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Abstract

The Environment Manager (EM) is a high-level tool
for constructing both single user and multi-user vir-
A script file 18 used to initial-
ize and run virtual worlds. Independent applications
can share information and cooperate with each other
across the Internet. EM reduces the effort required to
produce a networked virtual world by providing high-
level support for application replication, network con-

tual environments.

figuration, communication management and concur-
rency control. This paper describes the architecture
and implementation of EM.

1 Introduction

With many single-user Virtual Reality(VR) applica-
tions being successfully implemented [3, 12, 13, 10,
17], Networked Virtual Reality is now becoming a
hot topic. Networked Virtual Reality refers to virtual
environments where multiple users connected by a
network can share information with each other. The
production of good VR worlds, whether single user
or networked, requires a considerable amount of de-
sign and programming time. Expertise is required in
device handling, user interface design, network pro-
gramming, graphics programming, and interaction
techniques.

We have been building software tools that reduce
the amount of development work for VR, allowing the
VR implementer to tackle a wider range of applica-
tions. These tools are briefly summarized:

The MR Toolkit [15] provides standard software
facilities required by VR user interfaces. It provides

support for common VR devices such as 3D track-
ers, Head Mounted Displays (HMDs), gloves, and 3D
mice, and supports distribution of the user interface
and data over several workstations. A single-user MR
application consists of one or more UNIX-style pro-
cesses, with one designated as the master process, and
the others as slave or computation processes. Slaves
are used to perform output tasks on non-master ma-
chines, such as rendering the other eye’s image for
a HMD, and computation processes perform CPU-
intensive tasks on computation server machines. MR
applications are written in C or FORTRAN, and the
graphics programming is done using the machine’s
native graphics library such as GL, Phigs or Star-
base.

The MR Toolkit Peer Package is an extension to
the MR Toolkit that provides the connection level
facilities to allow multiple independent MR applica-
tions to exchange data with one another across the In-
ternet [14]. The master process (the peer) can trans-
mit device data to other remote master processes and
receive device data from them. Application-specific
data can also be shared between peers. Any MR
Toolkit program may start up the peer package at
any time, and may initiate and quit communications
with other processes at will. Peers are connected pair-
wise and one peer may send a message to any or all
other peers using procedures.

JDCAD++ [9, 11] is a solid modeling and anima-
tion computer-aided design system. It uses a Polhe-
mus or Ascension 3D tracker to sweep out 3D canon-
ical shapes such as boxes cylinders, cones and the
like. These shapes can be reshaped, joined together
and connected in kinematic chains. JDCAD+ has a



keyframe animation facility that can be used to ani-
mate various motions of an object. JDCAD+ auto-
matically generates OML animation code, and most
animations can be created without the user having to
write an OML program.

OML (the Object Modeling Language) is a proce-
dural programming language we have designed, with
fundamental data types and operations for geometry,
object-oriented programming and behavior specifica-
tions [8]. Tt is used to describe the geometries and
behaviors of 3D objects used in virtual worlds. The
geometry processor within OML supplies efficient col-
lision detection between objects selected by the world
designer, and performs efficient object culling to max-
imize visual update rate. OML is designed to be
portable to any platform, so its geometric modeling
aspects are independent of any particular graphics
package.

An OML object corresponds to a C++ Class, and
contains code to generate the geometry of the 3D
object, to control how the 3D object is to appear
(color, texture, etc), and behavior code. An OML
wnstance corresponds to a C+4 object instance. An
OML behavior is a procedure (method) that reacts
to an incoming event or combination of events, and
typically generates some sort of change in the state
and appearance of the 3D object. Behaviors trigger
other behaviors via the event mechanism. A built-
in tick event triggers ongoing behaviors like walking
and so on, and an internal time value can be used to
interpolate between keyframes.

The OML compiler produces an interpretable ver-
sion of the object specification (called the object pro-
totype) and the OML interpreter is linked with the
application program at run-time. One can create an
arbitrary number of instances at run-time and have
high level control over their behaviors. Different in-
stances for the same object can have different geome-
tries and behaviors, since object specification can be
parameterized.

To create a Virtual Environment using OML, an
MR Toolkit program (written in C) loads compiled
OML code for each of the objects, sets up the VR
devices that are to be used, dispatches device-related
events to the interpreter as appropriate, and calls the
OML interpreter every graphical update. The inter-
preter evaluates the behaviors of each instance, and
draws each instance. Writing a new C program for
each new OML-based Virtual Environment is a rather
error-prone and tedious process, so a high-level tool
called the Environment Manager (EM) was de-
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Figure 1: A VR Tool Architecture And Its Compo-
nent Relationships

veloped on top of our existing tools to eliminate the
programming effort of initializing and running OML-
based virtual environments. EM can run both single
user and networked virtual environments, as specified
on the command line. EM constructs a virtual envi-
ronments using only a script file, without any lower
level programming. The architecture of our VR tool
package and the relationship between its components
is illustrated in Figure 1.

2 Related Work

In this section, we focus on existing networked VR
systems and tools. All the newly developed tools and
systems use the application replication architecture —
each participating process has a copy of a replicated
application database and changes are propagated to
the other processes.

The most famous example of multi-user virtual en-
vironment is SIMNET [1, 4], which is a distributed in-
teractive virtual world for battlefield simulation and
training. In SIMNET, an object broadcasts an event
to all objects without calculating which other ob-



jects might be interested in the event, or how the
receiving objects might be affected by it. The receiv-
ing object decides what it is going to do about the
received event. Objects transmit information only
about changes in their state (position, orientation),
and the dead reckoning algorithm is used to extrapo-
late state for objects. NPSNET [17] uses SIMNET’s
DIS protocol to perform military simulations.

The Distributed Interactive Virtual Environ-
ment(DIVE), developed at the Swedish Institute of
Computer Science, is a platform for heterogeneous
multi-user virtual environments [5, 6]. A process
group in DIVE is a set of processes which can be
addressed as one entity: atomic multi-cast protocols
can be used to relay the messages addressed to the
group as one, so each process in the group can re-
ceive exactly the same updates with reduced network
traffic. In DIVE, there are three mechanisms to en-
sure consistency in the replicated database: mutual
exclusive locks, reliable source ordered multi-cast and
distributed locks.

BrickNet is a networked virtual reality toolkit de-
veloped at the National University of Singapore [16].
Different from DIVE and the MR Peer Package,
which have a peer-to-peer communication scheme,
BrickNet has a client/server communication config-
uration. A virtual world developed using BrickNet
is a client, which connects to a server to request ob-
jects of interest and communicate with other clients.
BrickNet virtual worlds are not restricted to having
identical local databases (set of objects), as is the case
with SIMNET and DIVE (they are multi-user-same-
content applications). Similar to MR Peers, BrickNet
uses UDP to transmit messages.

3 EM Architecture

EM binds together multiple OML objects into a vir-
tual world. It sets up the VR devices, dispatches
events, and calls the OML interpreter every up-
date. In the networked (multi-user) case, EM im-
plements the replicated architecture, allows identi-
cal or different content network configuration, per-
forms shared information communication manage-
ment, concurrency control and network bandwidth
reduction.

EM is in charge of the initialization and manage-
ment of the local application as well as communi-
cations between the other applications. Each user
in a multi-user virtual environment runs a local EM
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which communicates with other EMs across the net-
work. The OML objects managed by EM need not be
aware whether the world 1s single-user or multi-user,
since EM handles all the event dispatching that trig-
gers OML behaviors. This allows an object designer
to create OML objects without having to worry about
what context they may be used in.

The virtual world built by EM (called an EM
world) is comprised of OML objects and instances
that embody their graphical, behavioral and network
properties. Unlike SIMNET, EM worlds are not re-
stricted to sharing an identical set of objects. An EM
world manages its own set of objects and instances,
some or all of which may be shared with other EM
worlds on the network. Local objects and instances
are those which reside on the user’s home machine.
Shared objects or instances may be loaded by other
EM worlds on the network. The remote versions of
local objects are called ghosts.

EM consists of four subparts: (see Figure 2) the



description file parser, interaction support, the VR
world and the communication handler.

3.1 The Description File Parser

EM starts by reading an EM world description file
that states the configuration if this EM world. A
two-pass parser reports syntax errors in the EM file,
and collects information about device configuration,
object files, Instances, and behaviors. This informa-
tion is processed by the remaining EM subparts.

The following information is specified in an EM
description file:

1. Device configuration.

This part specifies the local devices to use.

2. Object prototype files

The local OML object prototype files are listed
here. EM loads these files into the OML inter-

preter.

3. Instances

Each instance of a local object 1s specified here.
Each entry consists of the name of the object,
the name of the instance, the parameter values
used to create the instance, the mapping from
events to behaviors, and the shared variables for
the instance, if there are any.

4. Object behaviors

If an instance does not specify an event for a be-
havior, 1t will inherit the event for that behav-
ior from its object. These object behaviors will
be inherited by remote instances of this object if
this object is shared. This inheritance eliminates
the tedium of having to specify the same event
for each instance of an object.

5. Networked EM world description.

This part specifies the shared objects and in-
stances.

For a single-user EM world, networked descriptions
(item 5) are not included. The networked EM world
description specifies the shared objects and instances
that can be exported to or imported from other EM
worlds. This specification has four parts:

1. Concurrency control scheme.

The EM programmer may choose one of several
concurrency schemes, as outlined in section 4.

2. Shared object information.

This is a list of the names of the objects that are
required by this EM world. The local EM will
solicit remote EMs for these objects. Hopefully
the remote EMs which have them and are willing
to export them.

3. Shared instance information.

This information 1s provided when an EM world
wants to send shared instances to remote EM
worlds. Remote EMs should have the objects
that the instances are created from. The infor-
mation is a subpart of the EM description file
containing instance entries, identical to item 3
in the previous list.

4. Expected object information.

This is a list of objects that the local EM world
expects to receive from remote EMs. FErpected
differs from required in that required objects are
solicited by the local EM while expected objects
are not. If the local EM receives an object that
is neither required nor expected, it is discarded.

3.2 Interaction Support

The MR Toolkit manages devices such as 3D position
and orientation trackers, hand digitizers, and sound
I/O using the client-server model. The EM inter-
action support simply states what devices are to be
used, and automatically performs MR’s data collec-
tion. EM also creates an instance of a special object
called “body”, which provides instance variables for
the user’s eye position and orientation, the hand posi-
tion, orientation and finger shape, and tracker button
state.

3.3 The VR World

This subpart of EM manages objects and instances,
either local or shared, to form the content of the vir-
tual world. EM loads in all the OML object pro-
totypes, creates, positions and orients the instances
within the environment, and builds the event table for
all instance behaviors. The mapping from events in
the environment to behaviors is handled at run-time.
At each time step, EM checks the events in the event
table to see if any behavior needs to be activated. If
an event has occurred, EM activates the correspond-
ing behavior, puts it on the active behavior list, and
runs 1t at the next time step.



An EM world can receive shared objects in the form
of OML code during the simulation. These objects
are loaded into the interpreter by EM as they are re-
ceived. Due to the interpreted nature of OML, an
object can be loaded multiple times during the sim-
ulation, allowing incremental updates. An EM world
can also receive shared instances in the form of an EM
description file, which is parsed by the EM parser to
create the ghosts of shared instances.

3.4 The Communication Handler

In BrickNet, the communication is based on the
client/server architecture, whereas in EM the com-
munication is peer-to-peer. We put the “server box”
of BrickNet’s client/server architecture down in each
peer. From the command line, EM gets the infor-
mation about the remote peer that the local applica-
tion wants to connect to. The local process does not
block while starting communications with a remote
peer. All connection solicitation and other peer traf-
fic takes place asynchronously, so any EM application
may start up the peer package at any time.

EM parses shared data items from the description
file, and allocates shared data storage for each item.
EM handles application data updates based on the
concurrency control scheme stated in the description
file. The peer shared data facility also allows a call-
back to be defined whenever a shared data item ar-
rives from a remote peer. The callbacks are used by
EM to update the actual application variables and to
activate the EM description file parser if a piece of
EM description file code is received.

The peer package and EM maintain a complete
graph connection topology by default, which means
that each peer is connected to all other peers ex-
plicitly. Each peer has a list containing all the ac-
tive remote peers, and it informs the connected peers
when it receives a new remote connection. Any EM
world may start up the peer package at any time and
may initiate and quit communications with other EM
worlds at will. A guit command 1s sent out when
an EM world wants to quit, causing the recipient to
delete this remote peer from its connected-peer list.
EM defines a callback for the quit message, which
deletes the shared instances and objects owned by
the remote peer sending out the quit message.

3.5 Unique Instances

One of the main features of EM networked worlds
is the ability to create multiple new instances while
the simulation 1s running. It should be possible to
communicate between instances regardless of the lo-
cations of the sender and the receiver. FEach peer
must be able to determine the instances associated
with shared messages. Therefore EM assigns a unique
identifier to an instance which can then be used to
communicate with it.

3.6 Reducing Bandwidth

The main limitation on maximum performance for
distributed VR systems is the bandwidth of the con-
nections between processors in the system. It 1s nec-
essary to reduce the communication between proces-
sors as much as possible. In EM, instances trans-
mit only shared variables whose states have been
changed. Messages are sent only to relevant EM
worlds. Like SIMNET’s dead reckoning, EM supports
local simulation of the behavior of shared instances.
EM also provides gquenching and unquenching mes-
sages to eliminate unnecessary communications, if an
EM world decides to stop collaborative work for a pe-
riod of time and does not wish to be informed of any
updates for all imported objects during the break.

4 Concurrency Control

The replicated architecture needs concurrency con-
trol to resolve conflicts between participants’ simul-
taneous operations. Concurrency control algorithms
used in distributed database systems, such as explicit
locking and transaction processing, are not appro-
priate for networked virtual environment under cer-
tain circumstances [7]. Networked VR systems and
distributed systems are similar in that they are dis-
tributed over a network and they are shared by mul-
tiple users. However, a networked VR, system 1s re-
quired to be responsive [2]. Under certain circum-
stances, responsiveness can be lost when locking (ap-
plied in DIVE) or centralized controller (applied in
BrickNet) are used.

We have found that different applications may need
different concurrency control schemes. It is not nec-
essary to find a generic control scheme for every type
of application; instead, we can implement several
schemes, and leave the choice of scheme to the users:



4.1 Simulation Ownership Token
Passing
Some networked VR applications (e.g. the multi-

player handball game [14]) are intended for situations
where only one participant at a time owns the simula-
tion and is active, while the other participants watch
the simulation, and wait for their turns. We maintain
consistency of a distributed virtual world database by
restricting manipulation in such a way that only one
site can perform operations to alter the status of the
virtual world.

4.2 Instance Or Variable Ownership
And Access Permissions

Instance or instance variable ownership indicates that
only one EM world is permitted to have control over
that value. The ownership may be fixed at inception,
or it may shift between EM worlds as the applica-
tion demands. For example, the ownership of a tank
in SIMNET is never transferred, while the handball
game transfers ball ownership.

As mentioned in section 3, an EM world may have
local objects and instances which have no relation
to other EM worlds, or it may export objects or in-
stances to the network and share them with other
EM worlds. Using ownership, we can restrict sharing
in various ways. For example, an instance might be
visible to other EM worlds, but updatable only by its
current owner.

EM assigns access permissions to each instance
shared variable, similar to file access permissions. EM
defines two kinds of permission for a shared variable:

o Writable Permission

Other interested EM worlds have permission to
write to this shared variable. Every EM world is
permitted to write its local shared variables.

o Readable Permission

Other interested EM worlds have permission to
read this shared variable, and the variable owner
will send out the current value if necessary.

These concurrency control algorithms are managed
and enforced by EM, and do not require special OML
coding to implement. For example, if a local instance
variable is writable, the OML interpreter does not
know whether this local variable has been written by
a remote EM. This allows for reuse of objects in both
single and multiple user virtual environments without

Figure 3: Simplified tank battle. In the upper pic-
ture, the black tank has just blown up. The lower
picture is the black tank’s simultaneous view of this.

the need for rewriting the OML code for an object.
Because instance variables are updated by EM before
it calls the OML interpreter, all behaviors will run
with the new values. External changes to instance
variables will not occur in the midst of OML behavior
execution.

5 Examples

We introduce three networked demonstrations build
using EM: (1) a dynamic target shooting game, (2) a
simple tank battle, and (3) the East Edmonton Mall
design environment.

The shooting game allows networked players to
shoot dynamic targets selected by the opposing play-
ers. One player shoots at a time, while being watched
by the remaining players. The simulation token pass-
ing concurrency control is used in this demonstration.

In the Tank Battle demonstration (figure 3), each
EM world represents a soldier owning a tank and its
view-scope. The object space is the same across all
the participants. Every soldier can enter or leave the
battle simulation at any time. Each EM world broad-
casts a tank instance (a ghost instance) representing



the local tank to all the other EM worlds, so that each
soldier can see all of the tanks which are currently in
the battle. The instance ownership and access per-
mission are used in this demonstration. OML’s colli-
sion detection facility generates the collisions between
tanks and enemy bullets, which in turn allows a bullet
to update the tank’s writable hit variable. The ap-
pendix shows the EM script for this demonstration,
and figure 3 shows two simultaneous screenshots from
two users.

The East Edmonton Mall Design Environment is
representative of networked design systems that can
be supported by EM. Unlike the previous two “same-
content” networked VR worlds, this environment con-
sists of three EM worlds, each of which has different
objects and content.

The Airplane Museum is an EM world that con-
tains a number of airplane objects on display to its
user. The second EM world is the Sculpture Studio,
which contains a collection of dynamic sculpture. The
Mall Design Studio allows its user to design a build-
ing in which various sculptures and airplane models
are to be placed. Because the Mall does not have its
own sculptures or airplanes, it sends out a request to
the network for the specified plane models and sculp-
tures. The Plane Museum and the Sculpture Studio
export their objects, along with the object behaviors
onto the network upon receiving the request. The
Mall Design Studio takes the received models, places
them in the desired spots and shows their dynamic
features (behaviors). Updates for these shared pieces
are sent out by their owners whenever any new design
idea has been applied.

6 Conclusions

The Environment Manager (EM), Object Modeling
Language (OML), JDCAD+, and the Minimal Re-
ality (MR) Toolkit provide a rich set of functional-
ities geared towards expediting the creation of both
single-user and networked, multi-user virtual worlds.
They eliminate the need to learn about low level
graphics, device handling and network programming.
This is achieved by providing higher level support for
graphical, behavioral and network modeling of virtual
worlds.

The MR Toolkit provides support for common VR,
devices and numerous interaction techniques. OML
provides geometry and behavioral modeling for three
dimensional objects used in virtual worlds. JDCAD+

1s used to interactively create and animate dynamic
3D objects, automatically creating OML code. EM
sits on top of OML and MR, allowing for the easy
construction of virtual environments. Instead of ask-
ing the developer to start from scratch, EM generates
both single-user and networked virtual worlds using
a simple script file where the device configuration,
object and instance information (including parame-
ters, behaviors and network-shared information) are
specified.

EM provides higher level support for the creation
of networked virtual environments. It reduces the
effort required to design a networked VR by providing
the standard facilities required by a wide range of
networked virtual worlds.
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7 Appendix

An EM Description File For The Tank Battle

Demonstration

world tank_simulator

simulation shared information

round_robin off

broadcast_instances

instance Tank tankl (10, 10, 0.5, (1, 0, 0), 0)

actions
collision ( hill_.OBJ ) explosion
collision ( Bomb ) got_it
collision ( Tank ) explosion
need_to_explode explosion
tick marching

end

shared information
heading double writable
tx double writable dead_reckoning
ty double writable dead_reckoning
hit integer readable writable
start_marching integer writable

end
end

objects expected
Tank

end

end

object_files
world.obj tank.oml.obj body.obj
hill.obj bomb.obj

end

instance WORLD terrain (-99, 99, -99, 99, 30, 30)

instance test_body body

actions

end

instance Tank tankl (10, 10, 0.5, (1, 0, 0), 1)

actions

tick navigation

tick signal_marching
begin_marching marching

tick turning_with_hand

tick signal stop

collision ( hill_.OBJ ) explosion



collision ( Bomb ) got_it
collision ( Tank ) explosion
need_to_explode explosion
end
shared information
tx double readable
ty double readable
hit integer readable writable
heading double readable
start_marching integer readable
end

instance Bomb bomb1

actions
tick stay
tick start_to_shoot
need_to_bomb bombing
collision ( hill_.OBJ ) stop_shoot
collision ( Tank ) stop_to_shoot
need_to_stop stop_to_shoot

end

instance hill_OBJ hill_1 (50, 50, (0.9, 0.3, 0.8) )
instance hill_.OBJ hill_2 (40, -30, (0, 1, 0.5) )

(-80, 70, (0.8, 1, 0.5) )
(-65, -75, (0.3, 0.4, 1) )

instance hill OBJ hill_3
instance hill_ OBJ hill 4

end



