A GPU-Based Adaptive Algorithm for Non-Rigid Surface Registration

Antonio C. S. Souza*
Federal University of Bahia, Brazil
Federal Institute of Bahia, Brazil

Marcio C. F. Macedo®
Federal University of Bahia, Brazil

Anténio L. Apolinario Jr.¥
Federal University of Bahia, Brazil

Figure 1: Given reference (A) and deformed (B) surfaces related by a deformation error (C), our GPU-based adaptive non-rigid registration
algorithm successfully captures the main deformation present on the deformed surface (D) by minimizing the initial error estimated (E) also

running at interactive frame rate.

ABSTRACT

Non-rigid surface registration is fundamental when accurate track-
ing or reconstruction of 3D deformable shapes is desirable. How-
ever, the majority of non-rigid registration methods are not as fast
as the ones developed in the field of rigid registration. Fast meth-
ods for non-rigid surface registration are particularly interesting for
markerless augmented reality applications, in which the object be-
ing used as marker can support non-rigid user interaction. In this
paper, we present an adaptive algorithm for non-rigid surface regis-
tration. Taking advantage from this adaptivity and the parallelism of
the GPU, we show that the proposed algorithm is capable to achieve
near real-time performance with an approach as accurate as the ones
proposed in the literature.

Index Terms: 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems; H.5.1 [Information Interfaces and Presentation]: Multi-
media Information Systems—Artificial, augmented, and virtual re-
alities.

1 INTRODUCTION

In general, Augmented Reality (AR) applications deal with rigid
objects because of the availability of real-time 3D rigid registration
algorithms [2]. In this context, there is a set of objects that naturally
demands a special attention to possible non-rigid user interaction,
such as face (which can be deformed by facial expressions) or hand
(which can be deformed by the movement of fingers). However,
non-rigid surface registration still has some technical challenges
(e.g. high execution time) which makes it unsuitable for use in AR
applications.

The most common methods for fast non-rigid registration rely
on the building of a deformation graph to represent the deformation
for a given surface. In this representation, a graph is built from an

*e-mail:antoniocarlos @ifba.edu.br
fe-mail:marciocfmacedo @ gmail.com
fe-mail:apolinario @dcc.ufba.br

uniform sampling on the source surface. Each node of this structure
is associated with a 3D affine transformation which influences the
nearby space. Therefore, this deformation graph allows a source
surface to be deformed to a target surface based on the best affine
transformation estimated for each node by using a non-linear opti-
mization algorithm. We take advantage from this basis representa-
tion to present a fast adaptive algorithm for 3D non-rigid registra-
tion.

2 NON-RIGID REGISTRATION ALGORITHM
2.1 Surface Acquisition

The proposed algorithm requires a depth sensor and a computer
equipped with GPU. In this paper, the Kinect sensor is used to cap-
ture object’s depth data.

The main goal of the proposed algorithm is the fast non-rigid reg-
istration of two consecutive source (P) and target (P;) point clouds
(Figure 1, A and B respectively) to be used in a markerless AR ap-
plication. Therefore, the input data in our algorithm must be given
according to the markerless AR environment being used. To vali-
date our approach, we have used the environment proposed in [1].
In this environment, markerless tracking is performed based on a
3D reference model generated from the object that will be tracked
by the application. Rigid tracking is realized by a real-time variant
of the ICP algorithm [2], which estimates the transformation that
aligns the current depth frame (D;) captured by the depth sensor
with the previous depth frame (D;) represented by the 3D reference
model.

Given Dy and Dy, they are used to segment the object of interest
in the scene. A 2D bounding box that contains both source and
target objects is computed from both Dy and D;. From the bounding
box, it is discarded from the memory every position outside the xy-
axis of the bounding box. Afterwards, all these data allocated on the
GPU can be used by the proposed non-rigid registration algorithm.

2.2 Deformation Model

Our non-rigid registration algorithm is inspired in the Embedded
Deformation (ED) algorithm proposed in [3]. However, to achieve
near real-time performance, we have implemented it fully taking
advantage from the parallelism provided by the GPU. Furthermore,

Registered Object

Target Object Source Object

Embedded Deformation (16 nodes)

Registered Object
Embedded Deformation (64 nodes)

Registered Object
Adaptive Node Selection (20 nodes)

10mm

Figure 2: Accuracy comparison between ED algorithm and our adaptive approach with respect to the node selection.

to improve accuracy and to reduce the computational cost of the
entire solution, we have adopted an adaptive approach.

For the selection of nodes in the deformation graph G, we use
a quadtree-based algorithm which runs on the GPU. The algorithm
for node selection can be divided in two steps: the building of the
quadtree and the adaptive refinement/collapse of nodes in G.

We build the quadtree in the first iteration of our algorithm by
associating each GPU thread with a position on the 2D projection
of Ps to select a node iteratively for each level of the tree. For
collapsing of nodes, given a region C around the 2D position of
the node, the thread computes the average of an energy function
(defined in [3]) for each point € C. If the average error is below a
certain threshold ¢4, the children nodes in C must be collapsed and
the region C is represented by the parent node. For refinement of
nodes, the GPU thread computes the average error around a region
C. If this error is above th;,, the node must be refined, creating four
children nodes.

For the selection of constraints, instead of using all the points
from P as constraints for the optimization, we employ an adaptive
algorithm that performs the selection of constraints based on the
residual error previously measured. Given a region on P, the higher
the error, the higher the number of points selected as constraints for
the optimization.

In the first iteration, where the residual error still was not mea-
sured, an uniform sampling is used to select the constraints. A nxn
mask, with step n, is scanned through the 2D projection of P; at the
xy coordinates. The point at the center of this mask is selected to be
a constraint if it exists in Py (i.e. it is not in a hole). From empirical
tests, n = 4 produced the best results.

In the remaining iterations, we use the same n X n mask to per-
form a scan on the 2D projection of Py and its residual error. First,
the algorithm evaluates the average residual error at the n X n region
being scanned. Based on the average error E,,, and a pre-defined
threshold ¢4, the number of points selected at that region will be
defined.

Therefore, we select more constraints in the regions where the
deformation is high and must be minimized, but we still consider
the regions where the deformation is small or none, by selecting a
small number of constraints to represent them.

3 RESULTS AND DISCUSSION

In this section we analyse the performance and accuracy of the pro-
posed algorithm and describe the experimental setup used. For all
tests we ran our algorithm on an Intel(R) Core(TM) i7-3770 CPU
@3.50GHZ, 8GB RAM, NVIDIA GeForce GTX 660. We have
tested our algorithm in synthetic and real datasets with different
levels of noise and precision.

As each dataset has its own minimum and maximum errors, we
set the thresholds for adaptive node (t/,) and constraint selections
(th) to be half of the averaged root mean squared error measured.

The average accuracy results can be seen in Table 1. In compari-
son with the ED algorithm, we could improve over 30% of accuracy
by using adaptivity. Moreover, our approach is comparable to ED
algorithm using the triple number of nodes (Figure 2). In terms

|

Omm
Acc. (mm) Std. Dev. (mm) | Perf. (FPS)
Dataset | Adap. | ED | Adap. ED Adap. | ED
Synthetic | 0.58 | 0.83 | 0.46 0.6 18 6
Real 2.58 3.9 2.59 3.2 17 5

Table 1: Average accuracy (Acc.), standard deviation (Std. Dev.)
and performance (Perf.) results obtained by our adaptive algorithm
(Adap.) and the Embedded Deformation (ED) implemented in GPU
for real and synthetic datasets.

of using adaptivity for constraint selection instead of uniform sam-
pling with fixed step size, non-rigid registration achieves results as
accurate as the ones obtained by using all the points from source
object as constraints. Moreover, from the tests conducted, we need
only three levels for the quadtree building and refinement to register
two objects with an accuracy as good as the one obtained by related
work.

As can be seen in Table 1, our approach achieves interactive
frame rate. Moreover, it is up 3 times faster than ED algorithm.
The use of adaptivity for constraint selection greatly reduces the
processing time originally demanded by the ED algorithm. Op-
timization is a common bottleneck in non-rigid registration algo-
rithms [3]. The number of constraints selected is directly related to
the time required by the optimization phase. Therefore, by reduc-
ing adaptively the number of constraints used, we can achieve good
performance even for the optimization phase. Moreover, as long as
the error is minimized over the surface, the number of nodes is dy-
namically decreased from G. With less parameters to be estimated,
the optimization algorithm converges faster.

4 CONCLUSION AND FUTURE WORK

Here we present a fast method for non-rigid registration which is
able to register two noisy point clouds captured from the Kinect
sensor with high accuracy. We have extended and improved the
Embedded Deformation algorithm by applying an adaptive strategy
for distribution of nodes and selection of constraints. From the tests
conducted, we have shown that the proposed algorithm is faster and
more accurate than the original ED. For future work, we intend to
incorporate to our approach optimized implementations for GPU
processing.

ACKNOWLEDGEMENTS

We are grateful to the PCL project for providing the open-source
implementation of the KinectFusion algorithm. This research is
financially supported by FAPESB and CAPES.

REFERENCES

[1] M. Macedo, A. Apolinario, A. C. Souza, and G. A. Giraldi. A Semi-
Automatic Markerless Augmented Reality Approach for On-Patient
Volumetric Medical Data Visualization. In SVR, 2014.

[2] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
In 3DIM, June 2001.

[3] R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for
shape manipulation. ACM Trans. Graph., 26(3), July 2007.

