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Figure 1: CAVE-AR is a virtual reality (VR) authoring tool aimed at assisting designers in creating, simulating and debugging
augmented reality (AR) experiences. In the left image, a user in the real world is seeing AR content through his mobile device. On
the right, a second user is able to monitor in real-time, through our authoring system, what the real-world user is seeing, and debug
eventual faults. A dedicated panel displays hardware information about the user’s mobile device (a), whose horizontal positioning
accuracy is represented by a red circle (b). Two additional views display the estimated perspective of the user (c) and the live AR

video feed from the device camera (d).

ABSTRACT

Despite advances in augmented reality (AR), the process of creating
meaningful experiences with this technology is still extremely chal-
lenging. Due to different tracking implementations and hardware
constraints, developing AR applications either requires low-level
programming skills, or is done through specific authoring tools that
largely sacrifice the possibility of customizing the AR experience.
Existing development workflows also do not support previewing
or simulating the AR experience, requiring a lengthy process of
trial and error by which content creators deploy and physically test
applications in each iteration.

To mitigate these limitations, we propose CAVE-AR, a novel vir-
tual reality system for authoring, simulating and debugging custom
augmented reality experiences. Available both as a standalone or a
plug-in tool, CAVE-AR is based on the concept of representing in
the same global reference system both in AR content and tracking
information, mixing geographical information, architectural features,
and sensor data to simulate the context of an AR experience. Thanks
to its novel abstraction of existing tracking technologies, CAVE-
AR operates independently of users’ devices, and integrates with
existing programming tools to provide maximum flexibility. Our
VR application provides designers with ways to create and modify
an AR application, even while others are in the midst of using it.
CAVE-AR further allows the designer to track how users are behav-
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ing, preview what they are currently seeing, and interact with them
through several different channels.

To illustrate our proposed development workflow and demonstrate
the advantages of our authoring system, we introduce two CAVE-
AR use cases in which an augmented reality application is created
and tested. The first is an AR experience that enables users to dis-
cover historical information during an urban tour along the Chicago
Riverwalk; the second is a scavenger hunt that places virtual objects
within a real-world environment, encouraging players to solve com-
plex multi-user puzzles. In particular, we compare CAVE-AR to
traditional development methods and demonstrate the importance of
live application debugging.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interactive systems and tools; Comput-
ing methodologies—Computer graphics—Graphics systems and
interfaces—Mixed / augmented reality

1 INTRODUCTION

There are many challenges involved in creating meaningful narra-
tives reliant on overlaying virtual content atop real-world objects.
Interfaces that facilitate the design of such augmented reality (AR)
experiences currently lack a number of important functionalities, ow-
ing to both technical challenges and the difficulty of understanding
ahead of time how users will react to the components constituting the
experience. A primary task in AR involves determining how best to
overlay virtual content atop real-world objects or within real-world
spaces. Existing approaches include identifying features on objects,
keeping track of user and device locations, and incorporating ad-
ditional sensor data from beacons or cameras to increase accuracy
when placing virtual content. Dynamic settings containing many
users within complex environments can exacerbate the difficulty



of overlaying virtual content accurately, and causing a system to
fully understand the real-world environment, and the locations of
users within it in real-time, is not possible. Thus, despite recent
advances in the field, most AR applications are still relatively sim-
ple and single-user, and remain limited to very specific tasks or
hardware. For example, overlays are often created atop specific
environmental features detected by a camera through relative pose
estimation. Due to the tracking limitation described above, the con-
text surrounding each piece of virtual content is often lost, as well
as the eventual relationships between this virtual object and other
virtual objects or users—making it difficult to conceive and design
an AR experience and all its interactions within the same global ref-
erence system. Another challenge involves ensuring that objects and
interactions are correctly registered to specified real-world positions.
This task greatly depends on device-specific tracking technology
and on environmental conditions, and may greatly affect the overall
AR experience of the user. However, no standard way to assess the
robustness and usability of a particular AR application has yet been
defined, especially in collaborative or multi-user settings.

In this paper, we describe an effective abstraction of multiple kinds
of tracking technologies in order to enable an appropriate spatial
definition of virtual content. This enables the designer to effectively
position virtual objects within the real world; to define complex
interactions between content and users; to simulate an application
before its deployment; to remotely debug tracking performance in
real-time; and to understand how multiple users are behaving within
an AR experience. These capabilities result in an enhanced workflow
for developing AR applications[2] introducing simulation and debug-
ging as validation steps before and after deployment. Specifically,
we present CAVE-AR, a new system that facilitates both the design of
complex AR experiences as well as monitoring and communicating
with users taking part in these experiences. Both aspects of this
system rely on a virtual reality (VR) interface whereby a designer
remotely views and interacts with all aspects of the AR experience,
including 3D models of real-world buildings and other features,
maps of the environment, live camera views, and rich sensor data
from each player participating in the AR experience.

After describing technological contributions and interface design,
we provide details on two different AR experiences developed using
CAVE-AR that show this system at work in real-world projects that
serve as initial evaluations of the process of designing AR experi-
ences via a VR interface. The first, Riverwalk [12]], is part of an
ongoing effort by the Chicago History Museum called “Chicago
0,0” to promote public access to archival photographs. This appli-
cation shows a timeline of historical images on top of important
locations alongside the Chicago River. The second experience, Digi-
talQuest [10]], is an AR version of the classic“scavenger hunt” game
wherein teams compete to find, in this case, virtual objects, and
to solve challenges associated with these objects, as well as the
real-world locations where they are situated.

2 RELATED WORK
2.1 Authoring Tools for AR Content

Over the last decade, AR has emerged as an effective technol-
ogy in education, entertainment, medical, and engineering applica-
tions [8l/13118]]. As many different sectors continue to take advantage
of the unique affordances of AR, effective authoring tools are needed
so that developers and artists can quickly create and customize AR
experiences. However, building AR applications requires dealing
with multiple, unrelated tracking technologies and hardware con-
straints [27]], and no standard patterns for design and development
have yet been defined. In general, content creators face a difficult
choice between focusing on low level programming, which ensures
flexibility and customization, or working with higher-level graphical
tools, which are simpler to use but are still far from satisfactory
in terms of interaction support and hardware abstraction [18]]. Pro-
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Figure 2: Workflow comparison for the development of augmented
reality applications. While common authoring tools require designers
to deploy an application before testing it, CAVE-AR enables quicker
development iterations by supporting simulation and live debugging.

gramming toolkits such as ARToolkit [7] are meant to facilitate the
development of AR applications and guarantee high flexibility, but
require low-level skills that are often impractical for content devel-
opers to learn. Plug-ins to existing developer tools and standalone
authoring tools do enable end users to create their own AR content
easily with minimal computer skills, though the content is mostly
very simple [8]]. Authoring paradigms, deployment strategies and
dataflow models vary among different authoring tools [37]]. Many
2D graphical tools provide a user-friendly approach to placing virtual
objects in mixed reality scenes, for instance by setting overlays to be
shown when an image target is identified [20]. Similar web-based
tools are also used for defining the geoposition of virtual content in
location-based experiences [33] and for creating augmented reality
presentations [[17]. These tools sometimes define their own custom
languages for content and the specification of rules [24,/38]], both
of which are necessary for enabling more flexible interactions and
storytelling (a particularly important focus in media production). To
overcome the difficulty of manipulating tridimensional content us-
ing 2D user interfaces, other solutions have adopted simple content
and interaction prototyping directly within augmented reality [8]],
either leveraging gestures [39]] or tangible interfaces [21]. We refer
the reader to the tables in [[18] for a more detailed comparison of
existing authoring tools. These figures illustrate the divide between
many recent research prototypes, which collectively focus on the
creation of small AR experiences tailored to specific tasks 28], and
few commercial solutions having broader usability, but very limited
features for non-programmers.

Our CAVE-AR solution adopts a hybrid standalone / plugin imple-
mentation. We believe a full standalone architecture cannot satisfy
the customization requirements of more complex applications, and
could lead the authoring tool to produce experiences that are too
specific. CAVE-AR is also independent of any particular device or
tracking technology, instead proposing its own abstraction model.
A separate issue affecting the authoring of AR experiences is rep-
resented by the scarce availability of 3D content, which is often ex-
pensive and time-consuming to create [27]. Dedicated 3D modeling
and animation tools have been created for this purpose, and some so-
lutions even include the creation of content inside AR/VR [6/22,/43]],
but their discussion is outside the scope of this paper.

2.2 Debugging and Simulating AR Experiences

While virtual and augmented reality have been successfully used to
debug applications and systems across many domains [|14,/30], al-
most no applications have been developed to debug AR experiences
themselves. After having defined the content and interactions for an
AR application, the biggest challenge indeed lies in managing the
relationship between the physical and virtual world at run-time. Due



to the significant influence of unexpected environment conditions
and highly variable hardware configurations on AR applications,
they often do not perform as intended once deployed, and require
thorough real-world testing [16]. Unfortunately, the need to be
physically present in the environment being augmented during the
development cycle can be difficult due to factors such as weather
and lack of ergonomic work areas, and properly handling real-time
events and interactions is sometimes impossible [27]. Some live
visualizations have been created to debug specific computer vision
algorithms [23]], but not much has been done to formally evaluate
the multiple components that, when combined, characterize an AR
experience. A possible solution to previewing AR experiences might
be by simulating them through VR interfaces such as HMDs and
CAVE environments [9}[35]]. Some experiments have already been
performed to evaluate the effects of latency [23]], visual realism [26]
and field of view [36]. CAVE-AR proposes a virtual reality approach
to AR simulation, enabling the user to preview the effects of field
of view and overlay alignment within the application context and
in relation to its content. Further, our system allows for debugging
the high-level real-time performance of tracking algorithms, espe-
cially their interactions with the real-world environment, hardware
specifications, and user behavior.

2.3 Behavior Monitoring, Usability Evaluation and User
Support in Multi-user Settings

Problems associated with the design, simulation, debugging, and
evaluation of AR experiences compound in collaborative applica-
tions [42]. While developers may enjoy a proliferation of new
platforms, devices, and frameworks , the creation of large-scale,
collaborative AR scenarios is indeed confined by the difficulty of
transcending device restrictions and platform-specific sensing ca-
pabilities, connecting coordinate systems, and resolving differing
interaction modalities and end-user experiences. Interaction among
small groups of AR users has been studied with both co-located
and remote participants only for relatively simple applications and
tasks [T9291[311[34]. In an attempt to foster the design and debug-
ging of larger scale experiences, CAVE-AR supports development
of multi-user, hardware-independent AR experiences, and enables
real-time user monitoring and historical behavior analysis. It also
introduces some unique ideas for live experience modification and
user support.

3 CAVE-AR

CAVE-AR is a virtual reality software system that can act both as a
standalone tool and as a plugin to existing development tools, specif-
ically Unity 3D [2]. When used as a standalone tool, CAVE-AR
outputs a fully-implemented AR application at the end of the author-
ing process as a Unity project, which can then be easily deployed
to any platform. As a plugin, CAVE-AR is imported as a package
to an existing Unity project, linked to tracking libraries, and then
run directly within the Unity editor. We decided on this deployment
strategy for three main reasons: 1) Unity is the most widely used
3D development platform in the world, with 60% coverage of all
new AR/VR experiences; 2) the design of an AR experience should
be platform-independent, and Unity already supports cross-device
deployment; and 3) we want to allow developers the flexibility
to modify and fully customize our system’s output, a feature not
available in existing standalone authoring tools. Both CAVE-AR
implementations support bidirectional networking features such as
remote debugging, live editing and monitoring. The device hosting
CAVE-AR instantiates a WebSocket server to which all deployed
client applications attempt to connect.

CAVE-AR also comes in two different virtual reality flavors.
Our original implementation involves the use of CAVE2 [T3]], an
immersive environment characterized by a 320 degree field of view
and 72 cylindrically arranged screens that support 3D stereoscopic
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Figure 3: Spatial definition of the AR experience. To enable cross-
application compatibility and facilitate contextual authoring, CAVE-
AR uses the same spatial representation for both AR content and
tracking information, aligning their coordinate frames. While a user
moves around in the real world, a virtual camera moves and rotates
accordingly in the virtual scene, enabling simulation and debugging of
that AR experience.

rendering. A second implementation of CAVE-AR makes use of
more common VR head mounted displays such as the HTC Vive
and the Oculus Rift [5]. Both implementations have the same
features, but, as we will discuss further in the Use Cases section,
each has unique advantages depending on intended use. In particular,
CAVE2 is a large workspace enabling multiple people to collaborate
in the design process; while HMDs are relatively inexpensive and
portable, and more suited to first-person-perspective simulation.

In this section we first introduce our model for abstracting differ-
ent tracking technologies and making the design experience device-
independent. Using this spatial representation as a basis to provide
designers with contextual information, we describe the content and
interactions involved during the authoring process. We then explain
designers can preview their applications from the perspective of a
possible user using a simulation. Finally, we show how that simu-
lation can be extended to assist in remote debugging of a deployed
application and live monitoring of multiple users.

3.1 Mixing Realities

Augmented reality experiences are, by definition, based on a mixture
of two types of information: one is associated with the real world
surrounding the AR device, and is encoded as a flat live video feed;
the other is related to digital content generated by an application, and
generally based on user-generated events or sensor data. While we
know exactly how virtual content is generated, we tend not to have
a model of the location where the application takes place. Some
environmental features can be inferred through sensors, video feeds
and, sometimes, depth information, but this data is limited to the area
being observed by the user and cannot be conceived of on a larger
scale. This limitation prevents content creators from building AR
experiences that leverage a global understanding of the environment,
making the definition of spatial interactions among multiple users
and virtual objects very complicated. CAVE-AR attempts to over-
come these issues by complementing the live real-world representa-
tion provided via camera stream with a corresponding tridimensional
digital reconstruction. This additional information, available through
many 3D map providers such as WRLD [4]], provides context on
the environment where the AR experience takes place, though it
does require that designers first define correspondences between the
physical and virtual worlds.

Aligning coordinate frames Our strategy of mapping virtual world
coordinates to real world locations is inspired by classical implemen-
tations of location-based augmented reality applications, in which
all augmented content is associated with specific Earth coordinates.
As shown in Fig. E|, we define a one-to-one correspondence between
the virtual world and the real world. This is accomplished through
standard projection methods [32]], which allow us to translate lati-



Rel Pos Rel Orient Abs Pos Abs Orient
Sensor-based Limited Yes Yes Yes
(odometry) (gyro) (GPS) (compass)
Limited Limited
Target-based Yes Yes
arget-base es es (fiducial pose)  (fiducial pose)
SLAM-based Yes Yes No No

Table 1: Abstraction of different tracking technologies using a combina-
tion of three virtual cameras, defined within the same global reference
system. The table reports the availability of relative/absolute device
position and orientation based on active tracking technology. In par-
ticular, we note how CAVE-AR enables absolute pose estimation in
target-based AR by explicitly defining size, position and orientation of
fiducials.

tude, longitude, and height into cartesian coordinates (X,Y,Z). We
set 1 meter to equal 1 virtual unit, and we associate the (X,Z) plane
and the Y axis to ground (sea level) and height, respectively. In order
to define absolute orientation, we align the Z axis with geographic
North. In particular, we define a fixed point on the ground plane as
our origin, then compute all the other points in relation to that one.
The origin point in the virtual world could correspond, for example,
with the initial location on Earth (latitude and longitude) of a user
running the AR application. The user’s mobile device is mapped
to a camera in the virtual world, whose position and orientation
correspond to the physical position of the device in the real world,
and change according to user movement. By lending the virtual
camera the same field of view as the real camera, and within the
approximation associated to the projection, we make what the user
is seeing on his device the same as what the virtual camera renders.
This concept of a synchronized “moving window” on the virtual
world opens up the possibility of simulating what the user would be
or is currently observing without the need for a live camera feed.
Tracking technology abstraction The previous model is based on
the assumption that, at any point in time, we can model the move-
ment of a user’s device using global coordinates. Whether this is
possible depends on the tracking technology used by a particular
AR application, and on the hardware available on the user’s device.
‘We can, however, consistently obtain minimal information required
to estimate the global position and orientation of the camera by com-
bining and abstracting common tracking technologies. In particular,
CAVE-AR utilizes three main forms of tracking, summarized in
Table [Tt

» Sensor-based tracking. Typical of location-based AR appli-
cations on smartphones, this category is a perfect fit for our
method. Absolute positioning is generally available through a
GPS sensor, whereas the combination of gyroscope and com-
pass, generally included in a single inertial measurement unit
(IMU) sensor, enables extending relative rotations to an abso-
lute orientation in space. The main drawback of this type of
tracking is related to refresh rate and precision during small
movements, sometimes corrected by integrating acceleration
or with various odometry implementations.

* Target-based tracking. Widely used in advertisement, this
tracking type computes only the relative pose of the device
camera with respect to predefined targets (markers, fiducials),
identified from the live camera feed using computer vision
algorithms. In this case, the only way to obtain absolute po-
sition and orientation is to define real-world dimensions, and
the position and orientation of fiducials in 3D space, thus en-
abling inference of the camera’s global position. Performing
this operation manually is, however, highly impractical.

» SLAM-based tracking. Simultaneous Localization And Map-
ping (SLAM) is a computer vision method for estimating the
behavior of a camera as it moves within an environment. Great

for detecting small movements and rotations and often robust
enough to cover long distance, SLAM suffers, however, from
environmental conditions, and its algorithm lacks knowledge
of the starting point of the device in space.

We note that these are not the only existing forms of tracking, and
that AR applications often combine of them (e.g. image-tracking
is combined with IMU information to provide so called “extended
tracking”). Observing Table[T} and considering that almost every
smartphone nowadays possesses good GPS and IMU sensors, it is
clear that global camera pose can be estimated in most cases, at
least for outdoor AR experiences. We emulate absolute position and
orientation for SLAM-based tracking by adding information from
the IMU sensor, and bring target-based tracking to a global reference
system by automatically computing size, latitude and longitude of
fiducials within our authoring tool. In case of a complete absence
of global georeferencing, CAVE-AR can still be used with relative
spatial coordinates, though the system will lose its ability to virtually
represent the real world surrounding the user. When used as a
standalone tool and not as a plugin to an existing project, CAVE-AR
generates fully-implemented AR experiences with custom tracking
technology implemented by us. Also known as the “triple camera”
approach [[11]], this method intelligently combines sensor, fiducial
and SLAM information through the use of three virtual cameras,
which alternate rendering content based on context. For instance,
smoothed transitions are performed from GPS absolute positioning
to SLAM-driven relative positioning when the user is approaching
virtual content in order to guarantee better responsiveness to small
movements.

3.2 Content Authoring

When CAVE-AR is launched, a predefined real-world location is
loaded and its environmental representation is built around the user
by querying external 3D map providers such as WRLD [4]. The
examples provided in this paper used a the virtual model of the city
of Chicago, specifically the University of Illinois at Chicago campus
and the downtown area.

Virtual content All virtual content shown during the AR experience
is visible from our tool, and located in the same position and orien-
tation in which it is supposed to appear in the real world. While the
plugin-version of CAVE-AR supports any type of content defined
in Unity, our standalone implementation currently supports follow-
ing content types: 2D images or videos, oriented in the 3D space;
3D meshes, including both static and animated models; and spatial
audio, played according to the position and/or orientation of the
user. Fiducials, which are not shown within the AR experience, are
also available in our authoring tool. Used by target-based tracking
technologies to infer the position of a device’s camera, fiducials gen-
erally consist of flat images (patterns, textures, markers) of the real
world. In our approach, fiducials are imported into the CAVE-AR
scene and positioned corresponding to the real-world position from
which their pictures were taken. For instance, if an AR application
uses the image of the facade of a building for tracking, this image
is placed in the virtual environment corresponding to the virtual
representation of that building’s facade. Despite normally not being
required for an AR application to work, this system allows us to
determine the global position of a user in the real world, even in
the absence of a GPS, and enables interactions between pieces of
virtual content associated with separate fiducials outside the device’s
current field of view. We note that an imprecise positioning of a
fiducial inside the virtual environment is not disastrous, though it
may lead to unreliable estimations of the user’s position during the
debugging process. The state of the authoring session is saved peri-
odically in CAVE-AR’s internal database, which stores the latitude,
longitude, height, orientation and scale of each virtual object. This
information is automatically loaded in subsequent sessions. Thanks
to our abstraction model, authoring an AR application becomes less



about the tracking technology, and more about the actual creation of
the AR experience using a standard spatial positioning system.
Interactions Our CAVE2 and HMD implementations both allow
designers to interact with the authoring tool in equivalent ways.
CAVE2 users interface with the tool through a wireless controller (a
modified Playstation Move, sometimes referred to as a “3D wand”),
whose movement in space is tracked by CAVE2’s 14-camera system
[T3]. Similarly, the HMD implementation makes use of a typical
VR controller, whose position and rotation is tracked by HTC Vive
or Oculus Rift’s own cameras. Both controllers, despite having
features mapped to different buttons, enable the same point-and-
click, raycast-based interaction with the virtual environment. After
opening a dedicated curved UI panel with the press of a button,
the designer can browse his computer for content to add to the
experience using the controller joystick. Content is then attached
to a raycast extending from the front of the controller, and can be
placed anywhere inside the virtual environment. In both CAVE2 and
HMD, the user can move within the environment before and while
placing an object by using the joystick, while left and right rotations
are controlled either by head motion or by two separate buttons.
We note that, for this specific task, CAVE2 enables a much larger
field of view, while HMDs allow for easier camera orientation and
placing of content in very high or low locations. A dedicated outline
shader is applied to virtual content to make it distinguishable from
meshes belonging to the environment. In a similar way, the designer
can select one or multiple objects at a time and translate, rotate,
scaled, clone, or delete them with a combination of buttons and
joystick. When a virtual object is selected, a pop-up panel displays
its type, size in meters (height, width, depth), and location (latitude
and longitude).

3.3 Application Preview and Simulation

To avoid deploying and testing an application every time a small
modification is made, it is important to enable the designer to preview
the experience during the authoring phase, and doing so has been
shown to considerably reduce overall development time. Providing
a navigable virtual representation of the real world itself represents
a form of virtual reality simulation. However, this simulation still
does not reproduce the first person perspective and the window-on-
the-world effect typical of AR experiences. Mobile AR devices still
suffer from very limited field of view, often causing a “zoom” effect”
reducing the amount of virtual content representable on a screen.
Since in our authoring tool AR content is by default always visible,
the designer may not pay enough attention to the fact that, depending
on the device adopted, certain content may not be visible from a
particular position, could be too close to the screen, could occlude or
intersect with other content, could be unreadable from the distance,
or might require the user to move his device in order to observe
virtual objects in their entirety. For this reason, we enabled designers
to activate a dedicated user perspective mode within CAVE-AR.
After selecting a few preset mobile device configurations or by
manually inputting the field of view and screen resolution of a target
device, CAVE-AR instantiates a new perspective camera matching
the desired FOV. In CAVE2 this is implemented through a fixed
rectangular mask whose size is based on the proportions of the
target device, and which partially obscures the remaining areas
of the CAVE2 environment; similarly, the HMD implementation
simulates the restricted field of view as a virtual phone that can be
freely moved with the VR controller. In both cases, while the real
world representation remains available, AR content is rendered only
inside this device simulation window (Fig.[d). By navigating the
environment and observing it through the device simulation window,
the designer can better intuit how content will be perceived by a user
on a specific device. In CAVE2, due to perception bias caused by
the dimensions of this workspace, an additional window renders the
view of an external camera looking at the designer’s virtual position,

Figure 4: User perspective simulation as seen in the HMD implemen-
tation of CAVE-AR. A window on virtual world, rendered based on the
target device hardware configuration, can be used by the designer
to simulate how AR users would perceive the virtual content. In the
example above, the designer realizes that the location and scale of
the AR content would not allow the user to interact with it as intended.

so as to give him a more precise sense of his own location. While
using this mode in the plugin version of CAVE-AR, custom Unity
scripts associated with virtual objects are executed as in a normal
deployed application. The trigger button of CAVE-AR’s controller,
combined with raycasting, together simulate the touch events that
would happen during the execution of the application on a mobile
device. This allows designers to not only preview virtual objects,
but also to interact with them and test related game mechanics.

3.4 Debugging and Live Authoring

Any software application needs to be thoroughly tested before being
deployed and distributed to a large number of users. With augmented
reality, applications typically require deployment to a device to be
properly tested. When this happens, it is generally done only in a
qualitative way, by few experimenters in a constrained environmental
setting, and with a non-systematic trial-and-error approach. No
standard debugging patterns for the development of AR applications
have yet been defined. Our solution to this problem involves enabling
designers to remotely observe an application’s performance and the
behavior of its users directly from the CAVE-AR authoring tool.
This is made possible by a socket-based networking implementation
enabling client applications to connect to our tool, which acts as
a server. Camera pose, live video feed and other sensor data from
the mobile device are streamed and collected by CAVE-AR, which
presents them to the designer in real-time. Each AR object is also
associated with a network identity, and bidirectional changes to its
position, orientation and scale are transmitted between clients and
server.

Monitoring users Based on the information obtained from users’
devices through our abstraction model, we are able to specify user
position inside the virtual environment. Specifically, we represent
users as to-scale human avatars, whose heads and bodies rotate ac-
cording to the current device’s absolute orientation. A new avatar
is instantiated in the authoring tool every time an instance of the
AR application is initiated and connects to the internet. The avatar’s
horizontal position and orientation are continuously updated as the
user moves and rotates his device in the physical world (Fig. ref-
fig:compose). On selecting a user with CAVE-AR’s controller, a
wireframe indicating that user’s device camera frustum is rendered
in front of the avatar’s eyes, allowing for a more precise visualization
of the orientation of that device. A pop-up panel displays the user’s
latitude and longitude coordinates and, based on availability, live
information about his device such as its 1) model, operating system
and screen resolution; 2) camera field of view and resolution; 3)
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Figure 5: Live user monitoring in CAVE-AR. In the above figure, the image on the left shows a user with a piece of virtual content that has been
added to the the real world, while the middle image represents how that user is seeing the AR overlay through his mobile phone. The image on
the right demonstrates how user and virtual elements are represented at real-time in our authoring tool, together with a partial reconstruction of

the environment.

screen resolution; 4) estimated horizontal accuracy of the device;
5) rendering framerate; 6) tracking framerate; 7) currently active
tracking type. A dedicated side panel is used to list all currently
connected users, who are also represented on a mini-map so as to
quickly infer user position. By clicking on a user identifier, the
designer can move the perspective of the authoring tool directly
to where that user is located, thus avoiding the task of manually
moving to that position. We note that this representation of users is
an approximation that does not encode vertical device movements,
which are more common in target-based and SLAM-based AR ap-
plications. For this reason we include a setting to replace the 5
degrees-of-freedom (DOF) avatar representation with a full 6 DOF,
but using a less realistic, geometric representation.

Debugging tracking performance Once an AR experience has
been created, designers and content creators would like to assume
that virtual content will be correctly positioned in the intended
location,and user interactions will work. Unfortunately, this is not
always the case when applications are deployed in the real world. In
particular, tracking errors are a chief cause of content displacement
and other application faults, and can only be detected while the
application is being executed on a physical device. While some may
argue that tracking technology should not be a focus in the authoring
process, we firmly believe that debugging tracking performance is
a fundamental step in the overall development workflow, and can
often be influenced by design choices. Therefore, in CAVE-AR, we
enable designers to monitor location accuracy and visual matching
of virtual content. It is very common, especially in location-based
AR applications, for virtual content to drift in horizontal space
and appear in unintended real-world locations, mostly due to GPS
inaccuracies. Almost all smartphone devices nowadays provide
an estimate of horizontal accuracy, that, in our case, represents
the estimated positioning error on displaying a virtual object for a
particular user. We visualize this measure as a circle around the
user’s avatar (Fig. [I[p and 5f), whose radius is equivalent to the
horizontal GPS accuracy, and whose area represents the where the
user is estimated to be located in space. Another method we propose
to estimate the precision of AR overlays leverages the device’s live
camera pose and field of view. Similar to the simulation method
introduced in Section 3.3, this method creates a virtual camera in
correspondence with a device’s location in the virtual environment
(at the position of the user’s avatar head), and forces that camera’s
FOV to match that of the physical device. As this virtual camera
follows the real movement of the physical device, visible content
(Fig. Eh) becomes a virtual representation of what we believe the
user is currently seeing, according to sensor data. Absent any other
form of streaming, this allows designers to estimate what users are
seeing. In CAVE-AR, we complement this feature with a simple
form of live video streaming, which shows the content displayed on
the device’s screen (Fig. [I{), and corresponds with what the user
is actually seeing. By comparing the two views side-by-side, it is
possible to reason about the genesis of tracking errors. For instance,

a rotational mismatch between the two views probably indicates
magnetic interference affecting the gyroscope of the smartphone,
whereas a the display of two completely different locations could be
related to a bad GPS signal due to tall buildings surrounding the user.
In remote debugging, the live video stream further allows designers
to identify external elements that are not modeled inside the virtual
environment, such as weather conditions, the passing of people
or cars, modifications to the environment —all factors that may
significantly affect the AR experience. When a user is selected and
the “user perspective mode” is activated, the position and rotation of
the designer in the virtual world automatically follows those of the
selected user, and a window to simulate that user’s field of view is
applied as described in Section 3.3. While we provide some initial
forms of quantitative performance evaluation in [T1]], the methods
presented here are mostly qualitative, and we are currently working
on defining dedicated visualizations and metrics to better summarize
the overall visual reliability of AR experiences.

Live authoring and other experimental features The bidirec-
tional link between virtual content visualized by AR users and corre-
sponding content visible from CAVE-AR gives designers the ability
to modify content position during a live AR experience. This fea-
ture can be useful in prototyping or testing certain design choices
during the same AR session, allowing for dynamic content reconfig-
uration based on external variables such as time, weather, and the
behavior of the other users. In other situations, live editing can be
used to improve, at run-time, the position of virtual objects that are
unreachable by users due to environmental constraints such traffic,
construction, and crowds. In a future version of CAVE-AR, we are
considering other experimental features aimed at even more directly
involving the designer during live AR experiences. In particular, we
are implementing audio streaming and a notification system to open
bidirectional communication channels between designers and AR
users, as a complement to participant monitoring. A similar idea
involves making the presence of the designer available in the AR
experience, in the form of an avatar, to provide guidance and live
support to users.

4 Use CAsSES: Two EXAMPLE AR EXPERIENCES

We used the CAVE-AR authoring tool to help two groups of devel-
opers and content creators design, simulate, and debug two different
AR experiences, Riverwalk and DigitalQuest, both taking place in
the city of Chicago. In this section we describe the limitations en-
countered in attempting to build the same applications using existing
authoring methods, and how the use of CAVE-AR successfully al-
lowed developers to overcome those limitations. We include direct
feedback from the developers, who adopted the CAVE2 implemen-
tation of our authoring system for building both applications.

4.1 The Chicago 0,0 Riverwalk AR Experience

Riverwalk is a mobile augmented reality application developed
for the Chicago History Museum, aimed at overlaying historical
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Figure 6: Workflow comparison for the development of the AR application Chicago 0,0 Riverwalk. The workflow previously used by designers
consisted in assigning AR overlays to Vuforia Image Targets from the Unity Editor [2], generating a cluttered view with no notion of space (left
image). In our approach (center), a virtual reconstruction of the environment provides context to help the placement of AR content, enabling the
spatial combination of multiple virtual objects during the same tracking instance (right image).

photographs atop current views of the city. The application was
originally developed by three graphic designers using Unity in com-
bination with the Vuforia library. A typical development prac-
tice with Vuforia (and similar image-tracking libraries) consists of
shooting pictures of real-world objects of interest, automatically
extracting feature descriptors for these images, and specifying which
overlay should be presented to the user when objects are detected
and properly tracked. This process presents several issues, such as
limited flexibility in guiding overall user experience, the difficulty
in matching content with real views of the city, and the complete
absence of a notion of space. For instance, Fig. |§| shows how River-
walk originally looked in the Unity3D editor — a cluttered view
wherein historical overlays of Chicago are stacked on top of each
other, and lacking any contextual information on the environment
in which they will appear during the AR experience. Additional
challenges associated with the development of this application in-
cluded testing each new version on-site in the winter (sometimes
during snowstorms), and experimenting with tracking algorithms
beyond those implemented in Vuforia, since the lighting conditions
and reflections in downtown Chicago often made standard image
tracking unreliable.

Authoring and simulation Since the application did not involve
complex interactions, the three designers decided to re-create the
application from scratch using a standalone CAVE2 implementation
of CAVE-AR. “I was a bit skeptical when I heard we would have
needed real world dimensions and locations of the pictures we al-
ready took of building facades”, one designer initially commented,
“but fortunately this process is transparently handled by the system
itself.” Two of the three designers regularly came to our CAVE2
location and used the system to virtually fly over the buildings in
downtown Chicago and “snap” their fiducials to the correct facades
and architectural views. As one designer explained, “On top of
enabling AR content even when visual tracking is not available on
the user’s device, this spatial representation is great for me to get
a feeling of the environment that will surround the user while he
experiences our historical photographs — an aspect that I felt was
missing while using Vuforia alone.” CAVE-AR proved to be effec-
tive even for AR experiences which are not primarily location-based.
Another widely used feature of the tool was its ability to preview the
experience from the user’s perspective. Designers leveraged this fea-
ture to check the alignment of the historical AR content with current
architectural features. Eventually, they realized that, due to the type
of overlays being used in this application, overlays were correctly
perceived by users only from specific vantage points and when posi-
tioned at a certain distance from the viewer. Similarly, simulating
the average mobile device field of view caused designers to discover
AR views cluttered by too many photographs or views where large
overlays were not easily viewable from the smartphone’s display. To
solve these issues, a pre-established path along the Chicago river-
walk was established, and content creators developed a dedicated

Virtual content

Figure 7: Sample screenshot from the DigitalQuest AR application. A
virtual object has appeared in front of a public sculpture, but the user
still needs to get closer to activate its challenge. The bar in the upper
left-hand corner indicates the user’s score, while the buttons in the
upper right-hand corner display available riddles and enable the map
view, respectively.

narrative using the CAVE-AR simulation. “We generally used to
take the subway to downtown Chicago every day to test our new
modifications. Designing the application entirely remotely saved us
a huge amount of time,” declared one designer.

Debugging and monitoring While previewing the Riverwalk AR
application improved the content authoring phase of its development,
remote debugging proved even more valuable in creating a reliable
user experience. One of the designers, plus several other colleagues
living in the downtown area, offered to install the application on
their mobile devices and test it under different weather and lighting
conditions. The remaining two designers coordinated to observe the
app’s execution live from CAVE-AR. Initial results revealed the unre-
liability of GPS and considerable drift in devices’ gyroscopes, which
led designers to reconsider the placement of content not associated
with fiducials. In particular, photographs that required exact match-
ing with views of the city were either removed or associated with
newly generated fiducials. Designers also realized that the images
provided as fiducials did not generalize to all lighting conditions.
This required the collection of multiple copies of each, taken at
five different times of the day and under various weather conditions
(oversampling), which were then imported into CAVE-AR. This
process greatly improved tracking and, consequently, the overall
user experience. Statistics on the level of tracking accuracy achieved

are reported in [T1]].
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Figure 8: Identification of content positioning errors in DigitalQuest.
This picture illustrates how horizontal inaccuracy, represented by the
red area under the avatar, can significantly affect the positioning of
virtual content on a mobile device. In this example, the object is
rendered in the middle of the street, and therefore made inaccessible
by passing cars. Thanks to live authoring, the designer can detect
and adjust these kinds of issues at run-time.

4.2 The DigitalQuest AR Experience

DigitalQuest is a mobile application aimed at fast-paced AR
experiences in which teams of users compete to solve the greatest
number of challenges, all of which are connected to virtual objects
located in the real world (Fig.[7). When a user reaches a virtual
object, an animation is displayed and a riddle is presented, often
with additional multimedia content. If the puzzle is solved, the user
gains points and unlocks one or more new challenges. Defining
these custom behaviours, from the events connected with a single
virtual object to which challenges unlock which other ones, is hard to
imagine doing through any existing general-purpose authoring tool.
For this reason, the two application developers originally created
their own custom implementation leveraging the Unity3D engine.
They integrated IMU-driven, location-based augmented reality with
Kudan AR’s SLAM technology [1I]], and loaded virtual objects at
run-time based on a textual dataset of GPS coordinates, and on
the current user location. Developers typically selected reasonable
locations for their virtual objects using Google Maps, retrieved their
latitude and longitude, and manually added them to DigitalQuest’s
internal dataset. However, this simple implementation did not prove
to be robust enough when deployed in the real world due to imprecise
content positioning. The developers decided to use CAVE-AR to
debug the application prior to deploying it for a scavenger hunt event
set on the University of Illinois at Chicago campus.

Authoring and simulation Since the application already possesses
complex gameplay and custom interactions with virtual content, the
developers decided to use CAVE-AR as a plug-in to their existing
Unity project. Concretely, this involved maintaining two separate
Unity scenes, one for CAVE-AR and one for the client AR applica-
tion, that shared the same virtual content and definition of space. In
this situation, the CAVE-AR Unity scene was easily deployed and
run in our CAVE2 environment. While consulting a map can provide
some information on the possible surroundings of a virtual object,
the 3D environment available through CAVE-AR gave developers
the ability to preview how objects would look in specific locations,
and eventually detect more appropriate nearby places for positioning.
“I really liked the possibility to navigate the university campus as a
real player, since it made me realize the time and the path required
to move to different locations”, commented one developer. In partic-
ular, simulating users’ paths when resolving challenges in the game
led to design decisions such as restructuring the order and location
of riddles.

Debugging and monitoring CAVE-AR was used for a live debug-
ging session where 10 participants used DigitalQuest simultaneously,
participating in a dry run of the AR scavenger hunt event being orga-

nized on campus. Developers monitored the behavior of participants
remotely using CAVE2, within which they could fly over a virtual
model of the university campus and observe the live movements of
each user. Observing how much time users spent solving certain
puzzles and finding particular objects raised unexpected questions,
the consideration of which later helped developers improve object
displacement and riddle difficulty. Some of these modifications were
tested live by altering the position of content at run-time through
CAVE-AR. For instance, due to an unexpected inaccuracy in the
device of one user, an object that expected to appear on the edge of
aroad was instead rendered in the middle of the street, and therefore
made inaccessible by passing cars El After one developer moved the
object backwards towards the user, that user was able to reach it, and
those who came after him did not encounter the same problem. Sim-
ilarly, an object that had been located in a narrow passage appeared
inside of a building, making it unreachable for players; moving the
object to a nearby open position seemed to solve the problem. In
another case, an object was intentionally moved away from a group
of too many users: some still followed the object, set on continuing
to resolve that puzzle, while others dispersed and switched to a
different challenge nearby. Overall, observing the global behavior
of multiple users participating in the same AR experience proved
extremely useful in improving overall application usability. “Testing
an application on your own in a lab is human, hardware and environ-
ment circumstances may prevent a normal execution, and the goal
is to minimize these possibilities ahead of time”, commented one
developer. While in this use case monitoring happened in real-time,
we are currently implementing the ability to log data from a user
session and review it at a later moment, possibly with visual aids
such as heatmaps that show the positions of users over time. We
would also like to further explore how live content authoring can be
use to improve AR applications at run-time.

5 CONCLUSION

In this paper we presented ways our novel CAVE-AR authoring tool
can be effectively used to create and edit various augmented reality
experiences, leveraging a location-based approach which abstracts
various flavors of AR and aims at partially reconstructing a virtual
copy of the real world. Using our method, it is possible to easily
bridge the gap between two worlds, enabling precise positioning
of content in space and the possibility of previewing what users
will experience from their mobile devices. Once a particular AR
application is deployed, the graphical interface enables visualization
of data related to the current instance of the application running on a
particular device. This offers the ability to compare what the user is
currently seeing with what he is supposed to see, making it possible
to debug the overall AR experience, correcting it at real-time and
improving its design. Additionally, the real-time editing features
offered by our editor allow the designer to visualize users current
behavior, as users are represented as avatars that move according
to the position and orientation of the user’s mobile device. Overall,
we have contributed a new workflow for the creation of multi-user,
cross-platform AR experiences, involving contextual content au-
thoring, remote previewing and simulation, live debugging and user
monitoring.
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