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ABSTRACT

Anywhere Augmentation pursues the goal of lowering the

initial investment of time and money necessary to participate

in mixed reality work, bridging the gap between researchers

in the field and regular computer users. Our paper con-

tributes to this goal by introducing the GroundCam, a cheap

tracking modality with no significant setup necessary. By

itself, the GroundCam provides high frequency, high resolu-

tion relative position information similar to an inertial nav-

igation system, but with significantly less drift. When cou-

pled with a wide area tracking modality via a complementary

kalman filter, the hybrid tracker becomes a powerful base for

indoor and outdoor mobile mixed reality work.

Keywords: Anywhere augmentation, vision-based track-

ing, tracker fusion, mobile mixed reality.

Index Terms: I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism—Virtual Reality I.4.8

[Image Processing and Computer Vision]: Scene Analysis—

Motion I.2.10 [Artificial Intelligence]: Vision and Scene

Understanding—Motion

1 INTRODUCTION

Traditional mixed reality applications are built on a series of

assumptions about the environment they will operate in, of-

ten requiring time-consuming offline measurement and cal-

ibration for model construction purposes or instrumentation

of the environment for tracking. This high start up cost lim-

its the general appeal of mixed reality applications, creating

a barrier to entry that discourages potential casual mixed re-

ality users. The goal of Anywhere Augmentation is to create

a class of mixed reality technologies and applications that

require a minimum of setup using cheap, commonly avail-

able hardware, bringing the field of mixed reality within the

realm of an average computer user.

The choice of tracking technology used in a mixed real-

ity application is heavily dependent on the environment, and

its setup and calibration is often one of the time consuming

initial steps of application deployment. An overview of the
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Table 1: A brief comparison of tracking technologies, for typical setups. range:
size of the region that can be tracked within. setup: amount of time for instru-
mentation and calibration. resolution: granularity of a single output position.
time: duration for which useful tracking data is returned (before it drifts too
much). environ: where the tracker can be used, indoors or outdoors. All values
are expressed accurate to orders of magnitude.

technology range setup resolution time environ

(m) (hr) (mm) (s)

magnetic [6] 1 1 1 ∞ in/out

ultrasound [26] 10 1 10 ∞ in

inertial [2] 1 0 1 10 in/out

pedometer [25] 1000 0 100 1000 in/out

optical,

beacons [23] 10 1 1 ∞ in

passive [22] 10 10 10 ∞ in

markerless [4] 10 0 10 ∞ in/out

hybrid [9] 10 10 1 ∞ in

GPS [10] ∞ 0 1000 ∞ out

beacons [29, 24] 100 10 1000 ∞ in/out

WiFi [1] 100 10 1000 ∞ in/out

GroundCam 10 0 1 1000 in/out

commonly available technologies is presented in Table 1. It

is apparent that no single tracking solution exists for the in-

teresting and increasingly common case of wide area, high

resolution applications, such as outdoor architectural visual-

izations. The prevailing solution is to couple a global tracker

such as GPS, which provides wide area, absolute, low res-

olution data, with local tracking, e.g. from inertial sensors,

which provides high resolution, relative and drift prone po-

sitioning.

In this paper, we introduce the GroundCam (consisting of

a camera and an orientation tracker - see Figure 4), a lo-

cal tracking technology for both indoor and outdoor appli-

cations. We use the optical flow of a video of the ground

to determine velocity, inspired by the workings of an optical

mouse. This is related to visual odometry work done in the

robotics community [3, 27], but here we apply it to the much

less constrained world of human tracking. By itself, the

GroundCam provides high resolution relative position infor-

mation, but is subject to drift due to integration of error over

time. From Table 1, it is clear the GroundCam most simi-

larly resembles an inertial tracker, which measures acceler-

ation and integrates twice to get position. The GroundCam

is a significant improvement over inertial tracking because

its single integration accumulates error much more slowly,

maintaining similar small-scale accuracy for a longer period

of time.

To address the GroundCam’s long term drift, we use a
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complementary Kalman filter to combine the GroundCam

with a wide area sensor such as a GPS receiver (see Figure 4),

providing better accuracy over large environments. For wide

area indoor operation, we simulate the signal from a beacon-

based tracker such as the Cricket [24] or Locust Swarm [29],

to demonstrate the hybrid performance. These wide area

trackers provide periodic stable corrections to compensate

for the GroundCam’s drift while maintaining its fast and high

resolution data.

The advantages of the GroundCam include its favorable

performance compared to other local tracking technologies,

as well as its general applicability to a variety of mixed re-

ality applications, including outdoor mobile augmented re-

ality and indoor virtual reality. Hybrid indoor / outdoor ap-

plications can also use the GroundCam, as it handles large

changes in illumination gracefully. Finally, the low cost and

ease of construction of the GroundCam make it suitable to-

wards our goal of Anywhere Augmentation, by reducing the

barriers to entry for mixed reality applications.

2 RELATED WORK

Related work falls into the following main categories: opti-

cal flow-based tracking techniques and hybrid tracking ap-

proaches with a focus on pedestrian navigation.

2.1 Optical Flow-Based Tracking

Using optical flow for camera tracking has been explored

in many applications. The widest commercial distribution

was reached by the modern optical mouse, which uses an

LED to illuminate the mouse pad surface for a small camera

that tracks texture motion across the visual field, generating

a translation vector. For optical mice, the problem is drasti-

cally simplified by the assumption that the entire visual field

will exhibit a single coherent translation. A similar concept

is implemented as part of Haro et al’s mobile UI work [13],

which uses optical flow from a cell phone camera as a 2D in-

put to mobile application user interfaces. Many concessions

must be made due to the phone’s limited processing power

– most importantly, the motion estimation is limited to one

of four cardinal directions and very approximate measures

of motion magnitude are used. Given our interest in accu-

rate and robust tracking, we cannot make similar simplifying

assumptions for the GroundCam.

Much of the previous work in camera tracking via optical

flow is in the field of visual odometry for mobile robotics.

A straightforward approach is taken by Lee and Song [18],

mounting an optical mouse near the ground on a wheeled

robot. While the mouse does provide high quality optical

flow information, the fact that it needs to be within a few mil-

limeters of the tracked surface inherently restricts the robot

to very smooth terrain. A more sophisticated solution is to

mount a camera horizontally on the robot to provide an eye-

like view of the world, as in Campbell et al’s visual odometry

evaluation [3]. While their work tests the performance of vi-

sual odometry in terrain that is difficult for robots, such as

ice and grass, the ground is still required to be flat and free

of distracting influences. The GroundCam’s design allows it

to be used in complex terrain including obstacles and debris,

significant changes in height, and other moving agents.

Se et al’s robot [27] handles complex environments by us-

ing SIFT features and a three camera stereo system. SIFT

features are matched across images from the three cameras to

build a 3D map, against which features in subsequent frames

are matched. While the results are impressive, the algorithm

is also very demanding computationally, operating at 2Hz

and restricting their robot to a speed of 0.4m/s. Nistér et al

[21] use stereo imagery for visual odometry for ground vehi-

cles, with good accuracy and ability to handle distractions.

However, the updates are limited to 10Hz, and necessary

temporal filtering takes advantage of the low frequency of

accelerations for a ground vehicle. Human tracking requires

low latency, high frequency updates for interactive applica-

tions.

2.2 High Quality, Wide Area Tracking

None of the methods discussed so far are sufficiently robust

and/or precise to work for arbitrary wide area mixed reality

applications. Therefore, tracking approaches for such envi-

ronments are typically of a hybrid nature.

Foxlin and Naimark [9] propose the coupling of inertial

sensors with vision-based tracking of fiducial markers that

have to be attached to the ceiling or walls around the tracking

area. By tracking natural features the GroundCam does not

require instrumentation of the environment.

A common approach for tracking pedestrians in the out-

doors is to couple GPS tracking with inertial-based dead

reckoning to improve update rates and to bridge areas where

GPS is unreliable [5]. Relying on inertial sensors as a direct

position tracking modality is widely deemed to be of limited

use, however, because of the rapid propagation of drift errors

due to double integration [2]. Instead, many systems employ

inertial sensors as a pedometer, detecting the event of the

user taking a step [25, 12, 5]. For indoor navigation, Lee

and Mase couple step-detection via inertial sensors with in-

frared beacons for absolute measurements [17]. For all these

hybrid tracking techniques, the GroundCam provides an ad-

ditional dead-reckoning sensor that could improve accuracy

and reliability of the position tracking.

As hybrid tracking systems are often used to address the

limitations of individual tracking modalities, there has been

extensive research into techniques for optimally coupling

these sensors. Foxlin [8] originally used a complementary

separate-bias Kalman filter to combine gyroscopes, incli-

nometers and a compass, while You and Neumann [31] use

an extended Kalman filter with separate correction steps for

vision and gyroscope updates. Jiang et al [16] combine vi-

sion and gyroscope sensors in a more heuristic manner – the

gyroscope measurement is used as an initial estimate to limit

the vision feature search, and the vision measurement is used

to limit the gyroscope drift. Finally, while coupling between
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loop:

getFrame()

undistortFrame()

if( num_features < max_features )

findNewFeatures()

findOpticalFlow()

findInliers()

getOrientation()

computeMotion()

reportPosition()

Figure 1: Pseudocode for the GroundCam algorithm.

sensors is often loose, there is also work in tightly coupled

sensors, such as GPS/inertial hybrids [19]. For our hybrid

tracker, we loosely couple the GroundCam and GPS units

for modularity and simplicity of design.

3 GROUNDCAM

The inspiration for the GroundCam is a desktop optical

mouse. A camera is pointed directly at the ground from just

above waist height, and the video of the ground moving in

front of the camera is used to determine how the camera is

moving in the plane of the ground. The result is a 2D posi-

tion tracker. Depending on the environment the GroundCam

is being used in, it could be more useful if directed at the

ceiling – for example, an indoor location with a featureless

floor but a textured ceiling. Operation is the same in either

case.

3.1 Implementation

The GroundCam takes a few straightforward steps to com-

pute user motion. Pseudocode of this algorithm can be found

in Figure 1. Since features are lost and must be added again

each frame, there is no explicit initialization step – instead,

the first frame is treated as the case where all the features

were lost in the previous frame. This means the GroundCam

can recover even in cases of total image loss, such as sudden

extreme dark or bright conditions, without any user interven-

tion. For the algorithms used in the GroundCam, standard

implementations from the OpenCV image processing library

[15] are used, unless stated otherwise.

3.1.1 Undistortion

Offline intrinsic camera calibration is done using Zhang’s

procedure [32]. The distortion coefficients from this process

are used to correct the resulting artifacts in the video frames

by creating a corresponding undistortion image warp that is

applied to each frame – this allows us to use image distances

as direct measurements of distances in the scene. However,

for cameras with a narrow field of view, the distortion effect

is small enough that it does not produce a significant effect

and undistortion is unnecessary, saving CPU cycles – for ex-

ample, we do not undistort the video for the camera from

Figure 4, which has a field of view of 12.2 degrees.

3.1.2 Feature Detection

In our system, features are small regions of image texture.

Good features for tracking are selected from the video frames

by Shi and Tomasi’s algorithm [28], which finds a set of all

features of a certain quality and then greedily selects features

from the set that are not within a minimum distance of the

already selected features. After the initial set of features are

found, new features are introduced with the same technique

as features are lost.

3.1.3 Feature Tracking

Features are tracked frame to frame using the image pyramid

based optical flow algorithm of Lucas and Kanade [20]. A

hierarchy of images at different resolutions are used to effi-

ciently match texture features from one frame with the most

similar region in another frame. If the similarity between

these two regions is below a threshold, the feature is consid-

ered lost and is removed from the set. This can happen when

a feature goes outside the field of view, or when changes in

illumination or occlusion occur. Each feature is tracked in-

dependently of one another, so their motion may not be (and

in most cases is not) uniform. This is a strength of the tech-

nique, as distractors can be accounted for so long as overall

they represent a minority of the viewable scene.

3.1.4 Coherent Motion Estimation

Coherent motion must be extracted from the set of features

successfully found in consecutive frames, discarding the in-

fluence of outliers. We implemented the RANSAC algorithm

[7] to accomplish this task. Only one sample is necessary to

estimate the image’s 2D translation. Other samples are tested

against this estimate by separately thresholding the differ-

ences in magnitude and orientation. Once the final set of

inliers is found, the image motion estimate is computed by

taking the average of all the good samples. In the event that

a consensus is not reached, a fallback estimate is computed

as the average of all the samples.

The computation to get world motion in real units from

the image motion in pixels is straightforward. The camera is

assumed to be perpendicular to the ground at some uniform

height (measured offline). For a known height in meters H,

camera horizontal field of view F , and camera width in pixels

P, the conversion factor from pixels is

2H

P
tan

(

F

2

)

(1)

A 640x480 image from our camera with a field of view

of 12.2 degrees, mounted at 1.1m (just above waist height),

yields a factor of 0.37mm per pixel.

Our implicit assumption that the conversion between im-

age distance and physical distance can be represented by

a single scale factor is not actually correct. For different

regions of the image, the distance from the camera to the

ground varies, even assuming a flat ground and perfectly or-

thogonal viewing direction. The scale factor we computed
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is therefore not correct outside of the center of the field of

view. For our camera with a 12.2 degree field of view, a

simple calculation shows that a 0.5% error is introduced be-

tween computations at the center and the perimeter of the

image. This is small enough that we can safely ignore it for

our purposes.

3.1.5 World Coordinate Transformation

Our motion estimate is computed in the camera’s frame of

reference. In order to convert it to the world’s coordinate

system, we need to know the absolute orientation of the cam-

era. An InterSense InertiaCube2 orientation tracker is used

to obtain this information. A quick offline calibration is done

to orient the InertiaCube2’s output by obtaining angles for

north, east, south and west. During operation, the detected

angle is linearly interpolated between these computed values

to get the world stabilized camera orientation. The motion

vector is then transformed by this orientation to yield the fi-

nal, world stabilized motion estimate.

3.2 Discussion

Numerous experiments using the GroundCam have yielded

the following insights into its setup and operation in real

world conditions.

3.2.1 Performance

The output of the GroundCam is essentially a linear veloc-

ity measurement – some distance traveled over a small unit

time. Therefore, integration is necessary to use it as a posi-

tion tracker. However, it compares favorably to the primary

alternative, a linear accelerometer, as the acceleration data

requires double integration to yield position, and so accumu-

lates error much faster. Single integration means our drift

over time is drastically reduced. Also similar is the use of

a pedometer to track walking motion, which uses a known

stride length and counts steps to arrive at a position estimate.

However, pedometers are limited to the resolution of a stride,

and can drift significantly when the user walks with steps of

unusual stride (e.g. due to terrain considerations like stairs,

or from repeated small steps when carefully adjusting ones

position).

The limiting factors in the GroundCam’s feature tracking

are the camera’s image quality and framerate and the size of

the visible ground region. Good lighting and good optics im-

prove the performance of the optical flow algorithm signifi-

cantly – optics improve image quality and bright light lowers

the necessary exposure time, reducing image noise and mo-

tion blur (daylight or bright office illumination is generally

sufficient). For our setup, we use a Unibrain Fire-i 400 cam-

era with a 12.2 degree field of view lens mounted at 1.1 me-

ters, which yields a ground section of 0.24m by 0.18m. For

half the features to still be visible, the ground can move at

most half of this region, 0.09m along the y-axis, in the time

of a single frame. At 10fps, that is equivalent to a speed of

0.88m/s, at 15fps, 1.18m/s, and at 20fps, 1.76m/s. Since for-

ward motion is most common, mounting the camera rotated

90 degrees (portrait vs. landscape), gives 0.24m of visible

ground along the walking dimension, and results in a track-

able speed of 1.32m/s at 10fps, 1.76m/s at 15fps, or 2.35m/s

at 20fps. Average walking speed is 3mph or 1.34m/s, and

we consistently get between 15fps and 20fps, so this is suf-

ficient for basic walking behavior. Fast walking or running

cause sufficient jitter of the camera’s orientation, resulting in

significant motion blur and noisy apparent motion, such that

they cannot be accurately tracked in any case.

3.2.2 Feature Selection

Our choice of 50 tracked features bears justification. A man-

ual comparison was done of the GroundCam’s coherent mo-

tion estimate output for different target numbers of tracked

features, from 25 to 200 (since some number of features are

lost each frame, the actual set of features present in two con-

secutive frames is less than the target) . At 25, there were few

enough points that a coherent estimate often was not possi-

ble, or else it was very likely to get distracted by random

noise over low texture terrain. At 100 and above, the proba-

bility of achieving a coherent estimate was very high, but it

was necessary to increase the number of inliers required for

RANSAC to succeed, so the overall gain in detection was

small. However, the additional CPU drain in tracking, exe-

cuting RANSAC, and replenishing lost features was signif-

icant. 50 features is a compromise between CPU cost and

likelihood of detecting coherent motion. It may be possible

to fine tune this parameter for particular known types of ter-

rain, but we preferred a single static value.

3.2.3 Orientation Estimation

The need for an orientation tracker is not necessarily clear

in light of research such as Davison’s single camera SLAM

[4]. In his work, the camera’s 6DOF pose is completely de-

terminable from the video stream. However, the dependable

high contrast of the texture in his work makes the tracking

much more reliable than for the GroundCam. Over high

contrast terrain such as well-lit grass or gravel, there may

be enough information to extract the camera’s orientation as

well, but on terrain such as concrete, asphalt, or hard dirt

there is enough optical flow noise that it is difficult to reli-

ably extract the translation motion estimate. Techniques to

improve the quality of feature tracking for these types of ter-

rain could make the individual feature motion information

reliable enough for full 6DOF pose estimation.

3.2.4 Tracking Distractions

There are a number of possible distractions that can reduce

the accuracy of the tracking result. The user’s lower legs

and feet may appear in the camera’s field of view, which can

create strong enough optical flow to influence the motion es-

timate. It would be possible to create a color model of the

lower legs and feet, which is likely different from the ground

terrain, and use it to mask them out of the ground image be-

fore tracking features on it. Alternately, proper mounting of

the camera (e.g. on the back of a backpack containing the
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wearable computer) with a narrow field of view alleviates

this problem by keeping the feet out of the video.

Motion of the user’s shadow can have a similar effect, if

the leg shadows are moving across the camera’s view, by

creating many strong features on the shadow boundary that

move separately from the ground. Mounting the camera on

the the front or back diminishes the effect, as the forward-

backward motion of legs creates shadows with much less

motion in those cases. It would also be possible to use image

processing to remove large scale illumination changes while

keeping small, local texture, at additional CPU cost.

Changing illumination when moving from a well-lit area

into a poorly-lit one, such as crossing into the shadow of a

building can create temporary confusion as the camera’s ex-

posure setting automatically adjusts, depending on the con-

trast and sharpness of the shadow. This is only a serious

problem when the contrast creates under or over saturation

of regions of the image, which then do not have trackable

texture. As soon as the camera’s exposure adjustment com-

pensates (up to one second), tracking resumes as normal.

Finally, changes in height of the ground plane, either from

structures like stairs, or random debris on the ground (e.g.

rocks) may introduce error in the conversion between mo-

tion in pixels to meters. Potentially, the use of SIFT fea-

tures would allow determination of changing heights, such

as when going up or down stairs, which could then be used to

improve the coherent motion estimate. For objects or debris

of static height above the ground plane, more reliable feature

tracking would be necessary to identify coherent patches of

motion of different velocity than the majority of the image

and then extract a height estimate.

However, all of these possible distractions combined do

not, in general, significantly impact the quality of the track-

ing result. They are all short, temporary effects that intro-

duce small amounts of random noise. The result is that they

cause the integrated position to drift slightly faster than it

would under ideal conditions, but this has not shown to be a

problem.

3.2.5 Camera Parameters

The camera’s height, angle, and field of view, are all impor-

tant considerations. Since the GroundCam aims to track the

position of the user while maintaining its position relative to

the ground, it must be mounted on the hips or torso. It should

not restrain the user from moving their arms or doing their

work, so the back is best. For wearable systems that include

a backpack-like computer, the back of such a device is an

ideal location (see Figure 4).

The height of the camera is important in conjunction with

the field of view – the resulting size of the viewable ground

region affects the maximum speed that can be tracked, as

discussed earlier. It also affects the size of texture features

that can be used for tracking. Keeping the viewable ground

region small has the advantage of reducing the potential for

distractors such as feet to interfere with the tracking. On

GroundCam
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Figure 2: System diagram of the complementary Kalman filter. A Kalman filter
is used to update an error between the current GroundCam estimate and the
GPS absolute position. While the Kalman filter is updated infrequently (1Hz),
a new position estimate is generated for each GroundCam update (30Hz).

the other hand, it increases the potential for distractors to

take over the majority of the field of view and significantly

confound the tracking. These tradeoffs must be considered

per-application.

We chose to point the camera straight down, perpendicu-

lar to the ground. This choice has a few nice properties –

first, it makes the motion estimation easy to compute and the

matching of samples to an estimate in the RANSAC algo-

rithm is similarly easy. Second, pointing straight down mini-

mizes the total volume of the viewing frustum of the camera,

which means there is less volume for distractors to intrude.

Third, this orientation makes tracking easier as features ex-

hibit the smallest change in appearance moving across the

field of view. Finally, since the camera is not rigidly held

with respect to the ground, its orientation is likely to change

slightly during operation – small changes from this orienta-

tion will have a smaller impact on the assumptions made than

from other orientations. For example, if the camera were to

become misaligned by 5 degrees, a simple calculation shows

the error in the motion estimate would be ≤2%, which is

small enough that it can be ignored.

4 HYBRID TRACKING

The GroundCam by itself is not a sufficient wide area track-

ing solution because it tends to drift over prolonged opera-

tion. Instead, it is most appropriately used in concert with a

wide area tracker like a GPS receiver. This loose coupling is

achieved with a complementary Kalman filter.

4.1 Complementary Kalman Filter

Our complementary Kalman filter design is inspired by

Foxlin’s work on orientation tracker filtering [8]. The under-

lying concept is to filter the error signal between two sensors,

rather than filtering the actual position estimate (see Figure

2).

The signal from the GroundCam is high frequency (30Hz),

high resolution (1mm), and includes small random errors

(10mm) and large systematic errors (drift is unbounded over

time). There are two main sources of error – random errors

in the motion estimates per update, and random underesti-

mation of motion when RANSAC fails to find a coherent es-

timate. These errors accumulate over time due to integration
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of the GroundCam signal. The signal from a standard GPS

receiver is low frequency (1Hz), medium resolution (10cm),

and includes medium random and systematic errors (5m).

The main source of the error is due to changing atmospheric

conditions which delay the signals from GPS satellites dif-

ferently, creating apparent differences in position. Gener-

ally, this error is randomly distributed around the true posi-

tion, but prevailing weather conditions such as cloud cover,

or view obstructions such as buildings, can create systematic

errors in the signal over extended periods of time.

Ideally, the filtered output will be available at the high

frequency and high resolution, which the complementary

Kalman filter achieves with minimal processor load. We can

model the error between the two signals as a smoothly vary-

ing random process with a Kalman filter, and then use the

filtered error signal to correct the GroundCam signal on the

fly.

Let ph be the high frequency signal from the Ground-

Cam, and pl the low frequency signal from a GPS receiver.

p is the ground truth position, p̂ is the estimated position,

δ p = p− ph and δ p̂ is the estimated error signal. Since our

filter operates on 2D data, p is actually the vector [x,y]T .

Within the Kalman filter, there are 6 process dimensions and

2 measurement dimensions. Filter variable names are stan-

dard as used in [30].

x =





δ p

δ ṗ

δ p̈



 (2)

z =
[

δ p
]

(3)

A =





1 ∆t 1
2
∆t2

0 1 ∆t

0 0 1



 (4)

H =





1

0

0



 (5)

B and u are both not used, and thus zero. Q and R are

empirically determined depending on the particular sensor

being coupled with the GroundCam, and P is initially set so

measurements are preferred at startup.

The result of a complementary filter setup such as this is

that for each new high frequency update, only a prediction

and then subtraction is necessary, making the processor load

very low for the frequent step. The expensive correction step

is computed once per low frequency update.

4.2 Potential for Coupling

There are a number of possible wide area trackers that could

be integrated with the GroundCam in this manner, depend-

ing on the needs of the particular system. GPS is a straight-

forward choice for outdoor applications, as its signal is com-

monly available and sensors are cheap. Applications without

a clear view of the sky however, such as dense urban envi-

ronments or indoors, must consider alternative solutions. In

these cases, a cheap and easily deployable beacon-based sys-

tem, e.g. on RF, ultrasound, or infrared basis [29, 24, 11, 14],

may be more appropriate. Such systems provide position in-

formation in the sense that they identify which discrete re-

gion the user currently occupies. This information would

be sufficient for applications such as audio annotations or

situated content, but for visual overlays or immersive vir-

tual content, coupling with a more accurate tracker like the

GroundCam is necessary.

The coupling of the GroundCam with another sensor may

be done differently as well, for different needs. For instance,

a common problem with GPS signals is that while the user

is standing still, error in the GPS signal will make it appear

as though the user is moving slowly. This drift can make

operations that require stationary actions very difficult. The

GroundCam, on the other hand, is very good at determining

when the user is standing still and could be used as a binary

walking / standing behavior classification, to selectively ig-

nore GPS updates.

5 RESULTS

Figure 5 shows a typical run using the GroundCam and GPS

hybrid tracking system for approximately 90 seconds. The

path includes avoiding obstacles and going up and down

steps, with wood, gravel and concrete terrain. As expected,

the GroundCam exhibits some drift, partially from random

errors in the motion estimate but also from updates where a

coherent estimate cannot be generated. These errors cause

different effects in the GroundCam path – random errors

make the path less smooth, while missing coherent estimates

create a shortening effect. However, the coupling with the

GPS signal eliminates the effect of the GroundCam drift. Of

particular importance is the much smoother quality of the fil-

tered signal than the raw GPS signal, which makes the hybrid

tracker very appropriate for mixed reality applications.

For comparison purposes, the run in Figure 6 includes a

hand-labeled ground truth – a rectangular path of approxi-

mately 18m x 12m over 81 seconds on a residential street.

The terrain is concrete and asphalt, which have lower con-

trast textures and are more prone to noise in the error esti-

mates. For this particular trial, our GPS receiver experienced

very little random noise, but did exhibit a significant drift

overall, due to our GPS unit not receiving a WAAS signal at

our location. While our filtered path stays close to the GPS

signal, we cannot correct for systematic errors in the GPS

position, which are propagated into our tracking result. In

most US locations, the presence of a WAAS signal will im-

prove the quality of the GPS data and subsequently improve

the filtered data as well.

5.1 Slip Compensation

The problem of RANSAC not reaching a consensus is anal-

ogous to the problem of slipping wheels in odometry of
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wheeled vehicles, and results in estimated paths that are

much shorter than ground truth. Certain types of terrain are

more prone to this sort of error (see Figure 3). Low-contrast

terrains like concrete were much more prone to slipping than

high-contrast terrains such as grass.

We made a simple attempt to compensate for some of this

error, which we call slip compensation. The error is pro-

portional to the rate at which RANSAC does not produce a

coherent estimate, or the slip rate. Based on the slip rate

over a short window of time, a successful coherent estimate

is scaled to compensate for the missed estimates (e.g. if the

slip rate is s = 0.8, then a coherent estimate is scaled by

(1− s)−1 = 5.0). Figure 7 clearly shows that slip compen-

sation helps achieve the appropriate scale of the GroundCam

signal.

5.2 Beacon-based Wide Area Sensors

To demonstrate the usefulness of the GroundCam in concert

with wide area sensors other than GPS, we simulated a dis-

crete beacon-based wide area sensor signal (similar in con-

cept to the Cricket [24] and Locust Swarm [29] projects).

We used ground truth to trigger a periodic signal that identi-

fied which discrete region the user currently occupied, on a

rectilinear grid of 6m cells (roughly room-size). This coarse

wide area signal was used in place of the GPS signal in the

complementary Kalman filter.

Figure 8 shows that the beacon-based signal provides a

measure of drift-correction that improves the GroundCam’s

raw result. For a longer path, the GroundCam drift would re-

sult in significant divergence from ground truth, while the

beacon-based signal would make sure the filtered output

stays within certain bounds of the true position.

6 CONCLUSION

We have presented the GroundCam tracking modality, a

vision-based local tracker with high resolution, good short-

term accuracy, and an update rate appropriate for interactive

graphics applications. We have also demonstrated the fea-

sibility of a hybrid tracker, coupling the GroundCam with a

GPS receiver, as well as a discrete beacon-based wide area

sensor. In our trials, the GroundCam compares favorably to

other similar tracking modalities, and we are currently inte-

grating it into our mobile mixed reality platform for expe-

rience in actual application scenarios. Towards the goal of

Anywhere Augmentation, the GroundCam is cheap, readily

available, and requires almost no time to setup in a new envi-

ronment, for high-quality tetherless tracking in mixed reality

applications.
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Figure 3: Different types of terrain with example slip rates. left to right, top
to bottom: concrete (80%), gravel (32%), carpet (48%), asphalt (65%), grass
(20%), wood (24%). Slip rates depend on speed, jitter, lighting and debris, in
addition to texture contrast.

Figure 4: A wearable computer setup for GroundCam tracking. We use a
Unibrain Fire-i 400 camera, an InterSense InertiaCube2 orientation tracker,
and a Garmin GPS 18 receiver. Inside the backpack is a Dell Precision M50
laptop.

Figure 5: A trial run of the GroundCam coupled with GPS. The run was 90 sec-
onds in duration, over wood, gravel and concrete terrain, and included avoiding
obstacles and going up and down stairs. The slip rate was 30%.

Figure 6: A trial run of the GroundCam coupled with GPS, with hand-labeled
ground truth. The run was 81 seconds long, over concrete and asphalt, along a
rectangle 18m long by 12m wide. The slip rate was 80% and RMS errors for the
GroundCam, GPS, and filtered signals are 5.5m, 1.9m, and 1.9m respectively.

Figure 7: A trial run of the GroundCam with and without slip compensation,
with hand-labeled ground truth. The trial was 72 seconds in duration over
asphalt, and had a slip rate of 63%. Originally, the RMS error was 7.0m; with
slip compensation, the RMS error is 4.8m.

Figure 8: A trial run of the GroundCam (with slip compensation) with a simu-
lated beacon-based wide area sensor in place of the GPS signal. The RMS
errors of the GroundCam, beacon signal, and filtered signal are 4.6m, 2.3m,
and 1.9m respectively.
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