state is required to model the
situation that the avatar abandons the attempt of
immigration as illustrated in state S3. In this case, the
server simply removes the shadow object in the chained
server and returns to status update state, i.e. S1.

4. The architecture

4.1. The architecture

The proposed server cluster is implemented in the
master/slave hierarchy as illustrated in Figure 5, which
contains the following three types of servers:

Federation nFederation 1

LANLAN

Gateway

SlaveSlave Slave

Master

SlaveSlave

Master

Slave

...
...

...

LAN

Figure 5. The server cluster hierarchy

1. Gateway server: It is the portal server of the server
cluster. It directly communicates with the Master
server to log the status of each virtual world. There is
only one such a server for NVE.

2. Master server: It is a coordinator of a virtual world. It
contains the partitioning information of the virtual
world and records which region is managed by which
Slave server. It is also responsible for coordinating the
communication among the chained servers during the
avatar migration process.

3. Slave server: This server actually manages the avatars
within a virtual world. However, it serves the avatars
only within its governable region. Its main function is
to transmit the status update information of an avatar
to other participants according to the spatial AOI
technique. Hence, it is an AOI manager and is fully
responsible for the avatar migration issue.
Notice that each virtual world only can have one

Master server but have several Slave servers depending
upon the partition of the virtual world. In addition, this
server cluster is designed based upon the specifications of
High Level Architecture(HLA), which is IEEE 1516
standard[10], and complied with the implementation of
Run Time Infrastructure(RTI) by Defense of Modeling
and Simulation Office (DMSO)[11], USA. That is, the
Gateway server is similar to RtiExec of DMSO RTI and
the Master server is functionally similar to FedExec of
DMSO. However, the designed server cluster extends
FedExec into Master/Slave hierarchy to implement the
Data Distribution Management(DDM) service with the
avatar migration capability[12]. A Local RTI
Component(LRC) that follows the HLA interface
specification is implemented on the client site.

One of the important issues to design a server cluster
is the communication mechanism among the
interconnected servers. Two de facto standards of the
communication layer for the server cluster are Message
Passing Interface(MPI)[13] and Fast Message(FM)[14].

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

The MPI is a specification for message passing library
and it is designed for the applications in distributed
memory architecture, message passing environment, and
parallel computation. Its deign goal is to provide a
practical, portable, and effective message passing
interface and is widely adopted on massive parallel
computing system, Symmetric Multiple Processors(SMP)
cluster, workstation cluster, and heterogeneous
networking environment.

FM takes an alternative approach to provide a highly
efficient and portable communication layer for the server
cluster. Since FM supports a set of basic point-to-point
low-level communication functions, FM can achieve low
latency communication among interconnected hosts. Due
to this intrinsic nature, most of the MPI libraries were
designed on top of FM as its bottom layer.

Based upon the intrinsic feature and the
communication efficiency of FM, this research employs
FM to design the server cluster. Further, by adopting FM
as the communication layer, the designed server cluster
can be portable among different computing platforms that
support FM. Among publicly available FMs from the
Internet, FM of Federated Simulations Development
Kit(FDK)[15] from Modeling & Simulation Research &
Education Center, Georgia Institute of Technology, is
chosen due to its availability of source code and variety
of supported platforms. Hence the infrastructure of the
implemented server cluster is as shown in Figure 6.

Master

Server

Slave

Server 1

Slave

Server n

Gateway

Server

Fast Message

...

Figure 6. The infrastructure of the server cluster

4.2. The interleaved-squaring AOI technique

1 2 3 4 5

7 8 9 10 116

12 13 14 15 16

18 19 20 21 2217

23 24 25 26 27

X

Y

Figure 7. The interleaved-squaring AOI method

The spatial AOI implemented in this server cluster is
called the interleaved-squaring spatial AOI method.[6]

This AOI method is the improvement of the hexagon
topology[3] by merging its stability with the simplicity of
the squaring method[16]. That is, as illustrated in Figure
7, the interleaved-squaring method is the AOI technique
that integrates the benefit of constant cell number of AOI
from the hexagonal topology and the gain of simple cell
partition from the squaring topology. For the
interleaved-squaring spatial AOI technique, the virtual
world is first partitioned into a set of fixed size of
squares, or cells. The cells are then interleaved by half,
row-by-row as illustrated in Figure 7.

Each cell Si of the interleaved-squaring AOI method

satisfies the AOI model defined in [9], i.e. Si�Sj = φ, ∀ i

≠ j. Hence, the AOI for an avatar on cell S8 is AOI8 = {S2,
S3, S7, S8, S9, S13, S14}. When the avatar moves to cell S14,
its new AOI is then updated to AOI14 = {S8, S9, S13, S14,
S15, S19, S20}. Three cells, i.e. cells S2, S3, S7, are removed
from the new AOI set and three cells, i.e. cells S15, S19,
S20, are added. [6] shows that the interleaved-square
culling method guarantees that the AOI always removes 3
cells and adds 3 cells to construct a new AOI no matter
which direction the avatar is locomoted.

4.3. The algorithm

The server cluster is implemented on Red Hat Linux
7.2 platform. The operation of the server cluster can be
outlined into two phases, which are the Initialization
phase and the Run Time phase. The Initialization phase is
mainly executed in the master server that partitions the
virtual world into a set of interleaved squares as
illustrated in Figure 7. These interleaved squares are then
clustered into several regions based upon their spatial
relationship and each region is assigned to a slave server.
The neighboring relationships among the slave servers
along with the border information between two chained
slave servers are also recorded in this phase.

At the run time phase, the slave server creates a proxy
object for each avatar residing in its managed region. On
the client site, a local object is created for its controlled
avatar whereas each remotely controlled avatar is
modeled as a clone object as shown in Figure 8. When an
avatar in the slave server m enters the border, server m
will alert this event to the master server through the
dotted line 2. The master server will then search its
record for the chained slave server, says server n, of the
slave server m. The connection information of the slave
server m is then passed to the chained server n through
the dotted line 3. Upon receiving this message, the
chained slave server n sets up a data channel with the
slave server m, as illustrated by dotted line 4. The slave
server m then uses this data channel to pass the
information of proxy object a to server n as illustrated by
dotted line 5. Accordingly, server n creates a shadow
object á for proxy object a. This dotted line 5 is also used

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

by server m to perform status update for proxy object a
later on.

Slave Server nSlave Server m

Client a

Master

Server

Proxy

Object a

Local

Object

Clone

Object

2

4

Sh adow

Object a'

Proxy

Object

3

71
6

8

5

Figure 8. Avatar migration process of enter the border

Furthermore, the chained slave server n will also
provide its connection information to the slave server m
through dotted line 4. This connection information is then
passed to client a so that client a can set up a link with
server n as illustrated by dotted lines 6 and 7. Hence, the
chained slave server n will then forward the information
of the avatars within AOI of shadow object á to client site
a, through dotted line 8, so that client a can propagate
respective clone objects.

5. The experiment and performances

The definition of shadow object solves the problem of

abrupt frame change on the client site, which is one of the
two essential issues for the avatar migration problem on
the server cluster of an NVE. In addition, Eq. (1) and Eq.
(2) ensure the consistency of scene change in the process
of avatar migration between two slave servers. However,

the fluency of the frame display heavily depends upon
the efficiency of these two equations. That is, the
efficiency of Eq(1) and Eq.(2) decides if both slave
servers can promptly forward avatar’s information in the
border to the clients managed by different slave servers
and, similarly, forward other avatars’ information to the
client whose avatar is in the border. Subsequently, the
client site will not perceive the discontinuity of the frame
update caused by the avatar migration between two slave
servers. Hence, experiments are designed and conducted
to verify the efficiency of the proposed mechanism.
However, the performance issue involves the
communication latency among the server cluster and the
network latency between the client and the server cluster.
Since the later one is heavily affected by the availability
of Wide Area Network(WAN) and it is an unpredictable
factor, our following experiments focus on studying the
communication latency among the server cluster.

There are two operations that affect the performance
of the avatar migration. One is the re-computation of AOI
when the avatar is moved to a new position and the other
is the status update when the avatar stays in the border.
Specifically, the later operation is decided by Eq.(1) and
Eq.(2) and the efficiency of these two equations is
affected by the number of avatars per cell. Hence, our
study of the avatar migration efficiency is to trace the
locomotion of a specific avatar when it is navigating
from one server into another, as shown in Figure 9. By
varying the number of avatars within a cell and
evaluating the computation time that the server cluster
spends on each step, this experiment aims to verify the
efficiency of the presented avatar migration mechanism.

Figure 9. The scenario of the conducted experiment

In order to reduce the complexity of the simulated
scenario, the experiment is based upon the following
assumptions.
1. The interaction in the simulated scenario is simplified.

We only consider the navigation efficiency when an
avatar performs migration. The interaction between the
avatar and the environment is not an issue here.

2. Only the avatar that is traced to collect data is allowed

to travel from one cell into another. All of the other
avatars are confined to perform status update in the
cell where they are located. The reason of this
restriction is to maintain the population of avatars in
each cell as well as in the border. In addition, with the
help of this assumption, the accuracy of the
experimental data will not be diminished due to the
variation of the avatar number.

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

3. Both the server cluster and the client are located in a
same local area network. Since the communication
latency between the client and the server is not
considered in our experiment, this setting will reduce
the inaccuracy of the experimental data caused by the
network.

4. The size of data packet for the status update between
the client and the server is 80 bytes. This data packet
contains a data header and the positional information
of an avatar.

5. The size of data packet transmitted between the master
server and a slave server is 20 bytes. This sizing of the
data packet includes the cell index and all other
information for a slave server to notify the master
server and, consequently, the master server to locate a
chained slave server.

6. The size of the data packet communicated between
two chained slave servers is 36 bytes.
The hardware setup of the experiment on the server

site includes one Intel Pentium III 933 with 256MB
memory as the master server and two Intel Pentium III
866 with 256 MB memory to be the slave servers. All of
these three servers run on Red Hat Linux 7.2. The result
of the experiment is shown in Figure 10.

Figure 10. The time chart for the avatar migration

Figure 10 displays the time chart when an avatar
locomotes from cell Sj+1 in server m to cell Sj+8 in server
n. Compared to the normal situation, the server cluster
spends extra process time when an avatar is in a borer
cell Sj+5. That is, the processing time on cell Sj+5 is more
than on any other cells. This overhead is induced by the
coordination between the master server and the slave
server and the message communication between two
slave servers. Referring to Figure 8, this overhead is the
processing time that the slave server m copies the
information of Proxy object a to its Shadow object á
through dotted line 5. Furthermore, the peak time
between cell Sj+4 and Sj+5 is the time for the server cluster
on Figure 8 to execute the protocol illustrated by dotted
lines 2, 3, 4 and 5. Notice that, this processing time also
includes the time required for the slave sever n to create a
Shadow object.

To further explore the efficiency of the protocol for
the avatar migration mechanism, another experiment is

conducted. This further experiment omits the status
update functions, i.e. Eq.(1) and Eq.(2), when we perform
the avatar migration. That is, the AOI update and the
avatar migration mechanism are the two major issues
considered during the experiment. The result of this
experiment is shown in Figure 11.

Figure 11. The time chart for AOI update on each cell with

respect to different number of avatars

Figure 11 exhibits a high peak of processing time
when an avatar enters the border cell Sj+5 from cell Sj+4.
As illustrated in Figure 8, except for re-computing its
AOI when an avatar enters a border cell, a data channel is
established by the protocol of dotted lines 2, 3, 4 and 5.
Furthermore, two extra procedures are performed in the
chained slave server, which is to create a Shadow object
and to wait for connection from the client as illustrated
by dotted lines 6 and 7 in Figure 8. However, the times
for dotted lines 6 and 7 are not counted in our experiment
since they rely heavily on the availability of the Internet
that contain many uncontrollable factors. All of these
operations cause overhead to the server cluster. This
overhead ranges from 1.6 times, when AOI contains 98
avatars, to 6 times, when AOI contains 0 avatar, of the
non-border cell’s AOI update. This overhead becomes
insignificant as the number of avatars within an AOI
increases.

From the above experiments, we know that the avatar
migration produces overhead when an avatar enters the
border. By discarding the time for AOI update, this
overhead is 550µs when AOI contains 0 avatar and it is
increased to 650µs when AOI contains 98 avatars. This
overhead includes the transmission time of FM. The
study of the performance of FM[12] on different sizes of
data packet. We learn that FM requires 60µs to transmit a
36 bytes of data. That is, the communication overhead to
complete the steps of dotted lines 2, 3 and 4 in Figure 8 is
180µs. Since it requires 70µs to transmit 80 bytes of data
through the step of dotted line 5 in Figure 8, we can
conclude that, when an avatar enters the border, the
protocol overhead is 260µs. This overhead is negligible
when the networking environment between the client and
the server cluster is Internet.

6. Conclusion and future works

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

This paper defines the issue of the avatar migration
problem on the server cluster-based Networked Virtual
Environment which employs the spatial
Area-Of-Interest(AOI) technique. The interest
management method along with the spatial AOI
technique is a conventional approach for the networked
virtual environment to increase the number of
simultaneous participants without exceeding the
supporting network bandwidth. This approach requires
the entire virtual world to be regularly partitioned into
cells of fixed size and shape beforehand. Each server of
the server cluster manages only a set of adjacent cells that
constitute a region of the virtual world. The interest
management is then computed on each server by
estimating the number of cells that compose the AOI of
an avatar to perform message filtering. In this way, the
computation load on each server is alleviated and the
network bandwidth requirement is reduced.

However, when the avatar migrates from one server
into another, the client site will perceive abrupt scene
change due to different content on each server. This issue
can be solved in two ways. First, how does the server
cluster promptly transfer the avatar information from one
server to another without delaying the message
transmitting to the client site? Secondly, how can we
avoid an abrupt scene change on the client site display
when the avatar is performing the migration? This paper
proposes a mechanism to solve this problem and the
experiments successfully certify the efficiency of the
presented avatar migration mechanism. Our experiments
show that, although the avatar migration mechanism will
induce communication overhead when the server cluster
manages the message forwarding operation, the overhead
is insignificant with the increase of avatars on the border.
Our experimental result also suggests that this overhead
can be further reduced by improving the performance of
FM for the server cluster.

A further study of the avatar migration mechanism is
to integrate this technique with the load balance and fault
tolerance capabilities for the server cluster. The load
balance capability on the server cluster is to research a
method to balance the workload on each server. The
workload for the server cluster of NVE is to process the
status message of avatars. Hence, the avatar migration
mechanism can be adopted to migrate avatar(s) from an
overloaded server to increase the overall performance of
the server cluster. However, this approach will create
another research topic on the spatial AOI technique,
which is the dynamical partition of the virtual world. The
dynamically partitioning method allows each server of
the server cluster to manage a different size of region in
the same virtual world. The size of the managed region
depends upon the number of avatars within that region.
This capability can greatly enhance the scalability of
NVE. Similarly, the fault tolerance capability of the

server cluster involves the issue of migrating avatars to
another server when a fault is detected. The avatar
migration is the tool to migrate the avatar when a fatal
fault of its server is detected.

7. References

[1] S. Singhal and M. Zyda, Networked Virtual Environment –
Design and Implementation, Addison-Wesley Pub Co.,
MA, USA, (1999), pp.181-248.

[2] C. Greenhalgh and S. Benford, "Massive, A Collaborative
Virtual Environment for Teleconference", ACM Trans. on
Computer Human Interfaces(TOCHI), Vol. 2, No. 3,
September 1995, pp.239-261.

[3] M.R. Macedonia, M.J. Zyda, D.R. Prat, D.P. Brutzman, and
P.T. Barham, “Exploring Reality with Multicast Groups: A
Network Architecture for Large-scale Virtual
Environments”, Proc. 1995 IEEE Virtual Reality Annual
International Synposium(VRAIS95), North Carolina,
March 1995, pp.2-10.

[4] J. W. Barrus, R. C. Waters, and D. B. Anderson, “Locales
and Beacons: Supporting Large Multiuser Virtual
Environments”, IEEE Computer Grapics and Applications,
November 1996, Vol. 16, No. 6, pp.50-57.

[5] S. K. Singhal and D. R. Cheriton, “Using Projection
Aggregations to Support Scalability in Distributed
Simulation”, IEEE Proc. of International Conference on
Distributed Computing Systems, May 1996, pp.196-207.

[6] Y.J. Cheng, “Study and Design of the Spatial Culling
Technique for the Multiple Participants Virtual
Environment”, Master thesis, Institue of CS&IE, Tamkang
University, June 1998.

[7] Dejan S. Milojičić, et al., “Process migration”, ACM
Computing Surveys, Vol. 32, Issue 3, September 2000, pp.
241-299.

[8] J.Y. Huang, Y.C. Du, and C.M. Wang, “Design of the
Server Cluster for the Scalable Networked Virtual
Environment”, 2001 National Computer Symposium,
Taipei Taiwan, December 2001.

[9] J.Y. Huang, Y.C. Du and L. Hui, “The Avatar Migration
Mechanism for the Large Scale of Networked Virtual
Environment”, Submitted to ACM TOMACS, July 2002.

[10] “IEEE Standard for Modeling and Simulation (M&S), High
Level Architecture (HLA) - Federate Interface
Specification”, IEEE Std 1516.1-2000, 2001.

[11] “Chapter 2. RTI Synopsis”, RTI 1.3-Next Generation
Programmer's Guide Version 4, June 2001. Available at
https://sdc.dmso.mil/

[12] Y.C. Du, “Study of the Avatar Migration Problem for
Networked Virtual Environment”, Master Thesis,
Department of CS&IE, Tamkang University, June 2002.

[13] The Message Passing Interface (MPI) standard,
http://www-unix.mcs.anl.gov/mpi/

[14] Fast Messages (FM),
http://www-csag.ucsd.edu/projects/comm/fm.html

[15] FDK - Federated Simulations Development Kit,
http://www.cc.gatech.edu/computing/pads/fdk.html

[16] D. J. VanHook and J. O. Calvin, “Data Distribution
Management in RTI 1.3”, Simulation Interoperability
Workshop, Spring 1998, paper no. 206. Also available at
http://dss.ll.mit.edu/dss.web/98S-SIW-206.html

Proceedings of the IEEE Virtual Reality 2003 (VR’03)
1087-8270/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

