Abstract:
Vision impairments, such as cataracts, affect the way many people interact with their environment, yet are rarely considered by architects and lighting designers because ...Show MoreMetadata
Abstract:
Vision impairments, such as cataracts, affect the way many people interact with their environment, yet are rarely considered by architects and lighting designers because of a lack of design tools. To address this, we present a method to simulate vision impairments, in particular cataracts, graphically in virtual reality (VR), using eye tracking for gaze-dependent effects. We also conduct a VR user study to investigate the effects of lighting on visual perception for users with cataracts. In contrast to existing approaches, which mostly provide only simplified simulations and are primarily targeted at educational or demonstrative purposes, we account for the user's vision and the hardware constraints of the VR headset. This makes it possible to calibrate our cataract simulation to the same level of degraded vision for all participants. Our study results show that we are able to calibrate the vision of all our participants to a similar level of impairment, that maximum recognition distances for escape route signs with simulated cataracts are significantly smaller than without, and that luminaires visible in the field of view are perceived as especially disturbing due to the glare effects they create. In addition, the results show that our realistic simulation increases the understanding of how people with cataracts see and could therefore also be informative for health care personnel or relatives of cataract patients.
Date of Conference: 23-27 March 2019
Date Added to IEEE Xplore: 15 August 2019
ISBN Information: