
A Cost-effective Approach for Developing
Application-control GUIs for Virtual Environments

Carlos Andujar∗ Marta Fairén† Ferran Argelaguet‡

Modeling, Visualization, Interaction and Virtual Reality Group
Universitat Politècnica de Catalunya

ABSTRACT

In this paper we present a new approach for fast development of
application-control User Interfaces (UIs) for Virtual Environments
(VEs). Our approach allows developers to build sophisticated UIs
containing both simple widgets (such as windows, buttons, menus
and sliders) and advanced widgets (such as hierarchical views and
web browsers) with minimum effort. Rather than providing a new
API for defining and managing the interface components, we pro-
pose to extend current 2D toolkits such as Qt so that its full range of
widgets can be displayed and manipulated either as 2D shapes on
the desktop or as textured 3D objects within the virtual world. This
approach allows 3D UI developers to take advantage of the increas-
ing number of components, layout managers and graphical design
tools provided by 2D UI toolkits. Resulting programs can run on
platforms ranging from fully immersive systems to generic desk-
top workstations with little or no modification. The design of the
system and the key features required on the host UI toolkit are pre-
sented and discussed. A prototype system has been implemented
above Qt and evaluated on a 4-sided CAVE. The results indicate
that this approach provides an efficient and cost-effective way for
porting and developing application-control GUIs on VEs and thus
it can greatly enhance the possibilities of many VE applications.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimension
Graphics and Realism—Virtual Reality; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Interaction Techniques

Keywords: virtual environment, interaction techniques, graphical
user interfaces, 3D window manager

1 INTRODUCTION

Users of modern computer applications have become intimately fa-
miliar with a specific set of UI components, including input devices
such as the mouse and keyboard, output devices such as the moni-
tor, interaction techniques such as drag-and-drop, interface widgets
such as pop-up menus and interface metaphors such as the desktop
metaphor [5]. Some of these interface components are appropriate
for virtual environment applications but require some kind of adap-
tation. For example, interface widgets must be accommodated so
that they can be perceived correctly within a 3D world displayed
on a stereoscopic device. On the other hand, specific characteristics
of VEs make some interface components completely inappropriate.
For example, a CAVE user may be moving constantly inside the
CAVE, making the use of mice and physical keyboards impractical.

The specific characteristics of VEs has led to substantial research
on designing, implementing and evaluating new user interface com-

∗e-mail: andujar@lsi.upc.edu
†e-mail: mfairen@lsi.upc.edu
‡e-mail:fargelag@iri.upc.edu

ponents and on adapting or extending existing components to 3D
applications.

User-interaction tasks on a VE are often divided into four cate-
gories: navigation, selection, manipulation and application control
[2]. In this paper we will focus on application control tasks. Appli-
cation control refers to the user task of issuing commands to request
the system to accomplish a particular function or change its internal
state [2]. In 2D UI, application control is often performed using a
graphical user interface (GUI) following a WIMP (Windows, Icons,
Menus and Pointers) metaphor. For immersive VE applications, a
number of interaction techniques have been proposed ranging from
voice recognition to gesture-based interaction through specialized
physical devices. However, graphical menus and visual tools are
still the prevalent technique for application control in VE.

Despite the broad diversity of system control techniques for 3D
UIs, only a limited amount of attention has been paid to the devel-
opment of standard APIs and re-usable software components allow-
ing for 3D UI development in a cost-effective manner.

Several approaches for incorporating GUIs in virtual environ-
ments have been proposed. Two different approaches can be ob-
served:

• GUI outside the virtual world: a 2D GUI is displayed and
operated in a separate device.

• GUI inside the virtual world: a GUI is displayed in 3D space
as a virtual object.

Some VE applications follow the GUI-outside approach. These
applications have their user interface split into two parts. Some of
the functionality is accessible through a 3D user interface (usually
navigation and manipulation tasks) and the rest can only be con-
trolled through a conventional GUI running on a console outside
the VE. This approach simplifies UI development but presents ob-
vious usability problems. Solutions using handheld computers [38]
and specialized hardware follow a similar approach.

On the other hand, placing GUI components inside the virtual
world offers much more possibilities and interaction styles, and thus
this is often the most suitable option. Developers willing to put a
3D GUI inside a VE application are faced with two options. They
could implement the full functionality of the 3D GUI inside the
application (a non cost-effective approach) or they could adopt any
of the few available APIs for 3D GUI creation [21, 29, 15]. Specific
APIs for handling 3D interaction in VE are undoubtly a reasonable
solution but in their current state of development they present some
limitations:

• Specific APIs for 3D widget creation force developers to learn
a new API. The lack of standard APIs and mature, well-
established implementations make this problem worse. One
of the few standardization efforts is UsiXML (USer Interface
eXtensible Markup Language) [24], a language for describ-
ing interactive applications with different types of interaction
techniques. Although some promising tools exist for auto-
matic generation of VRML97 or Extensible 3D (X3D) GUIs

45

IEEE Symposium on 3D User Interfaces 2006
March 25 - 26, Alexandria, Virginia, USA
1-4244-0225-5/06/$20.00 ©2006 IEEE

Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

from UsiXML specifications [25, 26], these tools are still in
an early stage of development.

• Most 3D widget libraries implement the functionality of each
user interface component (widget), including drawing and
handling. As a consequence, readily available 3D toolk-
its offer a limited set of widgets and make it difficult to
plug-in third-party components (e.g. media players and web
browsers).

• A commonly accepted opinion is that GUI interfaces should
be optimized for each platform. For example, a desktop in-
terface using 2D interaction for system control is certainly
appropriate for a desktop system whereas an immersive,
stereoscopic-compatible interface should be used in an im-
mersive system. Most widget libraries for VEs target only
the second kind of platforms and thus two or more different
versions of the applications are often required.

These problems suggest that traditional 3D UI tools are not al-
ways appropriate for fast development of complex UIs and partic-
ularly for fast migration of existing desktop-based 3D applications
to immersive VEs. For example, an existing desktop-based 3D ap-
plication can be modified to display its contents on a stereoscopic
workbench with minor effort, but the migration of its GUI can be a
much more difficult task.

Some authors have proposed the immersion of 2D applications
into 3D worlds to make them available to VE and Augmented Re-
ality (AR) applications. The basic idea is to project 2D image con-
tent onto texture-mapped planes on the 3D world, and to let the
users interact with them through VR input devices such as gloves
and tracking systems. Current systems for launching and/or shar-
ing existing 2D applications into VE and 3D window managers are
good examples of this technique. Although application-sharing sys-
tems and 3D workspaces can be used to access 2D GUIs within
VEs, they suffer from some performance and flexibility limitations
mainly because they are built upon framebuffer-oriented protocols
such as VNC [30].

In this paper we explore a new approach for fast development
of 3D GUIs, dubbed get3d (GUI extension toolkit). Rather than
providing a new API for defining and managing application-control
widgets, we propose to add new features to current extensible toolk-
its such as Qt so that its full range of 2D widgets (and even user-
defined true 3D widgets) can be displayed and manipulated either
as 2D shapes on the desktop or as textured 3D objects within the
virtual world. We call host toolkit the 2D extensible toolkit whose
widgets are accommodated to VE applications.

The basic idea is to extend the host toolkit so that widgets are not
rendered directly to the framebuffer but to a virtual buffer which is
then converted into a texture and drawn using an OpenGL texture-
mapped rectangle. User actions captured by generic input devices
such as wands and tracking devices are mapped into low-level
mouse and keyboard events that are then sent to the host toolkit
for processing.

Our approach allows 3D UI developers to take advantage of the
increasing number of widgets, layout managers and graphical de-
sign tools provided by 2D UI toolkits. Resulting programs can run
on platforms ranging from fully immersive systems such as CAVEs
to generic desktop workstations with minor or no modifications.

The main contributions of this paper are:

• A new approach for fast, almost transparent accommodation
of 2D GUIs to VEs.

• An analysis of the main requirements of a conventional 2D
GUI toolkit to be extended to VEs.

• A discussion of the design of a Qt-based prototype implemen-
tation.

• An evaluation of the performance and usability of the system
under different interaction techniques.

The rest of the paper is organized as follows. Section 2 reviews
related work on interaction techniques for system control and pre-
vious approaches for immersing 2D applications into 3D worlds.
Section 3 describes the architecture of get3d. Some implementa-
tion issues concerning our Qt-based implementation are described
in Section 4. We present performance and usability results on Sec-
tion 5, and provide concluding remarks in Section 6.

2 RELATED WORK

2.1 Interaction techniques for system control

Beside graphical menus, a number of interaction techniques
have been proposed for accomplishing application control tasks
within immersive VE applications. These interaction techniques
range from voice-recognition [27] to gesture-based interaction [18]
through specialized physical devices such as Tangible User Inter-
faces [17]. However, graphical menus and visual tools are still the
prevalent technique for application control in VE.

The simplest and most popular menus are 2D widgets adapted to
3D space. These widgets are simple adaptations of their 2D coun-
terparts and basically work in the same way as they do on the desk-
top. Ring menus [23] rely on the fact that menu selection is essen-
tially a 1-DOF operation. These menus have their items arranged
into a circular object; users can select the desired item by using their
hand. When the number of menu items is reduced, VR gloves can
be used to perform menu selection by attaching each menu item
to a different finger [3]. Typically, graphical menus are operated
through 2-DOF selection methods (such as ray-casting) for reduc-
ing the DOFs of the interaction and thus increasing user efficiency
and minimizing errors.

2.2 Software tools for 3D UI authoring

Software tools for 3D UI authoring can be broadly subdivided into
three categories: general frameworks for developing VE applica-
tions, specific modules for 3D UI development, and automatic gen-
eration tools from specifications.

A number of frameworks and APIs for developing device-
independent VE applications have been proposed. Some well
known examples are DIVERSE [19], VRCO’s CAVElib[41] and
Iowa State’s VR Juggler [1]. These tools put the emphasis on ab-
stracting common programming tasks on VE such as window cre-
ation, viewer-centered perspective calculations, stereoscopic view-
ing, displaying to multiple channels, cluster synchronization and
accessing VR hardware. However, only a few provide specific mod-
ules for 3D UI creation. VR-Juggler’s Tweek [15, 16] provide VE
users with an extensible Java GUI that communicates with VR ap-
plications through a combination of technologies. All communi-
cation between the Java GUI and the C++ VR application is man-
aged by CORBA, the Common Object Request Broker Architec-
ture. The VEWL (Virtual Environment Windowing Library) [21]
is an API providing a window manager that supports the use of
menus, windows, buttons and other widgets within an immersive
virtual environment. VEWL widgets use class names similar to
Qt, although the actual rendering is done using OpenGL. VEWL
provides device-independent input through DIVERSE [20]. The
it3d (Interactive Toolkit Library for 3D Applications) [29] provides
an input/output library for distributed devices, a 3D widget library
for multimodal interaction and a gesture-recognition library. De-
spite these valuable tools, there is a lack of standard APIs and well-
established tools for 3D UI development.

46
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

2.3 Immersing 2D applications into 3D worlds

A related and very active research topic is the immersion of 2D
applications into 3D space. We distinguish two basic categories
of tools: 3D window managers for desktop computers and tools for
accessing remote applications from within VE and AR applications.

Tools in the first category aim at providing 3D workspaces
designed for replacing 2D desktops [42, 32]. These tools rely
on mouse and keyboard interaction and are intended for non-
immersive display devices. A first example is MaW [22], a pro-
totypal 3D Window Manager. MaW allows the application to cre-
ate windows that are drawn in 3D space using OpenGL primitives.
SphereXP [42] is a 3D desktop system designed to be a replacement
for Microsoft’s Windows XP. Task Gallery [32] is a 3D prototype
user interface that expands the desktop into an entire office with an
unlimited number of desktops. The screen becomes a long gallery
with paintings on the walls that represent different tasks.

Tools on the second category aim at providing access to remote
applications from within VE and AR applications. Two different
approaches can be observed [6]. Hardware oriented approaches
provide access to external applications through additional display
devices such as PDAs and see-through-displays [38]. Software ori-
ented approaches project image content onto planes in 3D. This can
be further distinguished by the system component performing the
2D rendering (such as typesetting and linedrawing). The VE soft-
ware can manage directly the actual 2D drawing (using geometric
and text primitives) or it can access 2D display content generated
by external applications and display them as texture-mapped rec-
tangles.

Early work using application sharing in 3D environments is de-
scribed by Dykstra [12], where texture-mapped rectangles are used
to operate X applications on 3D virtual spaces. A similar approach
for immersing X window applications into a 3D scene is described
in [37]. This idea has been adopted and extended both in VE and
AR applications.

VNC (Virtual Network Computing) [30] is a remote display sys-
tem which allows viewing a computing desktop running elsewhere
on a network. VNC provides a distribution mechanism for desk-
tops on the lowest level by transmitting frame buffer contents to the
remote client and receiving keyboard and pointing device events,
inserting these into the server-side input queue. Each time a client
interacts with the shared application, the VNC server broadcasts
the image of the areas affected by updates on the remote inter-
face. VNC is the foundation of a number of systems providing
immersion of 2D applications into 3D space. VREng [8] is a dis-
tributed 3D application allowing navigation in virtual worlds con-
nected over the Internet. VNC is used to immerse 2D interfaces in
the 3D world. Soares et al [35] propose a VNC-based platform for
increasing the sense of collaboration among co-workers sharing any
standard single-user application. Sensing Surfaces [6] also follows
the approach of mapping the contents of a GUI desktop to arbitrary
textured geometry in the VE using VNC. ARWin [10] is an aug-
mented reality desktop environment that allows users to operate X
applications such as clocks within an augmented physical desktop.
A custom VNC client connects to a virtual VNC-enabled X server
and draws the window data to an OpenGL texture map which is
applied to a polygon in the workspace. The Three-Dimensional
Workspace Manager (3DWM) [13] is a software platform targeted
at both research and development of 3D GUIs. The toolkit contains
a basic set of 3D widgets such as buttons, text fields and sliders,
and it provides access to external applications through VNC. All
these approaches suffer from some performance and flexibility lim-
itations mainly because they are build upon a protocol providing
little control to the VE application over the properties and behavior
of GUI components.

3 SYSTEM DESCRIPTION

3.1 Overview

The basic components of get3d are depicted in Figure 1. The host
toolkit is a 2D GUI extensible toolkit (e.g. Qt) whose widgets are
accommodated to VE applications by an extension toolkit. A key
feature of our approach is that the additional features are provided
by subclassing the 2D toolkit. One of the consequences is that exist-
ing applications with 2D GUIs can be adapted to a VE environment
with minimum effort. All the application’s source code for GUI
creation and behaviour does not have to be modified.

Window System

(X-Window, MsWindows, Mac OS X)

3D Graphics

(OpenGL, Direct3D)

Host toolkit

(e.g. Qt)

Device I/O system

(VRPN)

VE Application

Extended toolkit

Figure 1: get3d overview

We now introduce some notation that will be used through-out
the paper. The word widget is used to refer to user interface ob-
jects such as windows, buttons and sliders that are used as the ba-
sic constituents of GUIs. A widget receives mouse, keyboard and
other events from the environment, and paints a representation of
itself on the output device. Widgets are arranged into a hierarchi-
cal structure. A widget that is not embedded in a parent widget is
called a top-level widget. Usually, top-level widgets are windows
with decoration (a frame and a title bar). Non-top-level widgets are
child widgets. We also distinguish between widget objects provided
by the host toolkit (called native widgets) and the objects that rep-
resent the widget as a texture-mapped rectangle in 3D space (called
virtual widgets).

Events of current 2D GUI toolkits can be roughly classified into
two categories. Application events refer to GUI-related, high-level
events such as show, hide, close, resize and paint events. Events
produced by simple user actions on input devices such as tracking
systems and wands will be referred to as user events. According
to the originating source, we also distinguish between native events
originating from the window system or the host toolkit, and syn-
thetic events initiated by the extension classes. For example, when
the user presses a button on a 3D wand with the aim of selecting a
menu item, a user event will be created and then translated into a
native, synthetic event (a mouse press event in this case) that will
be send to the native widget representing the menu item.

3.2 System components

The core of the extension toolkit consists of the components de-
picted in Figure 2. The main responsibilities of each component
are described below.

Application 3D provides a unified interface to the VE applica-
tion, delegating client requests to appropriate subcomponents. This
is the only component the application has to collaborate with, thus

47
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

+createWindow()
+destroyWindow()
+updateTexture()
+drawGUI()

Virtual Window Manager

+start()
+stop()
+drawGUI()
+setMatrices()

Application 3D

+eventFilter()
Window Listener

+show()
+hide()
+draw()
+sendSynthEvent()

Virtual Window

Native Widget

+drawDecoration()
Window Decorator

+drawDecoration()
WindowDecorator1

+drawDecoration()
WindowDecorator2

Extension toolkit

Native toolkit

+getDeviceData()
Device I/O system

+keyPress()
+keyRelease()

Keyboard

+keyPress()
+keyRelease()

Keyboard1
+keyPress()
+keyRelease()

Keyboard2

Figure 2: Conceptual design of the extension toolkit using UML notation. Only the most relevant components and operations are shown.

making the toolkit easier to use. This component monitorizes the
creation of new native widgets by the application and asks the Vir-
tual Window Manager (see below) to create a new virtual window
everytime the application instantiates a new top-level widget. Ap-
plication 3D manages the drawing of the GUI windows in 3D space
as texture-mapped objects (forwarding the request to other compo-
nents) and configuration options.

The Virtual Window Manager manages the behavior of virtual
windows associated with top-level native widgets. This compo-
nent handles basic window operations such as creation, destruction,
and show, hide and resize operations. This component also man-
ages user events. This includes getting VR device data through the
Device I/O System, managing interaction with the virtual window
decoration through a decorator subclass, and translating user events
into synthetic events that will be sent to the appropriate virtual win-
dow.

The Virtual Window keeps attributes concerning the 3D version
of a top-level native widget such as rectangle size, texture size and
transformation matrix. This component checks for intersection be-
tween the virtual window’s plane and a selection primitive (e.g. a
ray). In response to user events, Virtual Window objects send syn-
thetic mouse events (to the child widget at a given 2D position) and
keyboard events (to the child widget having the keyboard focus).

The Event Listener acts basically as an application-event filter.
This component monitorizes the application events related with a
widget’s life cycle: show, hide, close and resize events originated
from within the application. It also monitorizes changes on the
image content of any visible widget and asks the virtual window
manager to update the texture rectangle of the virtual window con-
taining the native widget.

The rest of the components have simple responsibilities. The Vir-
tual Keyboard defines an interface for a virtual keyboard that sends
synthetic keyboard events to the application in response to user ac-
tions. The Window Decorator defines an interface for drawing the
decoration of a virtual window. Decoration includes the frame, and

buttons to iconify, deiconify and close the virtual window. Finally,
the Device I/O system is used to read data from an extensible set of
generic input devices.

3.3 Widget creation and placement

Each time a native window is created the Event Listener receives a
notification. If the widget is top-level, a virtual window is created
along with a texture map capturing the contents of the widget’s area.
A rectangular portion of this texture will be updated everytime a
child widget changes its appearance.

An important issue is the initial window placement inside the
3D world. The placement strongly influences the user’s ability and
accuracy. A situation which arises in the use of multiple windows
is the need to constantly arrange windows to get access to the par-
ticular window which houses the task or information needed at a
given instant (window thrashing) [22]. According to the spatial ref-
erence, we can consider windows that are world-referenced, object-
referenced, head-referenced and device-referenced [5, 14]. Head-
referenced menus provide an appropriate spatial reference frame
as they take the most of the user’s proprioceptive sense, allowing
users to accomplish some application control tasks without having
to look at the menu. Since the extension toolkit knows everything
about the widget hierarchy, any of these strategies can be plugged
in. In the CAVE usability tests described in Section 5 we used
device-referenced windows, i.e. windows remain in a fixed posi-
tion (initially facing the user) with respect to the CAVE, unless the
user moves them.

3.4 Input handling

User events such as hand movements are captured by the Device I/O
Module and converted into synthetic events that are sent to native
widgets. We will describe the main steps involved in this process
with a concrete example. Suppose a CAVE user wearing a virtual
wand (the wand has a six-DOF sensor, a two-DOF joystick and

48
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

three buttons). Each time the user presses the left button a new user
event is generated. This event contains a ray and a button state as
parameters. This event is forwarded to the Virtual Window Man-
ager which searches for the nearest virtual window containing the
ray intersection. Finally, the intersected virtual window creates a
synthetic event (a mouse event) and posts it to the native widget.

The main advantage of this solution is that the management of
the GUI elements and their behavior is delegated completely to the
host toolkit, thus simplifying the migration of existing GUIs. More-
over, this approach allows the system to provide several interac-
tion techniques for object selection such as ray-casting and arm-
extension.

3.5 Collaboration

An additional benefit of get3d is that it can be easily extended to
support remote collaboration. The collaborative architecture pre-
sented in [36] can be used to allow remote users to share the same
virtual environment and interface.

Regarding the interface sharing, users can decide if they want
to make their virtual windows visible and/or accessible to other re-
mote users connected to the same session. Each time a GUI-related
event is initiated on a virtual window visible to other remote users,
a synthetic event will be generated and broadcasted to the remote
users connected to the virtual session. If the windows are also us-
able by remote users, the broker [36] will be the responsible of
maintaining a list of blocked windows, so when a user operates on
a certain window that is not already blocked by another user, the
broker will block it and post the event asked by the user. The win-
dow will be unblocked after all the event’s effects end. In case the
window is blocked by another user, the action is not executed and
the originating user is notified about this.

3.6 Toolkit requirements

We now summarize the main features required for an extensible 2D
GUI toolkit to be used as a host toolkit for the 3D extension:

• A hook to monitorize the creation and destruction of top-level
widgets. In addition to this, the toolkit has to provide a mech-
anism to intercept widget-related events such as paint, show,
hide, close and resize. For example, if a widget is repainted in
response to a paint event, the application has to intercept the
event to know that the associated texture requires an update.
This feature is required by the Event Listener component.

• An operation to send a synthetic event (keyboard/mouse) to
any widget (required by the Virtual Window component).

• A function to capture the image of a native widget into a
bitmap. The image will be used to update the texture of the
virtual window containing the widget (required by the Event
Listener). If this function is supported also on widgets hidden
by other windows, the native GUI can share the desktop space
with the OpenGL window where the VE application renders
the virtual world.

• Functions to traverse the widget hierarchy (access to parent
and children widgets) and operations to obtain the visible
child widget at a given pixel position.

4 IMPLEMENTATION

4.1 Qt-based implementation

We have implemented a prototype version of get3d over
Qt [40], a cross-platform GUI development toolkit (see

Figure 3). The source code can be downloaded from
http://www.lsi.upc.edu/~virtual/Qt3D.

Figure 3: User interacting with the test application

Qt fulfills all the requirements listed in the previous section. Cre-
ation of top-level widget can be monitorized by overriding QAppli-
cation’s virtual function polish(). This function is called by every
Qt widget before it is first shown. Some 2D GUI toolkits provide an
equivalent function for doing style-based central customization of
widgets. Application events can be intercepted through QObject’s
installEventFilter(). The filter can either stop the event or forward it
to other objects. Moreover, Qt allows multiple event filters to be in-
stalled on a single object, thus avoiding conflicts with application-
defined event filters. Synthetic events (including predefined and
user-defined events) can be sent to any object through QApplica-
tion’s postEvent() and sendEvent() methods. The former adds a
synthetic event to the event queue with a given object as the receiver
of the event; the later sends the event directly to the object. The
QPixmap class provides two methods to grab the contents of a wid-
get: grabWindow() grabs pixels directly from the screen, whereas
grabWidget() asks the widget to paint itself by calling paintEvent()
with output redirected to a bitmap. Although a bit slower, the later
is more suitable because it works with hidden widgets. Finally, the
toolkit provides operations for traversing the object hierarchy and
for returning the visible child widget at a given pixel position in the
widget’s own coordinate system.

A concrete example of collaboration is shown in Figure 4. When
a widget detects that it should repaint itself, it sends an event to
the QApplication indicating which part of the widget should be re-
painted (1). When appropriate, QApplication tells the widget it has
to be painted (2). This event is captured by the event filter (3) and
produces a grab widget call to the QPixmap object (4), which sends
a repaint command to the QWidget (5). Finally, the window listener
asks the virtual window manager to update the texture (6).

4.2 Prototype details

Our current implementation only supports ray-casting selection. In-
put devices are handled either through a VRPN (Virtual Reality Pe-
ripheral Network) client [39] or through custom events that must
be sent by the VE application to the extension toolkit. We use a
magnetic tracking system and a virtual wand. The associations for
wand buttons is similar to [21].

The prototype has been tested with two different applications:
a scene viewer specialized for shipbuilding design and a volume
rendering application. Both applications had a Qt-based GUI and
were extended to display stereoscopic images on either a CAVE or
a stereo workbench.

The source code modifications required to accommodate the
GUI to the CAVE were minimum. The main changes are sum-
marized in the code below. Including minor changes, less that 100
lines of source code were modified.

49
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

Qt Classes Extension toolkit

QApplication

QWidget

QPixmap

Window Listener

Virtual Window
Manager

1:sendEvent 2:paintEvent

3:eventFilter

6:updateTexture

4:grabWidget

5:repaint

Figure 4: Collaboration for processing a paint event.

void main()

{

// The VE application simply creates an instance of

// QApplication3D instead of usual QApplication.

QApplication3D qApp3d(argc,argv);

qApp3d.setGLWidget(w); // OpenGL window

qApp3d.start(); // activates the extension toolkit

...

}

void paintGL()

{

// setup modelview and projection matrices

qApp3d.drawGUI();

...

}

5 RESULTS

5.1 Usability Evaluation

We conducted an informal usability evaluation to measure the per-
formance and effectiveness of the system. Seventeen external and
internal users in the age range of 24 to 58 participated in the study.
All participants had desktop PC experience; only two subjects had
hands-on experience with the CAVE. Before the evaluation began
we gave a demonstration of how the wand works and described the
functionality of each button. Subjects used the interface to open,
move and close windows for about 2-3 minutes to allow them to
get used to the CAVE and overcome the initial learning curve asso-
ciated with using the wand. After this exploratory phase, subjects
were ready to begin a more focused task-based evaluation. It is
worth mentioning the GUI design of the VE test application has
been maintained from the original application; the only change has
been the replacement of the menu bar by a floating window menu.
Of course, better results could have been obtained by adapting the
GUI to the target system (e.g. using larger buttons) but the com-
parison with the 2D version of the system would have been more
difficult. Therefore, we decided to preserve the original GUI and
thus evaluate the effectiveness of our approach for fast migration of
existing applications to the CAVE.

5.1.1 Evaluation test

The evaluation exercise each user performed consisted on three
phases, repeating on each phase the same group of tasks over differ-
ent platforms with different input devices. In the first phase subjects
used a desktop PC with a classic mouse as input device. In the sec-
ond phase subjects used a notebook PC with the touchpad as input
device. In the third phase subjects used a 4-wall CAVE system with
a wand as input device. We designed this evaluation test in order
to have comparable results (in terms of time to complete each task)
that allow us to fairly evaluate the operative effectiveness of the
interaction.

5.1.2 Tasks

The first task the subject had to perform consisted in opening a
new model. The task involved interaction with several menus and
a file browser dialog. The second task consisted in adjusting some
rendering parameters such as the background color. The task in-
volved using checkboxes, sliders and buttons on several windows.
Users were instructed to get slider values as close to the target value
as possible (we accepted a 4% error). The third task consisted in
changing the navigation mode, which involved interaction with but-
tons and combo boxes on several windows.

On the CAVE, the tasks were performed by each user four times,
one for each of the combinations of the following variations:

• Using a straight line for the ray vs. a curved ray snapped to
the nearest item (adapted from [9]).

• Positioning the virtual windows several meters away from the
user vs. only 1.5 meters away, preserving in both cases the
projected area over the screen.

5.1.3 Experimental results

The results of these tests are reflected in Tables 1 and 2.

PC-mouse PC-touchpad CAVE-wand
Task 1: x 9.68 16.29 12.81

σ 2.26 4.14 2.96

Task 2: x 16.12 27.20 21.24

σ 3.72 6.59 4.96

Task 3: x 6.34 10.99 8.50

σ 1.49 2.91 2.12

Table 1: Times (seconds) users spent to perform the different tasks
on the different platforms.

Table 1 shows the time spent by the users on each task (mean
and standard deviation) in the different platforms. For the CAVE
test we show the best of the four different tests (Table 2). Although
the best times are achieved over the PC system with a classic mouse,
the time spent by the users in the CAVE system with the wand is
lower than the time spent in a notebook with a touchpad. This result
shows that the proposed 3D interface is at least as much effective
as a very common input device.

Table 2 shows the results on the CAVE system. We can see in this
table that the use of a curved ray helps the user on his task (times
are lower even if the windows are far). The best case for all three
tasks is the use of a curved ray with the widgets close to the user.
This is because interaction with nearby windows is less sensitive to
hand orientation changes.

50
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

Near Far
Straight line x σ x σ
Task 1 14.49 4.36 15.71 4.43

Task 2 24.15 7.26 26.18 7.17

Task 3 9.66 2.91 10.47 2.76

Curve x σ x σ
Task 1 12.81 2.96 14.22 4.04

Task 2 21.24 4.96 23.70 6.74

Task 3 8.5 2.12 9.48 2.70

Table 2: Times of each task in the CAVE platform by using straight
line or curved ray and widgets near or far from the user.

5.1.4 Survey

After using the interface, subjects completed a small survey that
asked them to compare the Qt-based interface with similar desk-
top interfaces that they are familiar with. They rated the ease of
using the menus, closing a window, selecting a button, moving a
window and pointing the mouse. Questions used a 7-point Likert
scale, where 1 mean “near impossible” and 7 mean “as easy as a
desktop computer”. We also asked subjects about what they found
most difficult and what was the easiest for them.

The results were very similar from all users. All of them agreed
on having no problems on selecting buttons, moving or closing win-
dows. When asked, most of the subjects said that these tasks were
what they found to be the easiest and this is mirrored in their aver-
age usability rating of 6.4. The most difficult task was to achieve a
certain value on the sliders, because the free movement of the wand
on their hand makes difficult to maintain the value when the finger
is moved to release the button. This task got an average usability
rating of 2.5 from the subjects. Because of the same problem, the
average rating of using the popup menus was 4.9, which suggests
that, while they were not as easy to use as their desktop counter-
parts, they were still quite usable.

5.2 Performance

We have conducted a simple experiment to evaluate the overhead
involved in the immersion of the 3D GUI. This overhead is due ba-
sically to the event filter, the widget grabbing, the texture update
and the rendering of the texture-mapped rectangle. We run the tests
on Pentium IV PCs at 2.8 GHz with 1GB of RAM equipped with
128 MB Nvidia GeForce FX 5200 cards. We compared the frames-
per-second at several stages of the interaction with the extension
toolkit enabled and disabled. In both cases the VE application was
rendering a 50.000 polygons scene. On the CAVE we got a con-
stant 60 fps, due to the framelock and vertical sync required by
active stereo glasses. On a passive stereo workbench we disabled
the vertical syncronization. The application run at 175 fps with-
out 3D GUI. With 3D GUI enabled, the average performance was
150 fps, increased to 175 fps when virtual windows were shown
minimized. The maximum overhead was produced when several
windows covered the whole viewport, achieving 128 fps. These re-
sults show that overhead of the system is small enough to provide
smooth interaction and feedback.

5.3 Discussion

Our approach has several advantages over previously-reported sys-
tems. Applications adopting this approach can provide an interface
optimized for each platform (e.g. a desktop interface can be used
on a desktop system, and an immersive interface can be used in an
immersive system, without needing to modify the application.

Moreover, importing 2D interfaces into the VE has some consid-
erable advantages:

• Transparent use of all the functionality provided by the host
toolkit, enabling the use of a large number of widgets.

• Delegation of functional interface handling to an independent
component.

• Users can work with familiar user interfaces.

• Accommodation of different 3D selection techniques (such as
ray-casting).

From the point of view of software development, some of the
advantages of our approach are:

• An important part of the UI can be developed and tested in a
desktop workstation.

• Access to UI graphical design tools (e.g. QtDesigner).

• Fast porting of existing applications to VEs with minimum
changes.

• Transparent support to cluster-based systems and collabora-
tion.

Our approach has several advantages over VNC-based methods
for immersing 2D GUIs. get3d is not framebuffer-oriented but
widget-oriented. That implies that the VE application knows every-
thing about the immersed GUI, not only framebuffer updates. That
allows for much more flexibility for placing and sizing the widgets:
host widgets can be automatically resized so that width and height
are appropriate for fast texture conversion (power of two), widgets
can be independently resized and moved from within the VE ap-
plication, pop-up menus and pop-up lists can be true pop-up com-
ponents, i.e. they can be drawn at a certain offset from the parent
widget; the look-and-feel is completely customizable from within
the VE application. Moreover, get3d does not have any network nor
image encoding overhead. For example, when running on a cluster,
texture updates are not broadcasted to all clients because the native
widgets and the virtual windows are local to each process.

6 CONCLUDING REMARKS AND FUTURE WORK

The development of 3D UIs for VE applications has many chal-
lenges, including the lack of standardization, the multiple hardware
platforms, and the lack of reusable 3D user interface toolkits. In
this paper a simple-to-implement system to accommodate GUIs to
VE systems have been presented and evaluated. Our approach pro-
vides a fast and cost-effective way of developing new GUIs and
porting existing GUIs to VE systems. Of course get3d is not aimed
at replacing true 3D widgets, but rather to simplify the GUI devel-
opment. The results of our work done so far indicate that the seam-
less integration of conventional GUIs with VE can greatly enhance
the possibilities of many VE applications. We plan to use get3d to
migrate existing 3D applications to the CAVE. We plan also to im-
plement automatic accommodation to different screen resolutions
by modifying the widget’s layout and size (specially text font size).

7 ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish Ministry of
Science and Technology under grant TIN2004-08065-C02-01.

51
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Bierbaum, C. Just, C. Hartling, K. Meinert, A. Baker, and Carolina

Cruz-Neira. VR Juggler: A virtual platform for virtual reality applica-

tion development. In IEEE VR’2001, Yokohama, Japan, March 2001.

[2] D. Bowman, E. Kruijff, J. LaViola, and I. Poupyrev. An introduc-

tion to 3D user interface design. Presence: Teleoperators and Virtual
Environments, 10(1):96–108, 2001.

[3] D. Bowman and C. Wingrave. Design and evaluation of menu systems

for immersive virtual environments. In Proc. of IEEE Virtual Reality,

pages 149–156, Yokohama, Japan, 2001.

[4] Doug Bowman. Interaction techniques for immersive virtual envi-

ronments: Design, evaluation, and application. In Human-Computer
Interaction Consortium Conference (HCIC), 1998.

[5] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan

Poupyrev. 3D User Interfaces : Theory and Practice. Addison Wes-

ley, 2004. ISBN: 0-2017-5867-9.

[6] Matthias Bues, Roland Blach, and Frank Haselberger. Sensing sur-

faces: bringing the desktop into virtual environments. In EGVE ’03:
Proceedings of the 9th Eurographics Workshop on Virtual environ-
ments 2003, pages 303–304, 2003.

[7] Erwin Cuppens, Chris Raymaekers, and Karin Coninx. VRIXML:

A user interface description language for virtual environments. In

Developing User Interfaces with XML: Advances on User Interface
Description Languages, pages 111–117, 2004.

[8] Philippe Dax. VREng - virtual reality engine.

http://vreng.enst.fr/net/vreng/.

[9] G. de Haan, M. Koutek, and F.H. Post. IntenSelect: Using Dynamic

Object Rating for Assisting 3D Object Selection. In Erik Kjems and

Roland Blach, editors, Proc. of the 9th IPT and 11th Eurographics VE
Workshop (EGVE) ’05, pages 201–209, 2005.

[10] Stephen DiVerdi, Daniel Nurmi, and Tobias Hollerer. ARWin - a

desktop augmented reality window manager. In Second International
Symposium on Mixed and Augmented Reality (ISMAR’03), page 298.

IEEE Computer Society, 2003.

[11] Stephen DiVerdi, Daniel Nurmi, and Tobias Hollerer. A framework for

generic inter-application interaction for 3D AR environments. In Aug-
mented Reality Toolkit Workshop, 2003, pages 86 – 93. IEEE Com-

puter Society, 2003.

[12] Phillip Dykstra. X11 in virtual environments: combining computer

interaction methodologies. The X Resource, (9):195–204, 1994.

[13] Niklas Elmqvist. 3Dwm: A platform for research and development

of three-dimensional user interfaces. Technical Report CS:2003-04,

Chalmers Department of Computing Science, 2003.

[14] Steven Feiner, Blair Macintyre, and Doree Seligmann. Knowledge-

based augmented reality. Communications of the ACM, 36(7):53–62,

1993.

[15] Patrick Hartling, Allen Bierbaum, and Carolina Cruz-Neira. Tweek:

Merging 2D and 3D interaction in immersive environments. In 6th
World Multiconference on Systemics, Cybernetics, and Informatics,

Orlando, Florida, July 2002.

[16] Patrick Hartling and Carolina Cruz-Neira. Tweek: A framework for

cross-display graphical user interfaces. In O. Gervasi et al., editor,

ICCSA 2005, LNCS 3482, pages 1070–1079. Springer-Verlag, 2005.

[17] Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless inter-

faces between people, bits and atoms. In CHI ’97: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages

234–241, 1997.

[18] Joseph J. LaViola Jr. A survey of hand posture and gesture recogni-

tion techniques and technology. Technical Report CS-99-11, Brown

University. Computer Science Department, 1999.

[19] John Kelso, Lance E. Arsenault, Ronald D. Kriz, and Steven G. Sat-

terfield. Diverse: A framework for building extensible and reconfig-

urable device independent virtual environments. In VR’02: Proceed-
ings of the IEEE Virtual Reality Conference 2002, page 183, Wash-

ington, DC, USA, 2002. IEEE Computer Society.

[20] John Kelso, Steven G. Satterfield, Lance E. Arsenault, Peter M.

Ketchan, and Ronald D. Kriz. DIVERSE: a framework for build-

ing extensible and reconfigurable device-independent virtual environ-

ments and distributed asynchronous simulations. Presence: Teleop-

erators and Virtual Environments. Special issue: IEEE virtual reality
2002 conference, 12(1):19–36, 2003.

[21] Daniel Larimer and Doug Bowman. VEWL: A framework for build-

ing a windowing interface in a virtual environment. In Proceedings of
INTERACT: IFIP International Conference on Human-Computer In-
teraction, pages 809–812, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[22] Geoff Leach, Ghassan al Qaimari, Mark Grieve, Noel Jinks, and

Cameron McKay. Elements of a three-dimensional graphical user

interface. In INTERACT ’97: Proceedings of the IFIP TC13 Inter-
antional Conference on Human-Computer Interaction, pages 69–76,

London, UK, UK, 1997. Chapman & Hall, Ltd.

[23] J. Liang and M. Green. JDCAD: A highly interactive 3d modeling

system. Computers & Graphics, 18(4):499–506, 1994.

[24] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and

V. Lopez. USIXML: A language supporting multi-path development

of user interfaces. In 9th IFIP Working Conference on Engineering
for Human-Computer Interaction jointly with 11th Int. Workshop on
Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS 2004, Hamburg, July 2004.

[25] Valerie Maquil. Automatic generation of graphical user interfaces in

studierstube. B. Sc thesis, Institute for Software Technology and Inter-
active Systems, Vienna University of Technology, 2004.

[26] Jose Pascual Molina Masso, Jean Vanderdonckt, Francisco Montero

Simarro, and Pascual Gonzalez Lopez. Towards virtualization of user

interfaces based on UsiXML. In Web3D ’05: Proceedings of the
tenth international conference on 3D Web technology, pages 169–178,

2005.

[27] Michael F. McTear. Spoken dialogue technology: enabling the con-

versational user interface. ACM Computing Surveys, 34(1):90–169,

2002.

[28] Sun Microsystems. The looking glass project.

http://www.sun.com/software/looking glass.

[29] Noritaka Osawa, Kikuo Asai, and Fumihiko Saito. An interactive

toolkit library for 3D applications: it3d. In EGVE’02: Proc. of the
Eighth workshop on Virtual environments, pages 149–157, 2002.

[30] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and

Andy Hopper. Virtual network computing. IEEE Internet Computing,

2(1):33–38, 1998.

[31] Dave Roberts. RealPlaces, 3D interfaces for office applications.

In International Workshop on Tools for Working With Guidelines
TFWWG’00, London, 2000. Springer-Verlag.

[32] George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Cz-

erwinski, Ken Hinckley, Kirsten Risden, David Thiel, and Vadim

Gorokhovsky. The Task Gallery: a 3D window manager. In CHI ’00:
Proceeding of the SIGCHI conference on Human factors in computing
systems, pages 494–501, New York, NY, USA, 2000. ACM Press.

[33] Benjamin Schaeffer and Camille Goudeseune. Syzygy: Native PC

cluster VR. In VR ’03: Proceedings of the IEEE Virtual Reality 2003,

page 15, Washington, DC, USA, 2003. IEEE Computer Society.

[34] D. A. Smith, A. Raab, D. P. Reed, and A. Kay. Cro-

quet: A menagerie of new user interfaces, 2004. Whitepaper,

http://www.opencroquet.org/.

[35] J. Marques Soares, P. Horain, and A. Bideau. Sharing and immers-

ing applications in a 3D virtual inhabited world. In Proceedings
of Laval Virtual, 5th virtual reality international conference (VRIC
2003), Laval, France, pages 27–31, 2003.

[36] Vı́ctor Theoktisto and Marta Fairén. Enhancing collaboration in vir-

tual reality applications. Computers & Graphics, 29(5), 2005.

[37] Alexander Topol. Immersion of Xwindow applications into a 3D

workbench. In Conference on Human Factors in Computing Systems
(CHI’00) Student Poster, pages 355–356, 2000.

[38] K. Watsen, R. Darken, and M. Capps. A handheld computer as an

interaction device to a virtual environment. In Proceedings of the In-
ternational Projection Technologies Workshop, pages 303–304, 1999.

[39] VRPN, Virtual-Reality Peripheral Network.

http://www.cs.unc.edu/Research/vrpn/.

[40] Qt whitepaper, 2005. Trolltech, http://www.trolltech.com/.

[41] VRCO’s CAVELib. http://www.vrco.com.

[42] SphereXP. http://www.hamar.sk/sphere.

52
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on February 9, 2010 at 05:01 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

