High Resolution Video Playback in Immersive Virtual Environments

Han Suk Kim*
Computer Science and Engineering
University of California San Diego

ABSTRACT

High resolution 2D video content in High Definition or higher res-
olutions has become widespread and video playback of such media
in immersive virtual environments (VE) will be a valuable element
adding more realism to VE applications. This kind of video play-
back, however, has to overcome several problems. First, the data
volume of video clips can reach up to hundreds of gigabytes or
more depending on the length of the clips, and the data has to be
streamed into virtual reality (VR) systems in real-time. Second, the
interactivity of the playback screen in 3D virtual environments re-
quires efficient rendering of each video frame. Interactivity means
that the plane of the video playback screen needs to rotate, trans-
late, and zoom in and out in 3D space as the viewer roams around
in the VE. This also means that the video is not necessarily paral-
lel to the display screen but will need to be displayed as a general
quadrangle.

In this work, we propose an efficient algorithm that utilizes
mipmapped data, that is, multiple levels of resolutions, to provide
an efficient way to interactively play back high resolution video
content in VEs. In addition, we discuss several optimizations to
sustain a constant frame rate, such as an optimized memory man-
agement mechanism, dynamic resolution adjustment, and predic-
tive prefetching of data. Finally, we evaluate two video playback
applications running on a virtual reality CAVE system: 1) high def-
inition video at 3840 x 2160 pixels and 2) 32 independent 256 x
192 pixels video clips.

Index Terms: [.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality H.5.1
[Information Interfaces and Presentation (e.g., HCI)]: Multimedia
Information Systems—Video

1 INTRODUCTION

High resolution 2D video content has become widespread nowa-
days due to advances in digital video recording technologies. Many
videos are stored at high resolutions, e.g., 4K (up to 4096x2400
pixels) or HD video (1920x1080 pixels). The virtual reality com-
munity has long tried to embed high resolution video playback as
realistically as possible in immersive virtual environments (VE).
Possible applications can be a virtual theater, a virtual office, video
conferencing, video surveillance, or video commercials.

However, due to the large volume of data in high resolution me-
dia, which easily exceeds hundreds of gigabytes, it is not an easy
task to play back these videos in real-time. Constant I/O operations
are required to load data in a timely manner and video rendering
systems need to manage the limited memory resources. Further-
more, in a VE the video image is not displayed as a rectangle, but
as its projection on the screens, which is a general quadrangle in
an arbitrary orientation. Existing video conferencing systems can

*e-mail: hskim@cs.ucsd.edu
Te-mail: jschulze @ucsd.edu

IEEE Virtual Reality 2009
14-18 March, Lafayette, Louisiana, USA
978-1-4244-3943-0/09/$25.00 ©2009 IEEE

Jurgen P. Schulze’
California Institute for Telecommunications and
Information Technology
University of California San Diego

stream video of people in conference rooms to remote locations.
Part of this technology is applicable to video playback in VEs, but
there are many differences in the system requirements.

The contribution of this work is to provide an efficient algorithm
and its implementation that can handle high resolution video data
so that the video streams can be displayed in VEs. Our main idea
of handling high resolution video in VEs is to use mipmapping [8],
on top of which we added various optimizations to allow for con-
stant frame rates under varying viewing conditions and rendering
rates determined by the rest of the 3D virtual world that needs to be
rendered. In our approach, the preprocessed image data has several
levels of detail (LOD), that have different downsampled resolutions
of the same data, and choosing the best possible LOD can reduce
the amount of memory required. In addition, we added advanced
memory management algorithms, such as an out-of-core algorithm
and tiling, to efficiently utilize memory. The performance of the
overall system has been further optimized by having mechanisms
of dynamic LOD adjustment and predictive prefetching of data.

For the playback of most video clips it is important that the video
plays at a constant frame rate, the rate it has been recorded at or
rendered for, the video frame rate. This is particularly important if
there is a corresponding audio track to be played back in sync with
the video. However, in interactive computer graphics applications,
the rate at which the images get displayed on the physical screens,
which we call the image frame rate, is not uniform and it is inde-
pendent of the video frame rate. Our system provides a constant
video frame rate despite a varying image frame rate.

2 RELATED WORK

Mipmapping, which is the level-of-detail (LOD) approach we em-
ploy in this project, was first introduced by Williams et al. [8]. Pre-
computed texture data at multiple resolutions, downsampled from
the original image, greatly eased the tight texture memory resource
budget. The concept of Clipmaps [5], which are virtual mipmaps,
extended the mipmap concept to load arbitrarily large images into
graphics memory by splitting the images up into smaller pieces. It
is very close to our work, except for the fact that clipmaps only
considers a set of 2D textures of one image frame. OpenGL Volu-
mizer [3] implements clipmaps for volume data sets and supports
animation, but it does not have a mechanism to maintain a constant
video frame rate, and it is designed for 3D volumetric data, not 2D
video.

3 IMPLEMENTATION
3.1 Mipmap Generation and Tiling

In our approach, we pre-process the video frames in an off-line step
to create the mipmaps. We implemented a tiling [6, 7] technique in
which the atomic unit to read and write data is a texture of the same
size.

3.2 Mesh Generation

The first step of rendering a video is to subdivide the playback
screen into a set of tiles, which we call the mesh. The mesh is
comprised of multiple tiles of different mipmap levels. The goal
of subdividing the screen is to allocate the best possible mipmap
level to each region with a limited number of tiles. Another goal is

247

248

to distribute limited resources of disk read to the region as fair as
possible.

The mesh generation algorithm is based on a quadtree and the
view frustum culling test for each tile reduces the cost of quadtree
traversal significantly by pruning unnecessary nodes. During the
traversal, in order to assign priorities to each tile, a cost function,
cost(b), is given as area(b) /distance(e,b). distance(e,b) measures
the distance between the viewer’s location and the center of tile b.
The viewer’s location is given by the head tracker in the VE. The
tile that has the highest cost is selected and subdivided during the
traversal. Another variable, tileLimit, controls the number of tiles to
be rendered on the physical display screen and it guarantees that the
rendering system does not render more tiles than can be rendered in
the allotted time for the video frame.

3.3 Data Loading and Prefetching

We implemented three optimization methods to load necessary tex-
ture data from disk to system memory and then to the GPU effi-
ciently.

Prefetching One observation we made was that once viewers
in the VE walk up to a video clip, they often stop to watch it. At
that point, the tile mesh remains relatively unchanged. Thus, we
can use prefetching to load mipmap tiles for future frames ahead of
time.

Asynchronous I/O In order to accelerate the data transfer
between main memory and texture memory, a separate thread is
spawned and dedicated to asynchronous disk I/O operations. Every
disk read request is sent to the I/O thread via a message queue and
the I/O thread reads data whenever it finds a message in the queue.

Memory Pool and Cache The third optimization we imple-
mented is to pre-allocate a pool of memory blocks so data loading
can save time for allocating memory blocks. The pool of memory
blocks consists of a list of blocks, each of which can store the tex-
ture data of one tile. The pool is initialized both in main memory
and in texture memory.

3.4 Dynamic LOD Adjustment

The dynamic LOD adjustment algorithm monitors the image frame
rate. If the frame rate is below the video frame rate, then the algo-
rithm decreases the number of tiles to be rendered for the current
frame. Thus, the rendering system can recover from a burst of un-
predicted disk I/O requests, resulting in very low frame rates, and
as the frame rate becomes stable, tile limit is restored incrementally.

3.5 Synchronization

The time for rendering a frame changes over frames and this can
cause two types of synchronization problems: synchronization 1)
between frames and 2) between CAVE nodes. A synchronized
clock across all nodes of our CAVE software offsets frame num-
bers so that frame number changes neither too fast nor too slow.

4 RESULTS

We have implemented the above described video playback algo-
rithm for virtual environments running on PC clusters by writing a
C++ plug-in for the COVISE software framework. We tested two
different videos in our CAVE-like virtual environment, the Star-
CAVE [4]. It consists of five walls, each of which has three rear
projected screens, and there is a top projected floor. Each screen
is projected on by a pair of JVC HD2K projectors (1920 x 1080
pixels each), which are connected to an Intel quad core Dell XPS
computer running ROCKS [2], with 4GB of main memory and dual
Nvidia Quadro 5600 graphic cards. We distributed the video data to
the local hard drives of the nodes. In our experiment we used two
different video clip scenarios: one using a single 4k (3840 x 2160
pixels) clip showing the result of a tornado simulation created by

[Resolution [High [Medium [Low |
Image Frame Rate (fps) 1.79 17.27 60.09
Number of Tiles 151 24 6
Texture Size (bytes) 7,421,952 1,179,648 294,912
Texels/sec 4,428,431 | 6,790,840 | 5,907,087

Table 1: Performance comparison at three different video resolutions.
(Screen resolution: 1920 x 1080 pixels)

NCSA [1], the other one consisted of 32 low resolution (256 x 192
pixels) video clips. Tiles of 128 x 128 texels were used for both
data sets.

Table 1 compares rendering performance at three different reso-
lutions. The first experiment was set to achieve as high resolution
as possible. The total number of tiles loaded at every frame was
151, which corresponds roughly to the screen resolution. The av-
erage image frame rate was 1.79 fps. The medium resolution was
about DV quality, which we can render at 17 fps. The low reso-
lution setting used only 6 tiles to test the prefetching algorithm. It
turned out that all the tiles could be prefetched before rendering of
an image frame started. All three experiments were measured on
one node but at full screen resolution and all the previous buffer
cache blocks in main memory stored by the operating system were
flushed to prevent disk caching effects from influencing the results.

The second video data was, however, small enough to be cached
in the main memory of our system, and we deliberately allowed
disk caching. The operating system cached the data blocks read
from disk with a cache size of 2-3GB. Although our system does
not create a memory pool large enough to store the whole video
clip (1.3GB), after two or three playbacks, most data started to be
loaded at a much faster speed.

5 CONCLUSION AND FUTURE WORK

We have shown the design and implementation of high resolu-
tion video textures in VEs. The main disadvantage of the cur-
rent implementation is that data has to be preprocessed to gen-
erate mipmaps, which prevents it from being used for live video.
Since the downsampling process, however, is highly parallelizable
and modern GPUs provide hardware supported parallel computing
(e.g., CUDA), real-time downsampling might be feasible in the fu-
ture.

REFERENCES

[1] National Center for Supercomputing
http://www.ncsa.uiuc.edu.

[2] Rocks Cluster. http://www.rocksclusters.org.

[3] P. Bhaniramka and Y. Demange. OpenGL volumizer: a toolkit for high
quality volume rendering of large data sets. Proceedings of the 2002
IEEE symposium on Volume Visualization and Graphics, Jan 2002.

[4] T. A. DeFanti, G. Dawe, D. J. Sandin, J. P. Schulze, P. Otto, J. Girado,
F. Kuester, L. Smarr, and R. Rao. The starcave, a third-generation cave
and virtual reality optiportal. Future Gener. Comput. Syst., 25(2):169—
178, 2009.

[5] C.C. Tanner, C. J. Migdal, and M. T. Jones. The clipmap: a virtual
mipmap. In SIGGRAPH ’98: Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques, pages 151-158,
New York, NY, USA, 1998. ACM.

[6] W. Volz. Gigabyte volume viewing using split software/hardware inter-
polation. Proceedings of the 2000 IEEE symposium on Volume Visual-
ization, January 2000.

[7]1 D. Weiskopf, M. Weiler, and T. Ertl. Maintaining constant frame rates
in 3D texture-based volume rendering. Computer Graphics Interna-
tional, Jan 2004.

[8] L. Williams. Pyramidal parametrics.
17(3):1-11, 1983.

Applications.

SIGGRAPH Comput. Graph.,

