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Abstract. A probabilistic framework for vision based volumetric reconstruction
and marker free tracking of hand and face volumes is presented, which exclu-
sively relies on off-the-shelf hardware components and can be applied in stan-
dard office environments. Here a 3D reconstruction of the interaction environ-
ment (user-space) is derived from multiple camera viewpoints which serve as
input sources for mixture particle filtering to infer position estimates of hand and
face volumes. The system implementation utilizes graphics hardware to comply
with real-time constraints on a single desktop computer.
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1 Introduction

Virtual and mixed reality environments rely on the implementation of (tele) presence:
the perceived sense that a user’s own body and body parts belong to the artificial
world presented. Of paramount importance here is the efficient and accurate registra-
tion, tracking, reconstruction and display of the head and hands of a human operator.
In the following we present an approach for the reconstruction and tracking of hands
and head (skin-colored objects) in a potential standard office environment which works
with off-the-shelf hardware components. The supervised volume in our table-top envi-
ronment (see figure 1) has a hand tracking volume size of 1.0m × 1.0m × 0.75m. The
lighting conditions have been constrained to controlled and reasonably well lit office
room, following the recommendations of IEEE Std. 241 [1].
The system consists of a flock of six color cameras which are utilized to compute a
volumetric reconstruction of the user-space. A variant of a probabilistic Shape from
Silhouette (pSfS) algorithm, first introduced by Landabaso and Pardas [4] has been de-
veloped. Unlike traditional SfS (tSfS), which performs object segmentation in the image
domain, pSfS utilizes a 3D probabilistic background model. This shifts object segmen-
tation into the spatial domain and leads to improved segmentation results in presence
of image noise or clutter. We have extended pSfS by imposing constraints on the 3D
foreground process in terms of anticipated color and occupancy of hand and face vol-
umes, thus limiting volumetric reconstruction to skin-colored foreground regions. This
leads to more detailed reconstructions and an increased probabilistic distance to the
background scene. In addition we allow dynamic per pixel on/off switching of cameras
to allow the integration of occlusion masks and to stabilize reconstruction results in
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Fig. 1. Proposed environment. Hands and face are tracked in front of the projection screen.

presence of occlusion.
In [4] volumetric reconstructions have been projected into images to generate occlusion
masks needed for background model update. We instead utilize the derived visual hulls
as input source for a variant of mixture particle filtering [7] to estimate positions of hand
and face volumes. Occlusion masks are then generated from tracked bounding boxes.
This has the advantage that masks can be computed efficiently and that volumetric re-
construction errors do not degenerate the background model. Finally we present a GPU
implementation of the presented system, which in contrast to [4] permits the whole
system to run in real-time on a consumer graphics card and a single desktop computer.

2 Probabilistic Volume Reconstruction

The reconstruction algorithm presented below is based on probabilistic reasoning and
can be subdivided into an image and volume based classification part. In the image
based part a measure is assigned to each pixel which exhibits its probability of belong-
ing to a skin-colored foreground silhouette. In the volume based part these silhouettes
are utilized to derive volumetric reconstructions.

2.1 Image based Likelihood Evaluation

The task of skin-colored foreground object segmentation can be formulated as a clas-
sification problem at pixel level. A pixel may belong to one of four groups which are
given as the possible combinations of fore-/background and skin/non-skin color. Pixel
likelihood evaluations are casted as maximum a posteriori (MAP) assignments in a dis-
criminative model. I.e., the model expresses the per pixel probability of belonging to
the foreground with the skin-colored class P ′(F, S|c) as a function of its observed color
vector c. The prime denotes augmentation with an outlier model which will be described
in detail later. Here c = [r, g]T is represented in the normalized-rg color space.
A combination of two classifiers constitutes our discriminative model (see figure 2).

The first classifier P ′ (F |c) is based on a model of the background process and esti-
mates per pixel foreground probabilities by combining the MAP assignment of being
foreground P (F |c) with an outlier model. Equivalently the second classifier P ′ (S|c)
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(a) P ′ (F |c) (b) P ′ (S|c) (c) P ′ (F, S|c)

Fig. 2. Left: foreground classification; Middle: skin classification; Right:combined classification

augments the MAP estimate of being skin color P (S|c). The final per pixel classifica-
tion scheme is thus given by:

P ′ (F, S|c) = P ′ (F |c) · P ′ (S|c)

Our setup has been constrained to office environments with a fixed camera setup. This
leads to a relatively static background scene which can be modeled with a single Gaus-
sian model (SGM) [3]. A SGM is defined in the bivariate case with the mean normalized-
rg color vector µ and covariance matrix Σ as:

P (c|µ,Σ) =
1

2π |Σ|
1
2
· exp

(
−1

2
(c− µ)T ·Σ−1 · (c− µ)

)
(1)

The background likelihood is obtained from equation (1) as P (c|F̄ ) = P (c|µF̄ , ΣF̄ )
and is used to derive the MAP foreground likelihood P (F |c). Assuming equal likeli-
hood of color appearance in the foreground i.e. P (c|F ) = 1

2562 , we obtain:

P (F |c) =
P (c|F ) · P (F )

P (c)
=

1
2562 · P (F )

1
2562 · P (F ) + P (c|F̄ ) · P (F̄ )

Priors of fore-/background are derived from the expected volume occupancy of fore-
ground objects and will be discussed in the next section.
For skin color classification we follow Caetano et al. [2] and model skin color with a
static Gaussian Mixture Model (GMM) with I = 2 basis functions. This has been re-
ported as a good tradeoff between accuracy and efficiency. The GMM is derived from
equation (1) and associated weightswi as P (c|S) =

∑I
i=1 wi ·P (c|µi, Σi). The param-

eters have been trained with Expectation Maximization from a set of labeled skin-color
images. Skin color classification can thus be cast in a Bayesian formulation by assum-
ing equal likelihood of color appearance in non skin-colored regions P

(
c|S̄
)

= 1
2562

resulting in the MAP assignment:

P (S|c) =
P (c|S) · P (S)

P (c)
=

P (c|S) · P (S)
P (c|S) · P (S) + 1

2562 · P (S̄)

Notice that the models introduced so far do not permit for any type of classification
error. Following [6], a more robust classification scheme is formulated by reverting to
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the prior in case of an outlier. Let eF , eS ∈ [0, 1] be the probabilities of being outlier
in the foreground and skin color model respectively. Then the classifier augmentations
are:

P ′(F |c) = eF ·P (F ) + (1−eF )·P (F |c) and P ′(S|c) = eS ·P (S) + (1−eS)·P (S|c)

2.2 Volume based Classification

pSfS has been adapted to combine the previously described image based classifiers.
The difference between the presented algorithm and [4] is the definition of φ and β. In
our setting φ describes a skin colored foreground and β a group of classes given as the
remaining combinations of being fore-/background and skin/non-skin color. This leads
to the introduction of multiple priors into pSfS.
Now let {Γ1, · · · , ΓN} be the set of super classes representing all N = 2S possible
combinations of skin-colored foreground or background classifications of all S sensors.

Γ1 = { φ, φ, φ, . . . , φ }
Γ2 = { β, φ, φ, . . . , φ }
Γ3 = { φ, β, φ, . . . , φ }

...
ΓS+2 = { β, β, φ, . . . , φ }

...
Γn = { Γn[1], Γn[2], Γn[3], . . . , Γn[S] }

...
ΓN = { β, β, β, . . . , β }

and let their group specific priors be given as P (Γn) =
∏S
s=1 P (Γn[s]) with projected

priors:

P (φ) = P (F ) · P (S) and P (β) = 1− P (φ)

In the absence of occlusion a voxel is assigned to be part of a visual hullH if all sensors
classify the voxel as skin-colored foreground, with prior probability P (H). That is:

H = Γ1 and P (H) = P (Γ1) (2)

P (H) is defined as the occupancy ratio between the expected number of skin-colored
foreground voxels and the total number of voxels. Projected skin priors can thus be

derived from P (H) as P (S) =
S
√
P (H)

P (F ) . Equivalently projected foreground priors can
be derived from a visual hull of all foreground objects HF with an expected volume
occupancy ratio P (HF ) as P (F ) = S

√
P (HF ). We have chosen P (HF ) and P (H)

statically from reference reconstructions which have been generated with a traditional
SfS algorithm.
Cameras in SfS setups are usually mounted with wide stereo baselines leading to sta-
tistical independents between the camera views and Bayes theorem can be consulted to
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estimate class probabilities.

P (Γn|c1, . . . , cS) = P (Γn) ·
S∏
s=1

P (cs|Γn)
P (cs)

n = 1, . . . , N (3)

Here P (cs|Γn) = P (cs|Γn[s]) is the conditional probability of the observation in sen-
sor s, given a certain super class in its view. Conditional probabilities can be rewritten
in means of posterior probabilities to plug in per pixel MAP assignments:

P (Γn|c1, . . . , cS) = P (Γn) ·
S∏
s=1

P (Γn[s]|cs)
P (Γn[s])

(4)

Here P (Γn[s]|cs) conforms to the posterior probability of a certain superclass in sensor
s given its observation cs. This is to say:

P (Γn[s]|cs) :=

{
P ′(F, S|cs) if Γn[s] = φ

1− P ′(F, S|cs) if Γn[s] = β

Finally the partitioning of voxels to super classes is obtained by following Bayes rule
for minimum error. Therefore a voxel is assigned to the most probable super class Γm:

Γm = arg max
Γn

P (Γn) ·
S∏
s=1

P (Γn[s]|cs)
P (Γn[s])

As computation of all class posteriors becomes computational intensive with growing
number of sensors, it has been recommended in [5] to limit computation to the fore-
ground class and set a threshold on its posterior instead. Our results suggest the same
as we have obtained equivalent reconstruction results for both algorithmic variants.
The algorithm introduced so far does not account for systematic errors given through
occlusion or segmentation errors. The assignment of multiple foreground classes is a
common approach to resolve this issue in SfS type algorithms. In pSfS this can be done
in two ways. First, by assigning multiple super classes to the visual hull. If for exam-
ple, the appearance of a single systematic error was to be allowed, equation (2) would
become:

H =
S+1⋃
s=1

Γs and P (H) =
S+1∑
s=1

P (Γs) (5)

This approach has a serious disadvantage as all class posteriors now have to be com-
puted. A more efficient procedure is given by assigning an active camera flag to each
pixel and than limit the class computation to active projections. In the presence of occlu-
sion masks these are the activity flags. If multiple foreground classes should be allowed,
a given number of pixel projections with lowest foreground probability P ′(F, S|c) have
to be disabled dynamically.
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3 Mixture Particle Filtering

Detection of hand and face volumes within a reconstructed volume is usually a time
consuming process which can be accelerated by incorporating temporal information
through tracking. We assume independents of the movements of hands and head and
therefore follow [7] and apply a 3D variant of mixture particle filtering for tracking.
Here the joint distribution of object states is interpreted as a mixture in which each
object is tracked with a dedicated particle filter. The prediction and update equations of
the M-component mixture model are given with mixture weights

∑M
m=1 πm,t = 1 as

predict: p(xt|Yt−1) =
M∑
m=1

πm,t−1 · pm(xt|Yt−1)

update: p(xt|Yt) =
M∑
m=1

(
πm,t−1 · pm(yt|Yt−1)∑M
n=1 πn,t−1 · pn(yt|Yt−1)

)
· p(yt|xt)pm(xt|Yt−1)

pm(yt|Yt−1)

The first update term can be interpreted as the new mixture weight πm,t because the
state x is not involved. Hence only the second term represents the component update.
Component interaction is therefore limited to mixture weight computation which makes
this particle filtering technique fast. Particle filters track 3D centroid positions of hand
and face volumes. Hands and face are distinguished through their volume sizes. Par-
ticle states represent boxes in space with a fixed size, see right side of figure 1. We
use the percentage of occupied skin-colored volume within these boxes as the source
for weight evaluation. This average occupancy can be computed efficiently through uti-
lization of a summed volume table for the reconstructed volume. The mixture particle
formulation given above does not determine how a mixture is initialized or modified.
In our setup initialization is done by spreading particles randomly until all expected
objects are tracked. If a mode was found which is not already tracked, a new mixture
is initialized on that mode. In cases in which object separation is impossible, a mixture
update has to be enforced which provides merge and split operations. Here it is based on
K-means analysis and similar to the one proposed in [7]. The difference is that we have
to treat different particle types. Therefore we allow re-clustering only between mixtures
of the same type, others are discared.

4 Results

We have implemented pSfS as well as tSfS and compared both with respect to recon-
struction quality and performance. Achieved reconstruction results favor pSfS over
tSfS, see figure 3 for a comparison. Both pSfS variants achieved more detailed re-
constructions than tSfS. Explicit computation of fore-/background classes and limited
evaluation by thresholding the foreground class resulted in similar reconstructions. The
similarity between outputs of both pSfS algorithms can be explained by detailing the
impact of background class evaluation. Explicit evaluation of background classes leads
to a less false positive rate for foreground class assignment in presence of highly am-
biguous voxels. These false positives are known to have a low foreground probability,
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Table 1. Performance results of 3D reconstruction on a GPU

Reconstruction Type Volume Resolution Algo Image eval. GPU Readout Total

tSfS

64× 64× 48 voxel 1.1ms 5.5ms 0.1ms 6.7ms

128× 128× 96 voxel 5.7ms 5.5ms 0.8ms 12.0ms

256× 256× 192 voxel 35.8ms 5.5ms 7.8ms 49.1ms

pSfS, foreground class

64× 64× 48 voxel 1.2ms 5.5ms 0.1ms 6.8ms

128× 128× 96 voxel 5.9ms 5.5ms 0.8ms 12.2ms

256× 256× 192 voxel 38.0ms 5.5ms 7.8ms 51.3ms

pSfS, all classes

64× 64× 48 voxel 4.3ms 5.5ms 0.1ms 9.9ms

128× 128× 96 voxel 31.4ms 5.5ms 0.8ms 37.7ms

256× 256× 192 voxel 241.8ms 5.5ms 7.8ms 255.1ms

as they would not be assigned to a background class otherwise. This implies that they
can be equivalently eliminated by enforcing a threshold on posterior probabilities.
The presented SfS variants were implemented on a GPU with NVIDIA CUDA to permit
interactive frame rates. Here performance results of three different volume resolutions
are presented. The runtime values were measured on an Intel Q6600 running at 2.4GHz
with a NVIDIA GeForce 8800 GTX graphics card and are listed in table 1.
The SfS performances vary between 1.1ms and 241.8ms, depending on the chosen algo-
rithm and volume resolution. A performance comparison between tSfS and pSfS limited
to foreground class evaluation resulted in similar runtimes. Both algorithms have a lin-
ear complexity O(S) where S is the number of sensors. In contrast explicit evaluation
of fore-/background classes has an exponential complexity of O(2S).
It is further essential to note how the presented algorithms behave in the presence of
systematic errors like inter-object occlusion. tSfS and both pSfS variants cannot handle
this and do not reconstruct partial occluded objects. The appearance of systematic errors
therefore has to be explicitly modeled. As our particle filter is applied to low resolution
volume reconstructions, we limit the following comparison to this type. Figure 3 de-
picts obtained reconstructions with 5 out of 6 cameras. Here. we compared tSfS and
pSfS with explicit computation of multiple foreground classes and finally pSfS with the
active camera concept. All algorithms achieve similar coarse reconstructions and can
reconstruct the volume even in presence of occlusion.

5 Conclusion
We have presented a GPU based pSfS system which uses a cascade of classifiers for
volumetric reconstruction of skin colored objects, i.e. to track hand and face volumes.
Our GPU implementation makes the system suitable for the advanced HCI applications
targeted, with a runtime of less than 15ms for coarse but reasonable volume resolutions.
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Fig. 3.
1. row: [left to right] tSfS, pSfS with fore-/background classes, pSfS with foreground class,

all computations with 6 cameras in 128× 128× 96 volume
2. row: pSfS, foreground thresholding with 6 cameras, 256× 256× 192 voxels
3. row: [left to right] tSfS P ′(F, S|c) thresholded, pSfS multiple classes, pSfS active camera,

all computations with 1 of 6 views occluded in 64× 64× 48 volume
See also: www.mi.fh-wiesbaden.de/̃ cjohn/videos/psfsTracking.avi


