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ABSTRACT

Single-view depth estimation from omnidirectional images has
gained popularity with its wide range of applications such as au-
tonomous driving and scene reconstruction. Although data-driven
learning-based methods demonstrate significant potential in this
field, scarce training data and ineffective 360 estimation algorithms
are still two key limitations hindering accurate estimation across
diverse domains. In this work, we first establish a large-scale dataset
with varied settings called Depth360 to tackle the training data prob-
lem. This is achieved by exploring the use of a plenteous source of
data, 360 videos from the internet, using a test-time training method
that leverages unique information in each omnidirectional sequence.
With novel geometric and temporal constraints, our method gener-
ates consistent and convincing depth samples to facilitate single-view
estimation. We then propose an end-to-end two-branch multi-task
learning network, SegFuse, that mimics the human eye to effectively
learn from the dataset and estimate high-quality depth maps from
diverse monocular RGB images. With a peripheral branch that uses
equirectangular projection for depth estimation and a foveal branch
that uses cubemap projection for semantic segmentation, our method
predicts consistent global depth while maintaining sharp details at
local regions. Experimental results show favorable performance
against the state-of-the-art methods.

Index Terms: Computing methodologies—Computer graphics—
Image manipulation—Image-based rendering; Computing
methodologies—Artificial intelligence—Computer vision—
Reconstruction

1 INTRODUCTION

Visual reasoning in the context of omnidirectional images has gained
increasing popularity in both academic and industrial communities
during the past few years. By providing rich information of the
environment with large field-of-view (FOV), predicting dense depth
maps from a single 360 image shows wide applicability and facili-
tates applications that require accurate understandings of the context,
such as scene reconstruction [48] and autonomous navigation [16].
However, inferring depth from a monocular image is a challeng-
ing and ill-posed problem due to uncontrolled extrinsic, ambiguous
scales, and varied settings. Recently, data-driven deep learning
methods [30] have presented significant potential in this field.

Despite learning-based methods having been extensively studied
within the context of perspective images, omnidirectional format
presents challenges in both aspects: data preparation and depth
estimation algorithm. On the one hand, large-scale 360 training
data is difficult to collect. For synthesis-based methods, the cost to
create large-scale models that resemble real-world ones with abun-
dant settings is excessively high [58], and the diversity gap between
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Figure 1: We present a method for generating large amounts of
color/depth training data from abundant internet 360 videos. After
creating a large-scale general omnidirectional dataset, Depth360, we
propose an end-to-end two-branch multitasking network, SegFuse to
learn single-view depth estimation from it. Our method shows dense,
consistent and detailed predictions.

synthetic samples and real data leads to less accurate results [60].
For capturing-based methods, using dual 360 cameras for stereo-
capturing will introduce mutual occlusion. Specialized scanning
devices (e.g. Matterport [7]) produce dense datasets but are limited
to indoor use due to their working principle. Depth maps produced
with laser scanners (such as LIDAR [36]) suffer from self-occlusion
albeit being the main source for outdoor settings. Most datasets are
only captured under specific scenarios (e.g. atop a driving car [8]).
On the other hand, existing learning-based approaches cannot effec-
tively take advantage of 360 image datasets. The majority of depth
estimation methods [30] are designed for perspective cameras with
narrower FOV. Due to the spherical nature of the content, projecting
to a 2D image introduces irregular distortions and thus hinders ef-
fective learning [61]. Even though there are a few methods [62] [56]
proposed with distortions in mind, they only focus on indoor settings
due to the unavailability of outdoor datasets. As a result, they show
sub-optimal performance under general cases.

In this paper, we first tackle the problem of limited datasets by
exploring the use of the plenteous source of data: 360 videos from
the internet that are captured with a moving hand-held omnidirec-
tional camera. We propose a test-time training method that utilizes a
learning-based prior to synthesizing plausible depth maps for each
consistent 360-degree video. By leveraging the rich information
that is only presented in omnidirectional formats, we propose to use
the output of structure-from-motion (SfM) and multi-view stereo
(MVS) methods to calculate a novel geometric consistency based
on a geometric spherical disparity model. We also propose to use
optical flow [24] to encourage temporal consistency and establish
multiple constraints for each pixel that ensure a convincing output.
With established constraints, we fine-tune a pre-trained model by
updating the parameters according to the calculated geometric and
temporal losses to produce more consistent output for a particular
sequence. During dataset creation, our test-time training method
takes preprocessed video sequences as input and generates geomet-
rically and temporally consistent dense depth map for each frame.
To our knowledge, our large-scale dataset, Depth360, is the first to
use internet omnidirectional videos for achieving monocular depth



estimation from single 360 images. To benchmark the accuracy
of data generation, we propose using rendering-based methods to
further generate a photorealistic synthetic dataset, SynDepth360.
With the unlimited training data with diverse conditions, we seek to
learn depth estimation with high accuracy and generalization.

We then propose an end-to-end neural network architecture, Seg-
Fuse, to learn the single-view depth estimation of omnidirectional
images that generalize well with a wide range of settings by mim-
icking the human eye. While videos usually provide more cues for
depth calculation and facilitate dataset creation, lengthy optimization
for individual scenes does not achieve as good generalization and
practicality compared to single-view depth estimation. We believe
that compared to indoor depth maps with more uniform distribu-
tions and relatively universal ranges, more challenging variations
of outdoor images, i.e. unsymmetrical depth distributions (sky and
ground) and distinct depth ranges between different scenes, lead to
ineffectively learning processes and generalization for existing meth-
ods. To cope with such problems, we propose a multi-task learning
framework that adopts a bi-projection fusion scheme: a peripheral
branch that uses equirectangular projection for depth estimation and
a foveal branch that uses cubemap projection for semantic segmenta-
tion. While equirectangular projection can provide consistent global
context, cubemap projection gives more local details with a narrower
FOV. With peripheral vision to perceive the depth of the scene and
foveal vision to distinguish between different objects, our method
can successfully learn a smooth global depth while maintaining de-
tails at local regions. Compared to the method [56] with a similar
structure, SegFuse uses multi-task learning to exploit semantics in
complex depth distributions, and achieve significantly improved
performance in outdoor settings.

By applying the generated training data with diverse conditions
to multiple state-of-the-art learning-based omnidirectional depth
estimation methods, our experimental results show that our method
outperforms existing methods with more consistent global results
and sharper local estimations.

To summarize, our contributions are as follows:

1. To solve the unavailability of a general omnidirectional dataset
with dense depth maps, we are first to propose to utilize omni-
directional video in the wild to generate a large-scale dataset,
Depth360. By exploiting unique temporal and geometric con-
sistencies of 360 videos with a spherical disparity model, we
use test-time training to generate convincing depth maps.

2. We propose an end-to-end two-branch multi-task architecture
called SegFuse that estimates depth from a single-view 360 im-
age input by mimicking the human eye. The peripheral branch
regresses global depth estimation while the foveal branch es-
timates local semantic segmentation. By fusing the global
context and local details, our design ensures a sharp and con-
sistent depth prediction under challenging cases.

3. To validate the accuracy of the proposed dataset and evaluate
the effectiveness of our multitasking method, we perform an
extensive evaluation against state-of-the-art omnidirectional
datasets and methods and present a better quantitative and
qualitative performance.

4. To encourage future research, the datasets, source codes, and
models are made available to the community at:
https://github.com/HAL-lucination/segfuse

2 RELATED WORK

2.1 Data in Single-view Depth Estimation
One of the major issues in learning-based single-view depth esti-
mation is the unavailability of data. For perspective images, most
supervised depth-estimation methods are trained on a few standard
datasets (e.g. NYU [50]) due to the difficulty of acquiring ground
truth depth maps. Capturing-based methods often utilize RGB-D

sensors and laser scanning (e.g. LIDAR [8]). To improve data
availability and ease of acquisition, several efforts have been made.
Godard et al. [19] use multiple views of a scene as a supervisory
signal, but these approaches usually require two input images at test
time [35]. Mayer et al. [37] uses a synthetic dataset, but the domain
gap results in sub-optimal performance in real-world scenarios and
requires further domain adaptation [4]. Using internet images [32]
and videos [25] to calculate pseudo ground truth with structure-from-
motion and multi-view stereo shows great performance but is only
explored in perspective context.

When it comes to omnidirectional depth maps, not only capturing-
based methods are greatly limited, but also the existing perspective-
based approaches are less effective, resulting in the scarcity of out-
door datasets. Existing omnidirectional sensors with customized ar-
rays suffer from strong self-occlusions, leading to missing or sparse
information at the bottom of the sphere. Using multiple monoc-
ular cameras as a stereo setup (i.e., 3D VR cameras) to calculate
disparity is also problematic due to mutual occlusion [44]. Using
domain adaptation for synthetic data requires both large-scale 3D
models with great variations and corresponding similar 360-degree
color ground truth. Most concurrent works [62] [56] either use syn-
thetic datasets (i.e., PanoSunCG [55]) or 3D scanned datasets (i.e.,
Matterport3D [7], Stanford 2D-3D [2], Pano3D [1]). The former
is generated with 3D models and a virtual omnidirectional camera
without domain adaptation, and the latter ones are captured with
specialized equipment and post-processed. Both suffer from no
dynamic foregrounds, further limiting their usefulness in real-world
scenarios [13]. Zhu et al. [60] propose to use physics-based render-
ing to generate synthetic outdoor panoramas, but the diversity gap
between synthetic samples and real data leads to less accurate re-
sults. Therefore, taking advantage of an increasing number of shared
online omnidirectional videos, we propose a pipeline to utilize rich
information in the wild to generate a large-scale dataset.

2.2 Single-view Depth Estimation for Perspective Images
Predicting depth from monocular color images is an important task
in understanding 3D scene geometries [57]. An accurate estimation
can benefit various applications such as autonomous driving [8]
and graphics rendering [34]. Traditional methods of monocular
depth estimation heavily rely on probabilistic graphical models with
hand-crafted local features and constraints (e.g. MRF) [46]. With
the advances in deep learning algorithms, recent learning-based ap-
proaches [12] [20] [38] show significant improvements in accuracy.

A standard approach of learning an implicit relation between color
and depth is to train models with collected RGB images and ground
truth depth maps. Eigen et al. [12] propose multi-scale networks
to refine coarse depth with local details. This two-scale strategy is
further refined to predict high-resolution depth [38]. A fully convo-
lutional architecture with a novel up-projection module proposed
by [30] improves the output accuracy. Cao et al. [6] propose to solve
depth regression in a classification fashion. Another direction for
improving the output quality is to combine graphical models with the
use of CNNs, such as incorporating conditional random fields in the
form of a loss function into the depth estimation task [33]. However,
when directly applying perspective models to 360 images, an inferior
performance is observed due to the lack of global consistency and
incorrectly modeling the projection’s distortion [62].

2.3 Single-view Depth Estimation for Omnidirectional
Images

As omnidirectional cameras have become more efficient and acces-
sible, the interest in 360-degree media has surged on the internet
owing to novel applications such as virtual reality [5] [49] and mixed
reality [43]. For single-view depth estimation, while a large body of
research exists for perspective images, scarce work has been done to
address this problem for spherical images. The most apparent issue



Figure 2: The overview of our dataset generation method. With monocular videos as input, we samples successive frames from a single sequence
and adjust the frames spatially with baselines acquired with SfM and MVS methods. Geometric and temporal constraints of this sequence are
then established using a geometric spherical disparity model and a 360-aware optical flow algorithm. By fine-tuning a learning-based prior
with computed losses through back-propagation during test time, we can generate consistent depth output that satisfies the constraints of the
corresponding sequence.

is the distortion introduced when projecting the 3D spherical infor-
mation onto the 2D plane. Although rotation equivariant CNNs [10]
and graph-based learning [27] with spherical cross-correlation di-
rectly learn from 3D spherical signals, such equivariant architectures
define convolution in the spectral domain and provide a lower net-
work capacity, hindering applicability in generative tasks such as
monocular depth estimation. To apply deep learning approaches to
omnidirectional content, most approaches are proposed using two
projection formats, cubemap and equirectangular projections.

While cubemap projects spherical signals onto 6 faces of a cube,
and thus enables directly feeding non-distorted images into a CNN,
the discontinuity along boundaries is problematic when trying to
merge results back into a spherical image. A common solution is
using cube padding [9] to aid the network merging estimations for
each face into a full omnidirectional output. This method is effective
when applied to single-view depth estimation for indoor scenes [56]
with a relatively uniform depth distribution and other tasks such as
stylization [45] and classification [11]. However, these methods are
less effective when each face has wildly changing depth ranges in
outdoor scenarios [54]. Since each face only includes very limited
information of a local region, dramatically different appearance and
the ambiguity of depth scales usually result in distinct estimations,
limiting the scalability of such approaches. Recent works using
diverse division schemes show improved predictions for indoor sam-
ples [53]. However, slice-based methods that exploit relationships
of vertical patches [41] also report discontinuities for outdoor cases.

To make the network efficient and directly aware of the distortion
in omnidirectional images, work resorted to using equirectangular
projection with distorted filters [62] and dilations [15]. However, the
effectiveness of these methods is limited. As the layers deepen, non-
linearly distributed information across an equirectangular image got
lost (e.g. consistency across the sphere). Although this problem is
alleviated by a kernel transformer [51] that uses parameterized func-
tions to preserve cross-channel interactions, the model size is still
limited. While using equirectangular projection can generate more
consistent global prediction due to its wider FOV, small regions with
a steep local gradient when regressing the global gradient are harder
to learn [14]. Wang et al. [56] and Jiang et al. [26] use a fusion
scheme that combines the depth maps estimated with equirectangu-
lar and cubemap projections for sharper depth estimation. Although
it presents improved accuracy for indoor settings, the disadvantage
of limited scalability remains [41]. Instead, we purpose an architec-
ture that fuses a cubemap branch for semantic segmentation with
an equirectangular branch for depth estimation. Considering that

regressed depth maps for different faces are hard to balance when
training with outdoor samples, semantic segmentation can serve to
inform the global depth estimation of the local details without the
problem of balancing scales between each local view.

3 THE DEPTH360 DATASET

We propose the world first generated large-scale dataset Depth360
that utilizes 360 videos in the wild to solve the unavailability of a
general omnidirectional dataset with dense depth information. We
first preprocess a video sequence with an SfM and MVS approach to
establish quality frame groups that facilitate computing constraints
of the sequences. With a horizontal spherical disparity model, we
propose novel temporal and geometric consistencies that are unique
to 360 videos. By incorporating constraints into test time training
through backpropagation, we generate convincing dense depth maps
for the corresponding sequence. The generation process is shown in
Fig. 2, and some examples are shown in Fig. 3.

Figure 3: Examples of generated RGB/depth pairs. The color images
are video frames acquired from the internet, and the corresponding
depth maps is generated through our test-time training method.

3.1 Test-time Training
We propose a test-time training method that first estimates plau-
sible dense estimations utilizing a learning-based prior, and then
iteratively fine-tines the parameters during test time with unique con-
straints established from a certain 360 sequence to generate accurate
depth output. Since 360 videos gathered from the internet usually
suffer from unconstrained extrinsic and different intrinsic, existing
methods often fail to show satisfying performance for dataset cre-
ation. On the one hand, depth produced by reconstruction-based
methods is usually sparse and erroneous due to distortions. On the
other hand, directly applying learning-based methods for frames
independently usually results in inconsistent estimation and sub-par
accuracy due to the domain gap between perspective and equirectan-
gular formats. With the proposed test-time training method, we take



Figure 4: The spatial adjustment process using geometric horizontal spherical disparity models. The left illustration describes original successive
frames that satisfy L-R stereo correspondence using the camera poses. The right illustration describes the model to calculate disparity from
two frames with a left-right displacement. The φ denotes the longitude while the θ denotes the latitude. The b is the baseline acquired from the
previous step, and P is the 3D displacement of a target point. The left examples show unconstrained frames acquired directly from internet videos,
and the right examples show spatially adjusted frames that facilitate the calculation of geometric constraint.

preprocessed video sequences as input and generate geometrically
and temporally consistent dense depth maps for each frame.

We calculate a geometric loss between corresponding frames
reprojected from the estimated depth map and stereo pairs’ dispar-
ity, in addition to a temporal loss that penalizes the error between
flow-based and depth-based projections. In each iteration of fine-
tuning a pre-trained depth estimation network, we first generate
depth maps for multiple frames with the current network. We then
update the parameters according to the calculated geometric and
temporal losses to ensure its weight can produce more consistent
output for a particular sequence (Fig. 2).

Preprocessing. We exclude dynamic foreground objects from
the frames for better calculating camera extrinsic and establish ge-
ometric constraints for the respective sequence. Since people are
usually the most common dynamic foreground objects in perspective
videos [34], we found this remains true for omnidirectional videos
in the wild as well.

We first use OpenVSLAM [52], an open-source visual SLAM
framework, to estimate the pose of the camera (r, t) and the distance
b between frame pairs. We then use an off-the-shelf SfM pipeline
COLMAP [47] to acquire sparse depth maps DRecon. To improve
pose estimate for videos with a strong motion, we apply Mask R-
CNN [22] to obtain static segmentation for more reliable feature
point extraction and matching. During this process, we automati-
cally filter out videos with a static viewpoint and vertical motions
with estimated poses since they are more challenging in establish-
ing the geometric constraints, and group the remaining videos into
consistent short sequences S.

Spatial adjustment. Since learning-based and reconstruction-
based methods are independent of each other and both are scale-
invariant, we need to first adjust the scale to match the output before
establishing geometric constraints. We achieve this by multiplying
all estimated camera translations for a single sequence with a scale
factor to match the scale of learning-based depth estimations. For
sequence Si with j frames, the scale factor si is calculated as:

Si = ∑
j

DNN
j (x)

DRecon
j (x)

/ j|DRecon
j (x) ̸= 0 (1)

where the D(x) is the depth value at pixel x yielded by the learning-
based prior before test-time training. The updated camera translation
is now t̂i = si · ti.

While it is usually impossible to create aligned stereo pairs from
unconstrained perspective videos due to random camera extrin-
sic, omnidirectional images have the unique feature of rotation-
invariance. For short 360 sequences with minimal vertical move-
ments, we can create aligned left-right stereo image pairs by adjust-
ing the rendering camera rotation to r̂ so that the trajectory of frame

centers stays parallel to the camera translation t̂. This process is
demonstrated in Fig. 4.

Geometric loss. To calculate the geometric loss from adjusted
left-right image pairs ( j,k) with a baseline b, we use a modified
spherical disparity model from [61]. For each point p at (x,y,z) in
Cartesian coordinate, we use longitude φ and latitude θ in spherical
polar coordinate to describe the corresponding point (Fig. 4). In this
sense, the radial distance r to a certain point is

√
x2 + y2 + z2, and

the horizontal disparity is defined as δ = (φ j −φk,θ j −θk). Since
the baseline b = (0,0,dz) is acquired from the previous step, the dis-
parity is now δ = ( ∂φ

∂ z ,
∂θ

∂ z ). The transformation between spherical
and Cartesian coordinates is omitted to simplify the notations.

To render a target frame k̂ from the source frame j, each pixel
p = (φ ,θ) on the equirectangular image is a function of the baseline
b and the radial distance r. Since we already have the generated
depth map DNN

j (p) for frame j, we can compute the target frame k̂
with a function:

k̂(p) = Γ j→k̂(D
NN
j (p),b j→k, j(p)) (2)

Considering the image acquired from online videos are usually
not perfect stereo pairs and include dynamic foreground objects,
errors often got amplified at certain regions (e.g. top and bottom)
on equirectangular projection due to stronger distortion. To al-
leviate this problem, we further adopt a weight matrix M(p) =
|sin(φ)||sin(θ)| that assigns different weights for each pixel and ag-
gregates the loss with regard to the distortion level when calculating
the geometric loss:

Lgeometric
j→k = ∑

p
||Mk̂p−Mk(p)||2 (3)

Temporal loss. Optical flow is a popular option to check short-
term consistency in learning-based video processing for its capability
of describing the same scene points in successive frames [45]. Since
depth-estimation networks estimate depth maps independently, the
result for a video is usually unstable and inconsistent. To solve the
inconsistency between frames of a 360 video, for all frame pairs
( j,k) in sequence Si, we further calculate a dense optical flow f j→k
to ensure a temporal consistency during test-time training.

It is more suitable to establish short-term and long-term consis-
tency for omnidirectional videos compared to unconstrained per-
spective videos due to two reasons. First, bad alignment of frames
is challenging to cope with for perspective videos while spherical
videos can be easily calibrated with simple rotations. Second, while
the problem of occlusion remains, objects exiting and re-entering
the frame are significantly less prominent in equirectangular videos,
making the long-term consistency more reliable. To account for



Figure 5: Overview of the proposed end-to-end two-branch multi-task learning network, SegFuse. Structure-wise, the peripheral branch that uses
equirectangular projection is capable of capturing global context while the foveal branch uses cubemap projection produces sharper boundaries for
local objects. Objective-wise, semantic segmentation and depth estimation are jointly learned to reveal the scene layout and object shapes, while
the peripheral branch enforces more consistent depth estimation with a wider FOV, the foveal branch estimating segmentation is more robust to
scale changes which frequently appear in a more general dataset. The fusion modules f further facilitate feature sharing between two branches.

distortions of equirectangular projection, we use a modified version
of FlowNet2 [24], OmniFlowNet [3] with a distorted CNN kernel.

For pixel p = (φ ,θ) on a source equirectangular image j, the
corresponding pixel p̃ on the target frame k̃ is calculated by:

p̃ = p+ f j→k(p) (4)

where f denotes the optical flow between two frames. We compute
the target frame k̃ based-on flow with function F :

k̃(p) = Fj→k̃( f j→k(p), j(p)) (5)

Similarly, the temporal loss is calculated for each pixel with:

Ltemporal
j→k = ∑

p
||̃kp− k(p)||2 (6)

Optimization. We then fine-tune the network weights with the
combined loss L j→k between frame pairs through backpropagation
for 10 epochs:

L j→k = Lgeometric
j→k (p)+Ltemporal

j→k (p) (7)

The overall loss is a sum of the geometric loss and the temporal
loss calculated over all pixels in video frames, and the network
parameters are initialized using a pre-trained network [31] trained
on the Mix 5 dataset [42]. To reduce the computational cost of
computing dense optical flow for image pairs, we calculate the flow
between consecutive frames for short-term consistency and left-right
pairs for long-term consistency.

3.2 Implementation Details
To create the general dataset Depth360, we use the test-time training
method to generate convincing depth maps from omnidirectional
videos in the wild. We first gathered equirectangular video sequences
from the internet that are captured with a hand-held omnidirectional
camera. After filtering out samples with strong motion blur, post-
editing, and texture-less scenes, we used 30 clips to produce cor-
responding depth maps. We then fine-tune the weight of the same
pre-trained network for each sequence with the geometric and tem-
poral loss using standard backpropagation. By generating consistent
depth maps for each sequence with fine-tuned networks after 10
epoch, we create a dataset of paired color images and depth maps
with a size of 30,000. Several examples of our generated samples
are shown in Fig. 3.

3.3 The Benchmarking Dataset
To benchmark the effectiveness of the test-time training method and
accuracy of the Depth360 dataset, we propose using rendering-based
methods to generate a small-scale synthetic dataset via 3D models
and virtual cameras. This additional SynDepth360 dataset is mo-
tivated by the challenge to directly acquire the ground truth of the
internet videos. While the large-scale Depth360 dataset is advanta-
geous to train end-to-end models for single-view depth estimation,
the rendered small-scale outdoor 360-degree synthetic dataset with
diverse settings is helpful for future research, which we will release
together with the Depth360.

4 SEGFUSE: SINGLE-VIEW DEPTH ESTIMATION

Combining the advantages of a more consistent global context and
sharper local details, we propose an end-to-end two-branch multitask
learning network called SegFuse. It estimates depth from a single
omnidirectional view by mimicking the human eye, as shown in
Fig. 5. In particular, the upper branch regresses depth maps with
equirectangular projection, resembling human’s peripheral vision to
perceive depth, and the lower branch that estimates semantic segmen-
tation with cubemap projection mimics foveal vision to distinguish
between different local objects.

We justify our network design from two aspects. Structure-wise,
equirectangular projection is capable of capturing global context but
the distortion and a larger FOV restrict its effectiveness against local
regions, while cubemap projection produces sharper boundaries for
local objects but introduces inconsistency between faces. Objective-
wise, since semantic segmentation and depth estimation are two
tasks usually jointly learned to reveal the scene layout and object
shapes [17] [28] [39], while semantic segmentation is more robust
to scale changes, we design our two-branch multitasking network
that takes advantage of both global context and local details to learn
single-view estimation on a more general omnidirectional dataset.

4.1 Network Structure
The peripheral branch. Our peripheral branch regresses a dense
global depth estimation from a single view equirectangular image.
Its encoder-decoder structure progressively downscales and upscales
to the target depth maps. We adopt rectangular filters with changing
sizes at the first convolution layer to account for different distortion
strengths along the vertical axis of the input equirectangular image.
The encoder of this branch shares the same structure of ResNet-
50 [23], while the decoder consists of four up-projection blocks [30].

The foveal branch. Our foveal branch receives reprojected cube-
map faces of the input equirectangular image as input and gener-



ates semantic segmentation as the output. We choose the semantic
segmentation task for the cubemap branch for two reasons. First,
although directly regressing depth maps for separate cube maps
seems to be a more intuitive choice and has shown some improved
performance in similar applications [56], the problem of discontinu-
ity at cubemap boundaries is amplified when applied to uncontrolled
general samples. We believe that compared to indoor scenes with
more uniform and symmetrical structures, our samples generated
from online videos are more challenging for the network to learn
due to stronger scale ambiguity caused by distinct depth ranges and
unsymmetrical depth maps (e.g. sky and ground). This is further ver-
ified in our qualitative evaluation. Second, with undistorted cubemap
projection, the foveal branch not only facilitates sharing features
of local objects, it can also directly utilize traditional perspective-
based model weights to accelerate the learning process, improve the
model accuracy, and most importantly, circumvent the challenge of
acquiring omnidirectional segmentation ground truth.

Structure-wise, to better facilitate feature fusion at each scale,
we set up an identical encoder-decoder network with Resnet-50
encoder and four up-projection modules as the decoder. Instead of
incorporating a filter at the first layer to account for distortion, we
reproject the equirectangular image to cubemap before feeding it to
the first layer. We then incorporate a spherical padding process [56]
to pass feature maps between layers to connect different cube faces.

The fusion scheme. To encourage feature sharing between the
peripheral branch and the foveal branch, we perform a fusion scheme
that lets each branch inform the other with respective feature maps
to balance both branches during the training process. Unlike [56],
we simplify the fusion scheme to improve the training efficiency,
and we reduced the number of fused layers to prevent an unstable
training process due to different tasks. A more detailed ablation
study is presented in the experiment section.

With mp as the feature map from the peripheral branch and m f as
the feature map from the foveal branch, we first reproject the m f to
m̂ f in equirectangular format and mp to m̂p in cubemap projection.
We then pass mp +C(m̂ f ) to the next layer of the peripheral branch
and m f +C(m̂p) in the foveal branch respectively. The C denotes a
convolution layer.

4.2 Loss Functions
We use supervised loss constraints for both depth estimation and
semantic segmentation tasks. For depth estimation, we use inverse
Huber loss defined in [30] as the optimizing objective:

LD(d) = {| d||d| ≥ c
d2 + c2

2c
|d|> c (8)

where d is the difference between the estimated result and the ground
truth for each pixel, c = max(d)/5. The loss function LS for se-
mantic segmentation is a cross-entropy loss between the estimated
segmentation S and the result predicted with a pre-train network S.
Combined, the total loss function can be defined as:

Ltotal = LD(D,D)+LS(S,S) (9)

During the experiment, segmentation samples are acquired with a
pre-trained weight trained on MIT ADE20K dataset [59].

5 EXPERIMENTAL RESULTS

In this section, we first evaluate the quality of the Depth360 dataset
against the synthetic dataset SynDepth360 we generated for bench-
mark purposes. We then evaluate the proposed method against other
state-of-the-art single-view depth estimation methods both qualita-
tively and quantitatively by training on the Depth360 dataset. We
further conduct an ablative study to validate the effectiveness of our
network design. Both datasets and the source code are available to
the community to encourage future research.

Figure 6: Evaluating the data generation method with the Syn-
Depth360 dataset. The left column is the synthetic samples generated
from 3D models, the middle column is the generated data using the
test-time training, and the right column is the rendered ground truth.

Figure 7: Quantitative evaluations of the dataset. The left figure shows
occurrence of top objects in the proposed dataset. The power-law
shaped distribution indicates the most predominant background ’sky’,
’road’ and ’building’, while the most occurred foreground objects are
’human’ and ’tree’. The right figure shows the distribution of depth
values. the leftmost and the rightmost peak manifests that internet
videos often use a hand-held capturing fashion with outdoor settings.

5.1 Dataset Evaluations
To verify the accuracy of generating depth from internet videos with
the proposed test-time training method, we use the synthesized sam-
ples from the benchmarking dataset SynDepth360 to evaluate against
the ground truth depth maps qualitatively and quantitatively. We
further provide a distribution analysis of Depth360 and a quantitative
evaluation against existing omnidirectional datasets.

Qualitatively, samples generated from the synthetic sequences are
shown in Fig. 6. As most fine details are faithfully reconstructed,
and in-scene objects show clear boundaries, we validate that the
generated dataset is useful for further single view estimation training.
It is worth noting that since the ground truth is rendered with absolute
distances with a range of infinity, a slight depth scale discrepancy
is presented. Quantitatively, our method achieves the accuracy of
49.5%, 60.6%, 70.8% for d1, d2, and d3 using the metrics for depth
prediction from the literature [12] [19], significantly surpassing
naive generation methods. They include omnidirectional models
trained with 360 indoor samples, with the highest accuracy of 14.6%,
22.0%, 25.5%, and perspective models trained with mixed samples,
with the highest accuracy of 41.7%, 49.3%, 59.2%.

Compared to current state-of-the-art omnidirectional datasets
that facilitate single-view depth estimation (Table 1), the proposed
dataset achieves higher resolution, larger size, and more diverse
outdoor settings. Although the size and quality of model-based
datasets (e.g. SceneNet [21]) can be improved upon using different
rendering methods, our dataset maintains the advantages of varied
domains and easy extension with a larger video collection.

From the depth value distribution analysis (Fig. 7, right) of the
Depth360 dataset, we can observe three major peaks. The leftmost
peak manifests the hand-held 360 camera user, while the rightmost
peak shows a common sky background. The normal distribution
in the middle presents other objects in the scene such as buildings
and trees. This can be validated through the occurrence of top ob-
jects (Fig. 7, left) in the proposed dataset. From the power-law



Figure 8: Qualitative comparison with the state-of-the-art methods. Our method generates globally consistent estimation when compared to [62],
and sharper results at local regions compared to the other methods.

Table 1: Comparison between state-of-the-art 360 datasets.

Name Type setting resolution # images

PanoSunCG [55] synthetic indoor 0.13Mpx 25000
SceneNet [21] synthetic indoor 0.13Mpx 25000*

Stanford 2D-3D [2] real indoor 0.13Mpx 25000*
Matterport3D [7] real indoor 0.13Mpx 25000*
Proposed dataset real outdoor 1.03Mpx 30000

shaped distribution, we can observe that the most predominant back-
ground objects are ’sky’, ’road’ and ’building’, and most occurred
foreground objects are ’human’.

5.2 SegFuse Evaluations
5.2.1 Implementation Details

We implement the SegFuse network with the Pytorch framework [40]
1.4 and train models with a configuration of Nvidia RTX 2080Ti
GPU, i7-7800X CPU, and 32GB RAM. We randomly split samples
into training and validation datasets from the dataset with a ratio
of 90% and 10%. During training, we use Adam optimizer [29], a
learning rate of 3e-4 and, a batch size of 1. The peripheral branch
uses Xavier initialization [18] while the foveal branch initializes with
ImageNet pretrained weights. The same metrics from the literature
are used for quantitative evaluation [19]. Our current implementa-
tion takes smaller batches due to graphics memory restrictions. We
expect a more stable training process with a better hardware config-
uration, with potential improvements such as batch normalization.
Our method costs approximately 100ms with the same configura-
tion to predict a single equirectangular image, favoring interactive
frame-rate for applications.

5.2.2 Qualitative Results

We present qualitative results of single-view depth estimation from
omnidirectional images with different methods including Omnidepth
[62] and FCRN [30]. As we can observe in Fig. 8, when tested on
unseen equirectangular images with challenging outdoor settings,
our method generates better sharper estimation while maintaining a
smooth global depth map prediction. This can be attributed to the
foveal branch that improves local details. More qualitative results
with diverse settings are included in the supplementary material.

As we argued that for challenging outdoor cases with wildly
changing ranges and unsymmetrical distributions, directly using
cubemap projection to regress depth maps for each face and fusing
with equirectangular estimation afterward shows sub-optimal per-
formance. Such inconsistencies at face boundaries are presented in
Fig. 8 (BiFuse [56]). We offer a detailed convergence analysis of
the proposed method against BiFuse that uses cubemap projection to
fuse depth for outdoor samples. The results can be observed in Fig.
9. We compare the performance via inverse Huber loss when both
networks are trained with the Depth360 dataset. We show that our
method converges much faster (the blue line) with the help of latent
information shared by the pretrained semantic segmentation weight,
while the cubemap-based depth regression struggles to effectively
merge faces and learn outdoor settings (the orange line). As we can
see in the bottom half of Fig. 9, the middle figure shows the result
of regressed depth from the cubemap branch of BiFuse, and the
right figure shows the final fused output of BiFuse. Clear boundaries
between faces result in deteriorated fused output when compared to
a single-branch architecture such as FCRN.

Figure 9: To validate our network design, we evaluate against BiFuse
[56], a cubemap-based depth fusion method. When trained with
outdoor samples, SegFuse converges much faster (the blue line)
while the cubemap-based depth regression struggles to effectively
merge faces and learn outdoor settings (the orange line). (b) shows
the result of regressed depth from the cubemap branch of BiFuse,
and (c) shows the final fused output of BiFuse.



Table 2: Quantitative results against other single-view omnidirectional depth estimation methods.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Real domain (all models are trained with Depth360 dataset)

OmniDepth [62] 0.3375 0.1967 4.3049 0.7836 80.16% 89.78% 91.93%
BiFuse [56] 0.3596 0.8615 5.0725 0.8316 40.13% 59.17% 67.92%
FCRN [30] 0.2384 0.4057 4.8599 0.7839 80.59% 90.42% 93.88%

SegFuse (Ours) 0.2275 0.1588 4.0442 0.7777 82.26% 91.35% 94.22%

Synthetic domain (all models are trained with SynDepth360 dataset)

OmniDepth [62] 0.1171 0.1753 0.3819 0.0844 91.30% 94.04% 96.35%
BiFuse [56] 0.1473 0.1978 0.4619 0.1012 75.12% 81.77% 84.69%
FCRN [30] 0.1017 0.1525 0.3771 0.0776 93.48% 95.89% 97.79%

SegFuse (Ours) 0.0973 0.1510 0.3209 0.0734 94.74% 96.61% 98.03%

5.2.3 Quantitative Results
Adopting the metrics for depth prediction from the literature [12]
[19], Table 2 presents the quantitative evaluation of our method
against the state-of-the-art single-view omnidirectional depth esti-
mation methods in both real-world and synthetic domains. We can
observe that SegFuse successfully captures the features of the out-
door dataset when compared to other methods. Overall, our method
shows favorable results against FCRN, Omnidepth, and BiFuse.
We further evaluate the performance in indoor settings by training
networks with 3D60 dataset [62], which consists of SunCG [55],
SceneNet [21], Stanford2D3D [2], Matterport3D [7]. We benchmark
against the ground truth depth with filled-in values for invalid pixels
like FCRN [30]. Table 3 shows a comparable accuracy of SegFuse
with the state-of-the-art designed for indoor predictions [56], and
better performance against other omnidirectional methods.

Table 3: Qualitative results of indoor-only settings.

Method RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

OmniDepth [62] 0.6364 0.1358 77.30% 91.24% 97.21%
BiFuse [56] 0.5639 0.1007 85.12% 93.38% 98.16%
FCRN [30] 0.6429 0.1286 78.08% 92.09% 97.33%

SegFuse (Ours) 0.5729 0.0986 84.38% 94.34% 98.07%

Table 4: Ablation results of the foveal branch.

Method RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Peripheral only 4.9281 0.8979 57.79% 74.20% 78.11%
SegFuse 4.0442 0.7777 82.26% 91.35% 94.22%

Table 5: Ablation results of connected layers.

RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

1 4.9297 0.8933 70.13% 79.17% 87.92%
2 4.3782 0.8126 77.85% 86.83% 92.50%
3 4.0442 0.7777 82.26% 91.35% 94.22%
4 4.0168 0.7994 81.67% 91.75% 93.82%

5.2.4 Ablation Studies
Finally, we perform an ablation analysis between the SegFuse and
learning without the foveal branch. We use the same training settings
with and without fusing the foveal branch with the peripheral branch,
and the quantitative evaluation is shown in Table 4. In addition to
better accuracy, we also find that the converging speed when train-
ing with SegFuse is almost 2x faster at the beginning thanks to the
pre-trained segmentation weight. This shows the additional benefit
of using a multi-task architecture to solve the depth estimation prob-
lem. We then compare the accuracy of the SegFuse network with
different numbers of fused layers at the decoder. We find that while
connecting three and four layers both achieve close performance,
using three fusion blocks usually provides a slightly more stable
training process and improved efficiency. A quantitative ablation
study is presented in Table 5.

5.3 Depth-based Applications
High-quality depth estimation from a single 360 image enables
a wide range of interesting applications. We take visual effects

as an example to showcase the strength of our method in virtual
reality. We first use the proposed method to estimate a high-quality
dense depth map from an input omnidirectional RGB image. We
then project per-pixel depth values onto a 3D sphere to render a
pseudo-reconstructed scene with mesh. This facilitates augmenting
the original scenes with effects such as volumetric snowing and
flooding. A preview is shown in Fig. 10, and full video results are
included in the supplementary material.

Figure 10: An example of depth-enabled applications. By estimating
corresponding depth maps from an input 360 image, we add volumet-
ric effects to the scene such as snowing (left) and flooding (right).

6 FAILURE CASES AND FUTURE WORK

Although our data generation method can be applied to larger-scale
collections to extend the size of datasets, it shows several limitations.
First, online omnidirectional videos present unbalanced distributions,
favoring specific scenarios (e.g. urban street views). Second, when
establishing the baseline, SfM and MVS methods show sub-optimal
results when there are texture-less surfaces or reflective materials
in the scene. Scenes with excessive dynamic foreground objects or
strong motions are problematic for a pseudo-stereo system to acquire
accurate geometric consistency. Future work could alleviate these
problems by adopting improved SfM algorithms and scaling to a
larger variety of input collections. For depth estimation, the current
implementation only accepts smaller batch sizes due to hardware
limitations. We expect to improve the efficiency of the network and
enable more stable training with better normalization methods.

7 CONCLUSION

In this paper, we first propose to utilize the unlimited source of
data, 360 videos from the internet, to overcome the scarcity of a
general omnidirectional dataset. We propose geometric and temporal
constraints that are unique to 360 videos and use test-time training to
generate high-quality depth maps. To fully benefit from our dataset,
Depth360, we propose an end-to-end two-branch multitask network,
SegFuse, that mimics human vision to estimate depth from a single
omnidirectional image. With peripheral vision to perceive the depth
of the scene and foveal vision to distinguish between objects, our
network shows favorable results against state-of-the-art methods.
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