
ABSTRACT

Figure 1: Radial distortion expands the extent of the
display as well as the image it contains.
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This paper describes a fast method of correcting for optical
distortion in head-mounted displays (HMDs).  Since the
distorted display surface in an HMD is not rectilinear, the
shape and location of the graphics window used with the
display must be chosen carefully, and some corrections
made to the predistortion model.  A distortion correction
might be performed with optics that reverse the distortion
caused by HMD lenses, but such optics can be expensive
and offer a correction for only one specific HMD.  Integer
incremental methods or a lookup table might be used to
calculate the correction, but an I/O bottleneck makes this
impractical in software.  Instead, a texture map may be
defined that approximates the required optical correction.
Recent equipment advances allow undistorted images to be
input into texture mapping hardware at interactive rates.
Built in filtering handles predistortion aliasing artifacts.

1. INTRODUCTION
The display screens in head-mounted-displays (HMDs) are
placed within inches of a wearer's eyes.  Between the
wearer's eyes and the screens is an optical lens system.  The
purpose of the lens system is to provide an image to the
user that is located at a comfortable distance for
accommodation and that is magnified to provide a
reasonable field-of view.  Unfortunately, the optics also
cause nonlinear distortions in the image so that straight
lines in the model appear curved in the visual image.  The
most significant component of this distortion in the widely
used LEEP optics is radial distortion [7, 9], which stretches
the image away from the lens center.  The farther an image

Figure 2: Severity of distortion increases with
distance from the optical axis.  This example shows
a distorted grid.

element from this center, the more it is stretched.  Image
elements at the center remain unaffected.  Figures 1 and 2
illustrate the effect of radial distortion.

Distortion introduces other complications as well.  Because
the edges of the HMD raster itself are distorted, using all of
the available display space would require clipping to a
curved graphics window.  A slight misregistration is
introduced into stereo pairs [11].  Also, since distortion
changes the perceived shape and size of raster pixels,
distortion can introduce a perceived blur, and complicate
antialiasing.  Distortion also has some beneficial side
effects.  Distorting the image increases field-of-view (FOV)
slightly.  Furthermore, because the optics do not distort the
center of the image, this FOV increase does not come at the
expense of central image detail, where viewer attention is
usually focused.  However, most of an HMD's optical FOV
increase is attributable to optical magnification, not
distortion.

Robinett and Rolland [14] have described an optical model
for HMDs.  Using this model, they were able to suggest a
method of correcting for HMD distortion with a
predistortion.  Later, their colleague Gary Bishop
implemented this method on Pixel Planes hardware [6].
Predistorting a stereo image frame took roughly 1/20 of a
second  Essentially, their suggested approach began with a
normally generated raster image, and relocated the individual



Figure 3: Predistortion contracts the image in
proportion to distance from the optical axis.

pixels in the raster*.  The effect of such a predistortion is
illustrated in Figure 3.  When this predistorted image is
viewed through HMD optics, as illustrated in Figure 4, it
appears to be undistorted.  Note that the raster itself is still
distorted.

In this paper, we will describe a real-time method of
predistortion that uses the model described by Robinett &
Rolland.  Our goal with this research was to find a real time
method for predistortion that works on standard graphics
hardware.

2. WHY BOTHER CORRECTING DISTORTION?
In Sutherland's early HMD work [16, 17], distortion was
not considered a pressing issue.  More important was the
realization of any sort of device that approximated "the
ultimate display."  Even later researchers such as Bryson
[3], after some experiments, have concluded that
compensating for distortion takes too much time, and have
moved on to other research issues.  Psychophysical studies
have shown that the human visual system can correct for
displayed distortion [20].  Yet it may not be capable of this
correction when the distorting display, like most HMDs, is
only intermittently used.  In addition, it may be that
distortion has a significant  effect on the performance of
HMD users, especially for tasks that require heavy use of
the peripheral areas of the FOV, where distortion is most
severe.  Efficient correction for distortion is an important
step in achieving the proper experimental control for
investigating these and other questions.

Early HMDs had horizontal binocular FOVs ranging to
well over 100 degrees.  But they paid a price for this
immersive width: severe distortion and poor resolution.
Indeed, the level of visual acuity provided by many of these
HMDs fits the legal definition of blindness [3].  Recently,
commercial HMD manufacturers have begun to sacrifice
FOV in order to achieve greater resolutions and reduced
distortion.  Some new HMDs have FOVs in the range of
40 degrees.  Manufacturers may now have crossed a
perceptual breaking point, one at which the perceptual gain
of increasing resolution is offset by the loss in FOV

Figure 4: The predistorted image is expanded by the
distorting lenses, and fills the undistorted original
image's extent.

* This information was obtained through the author's
professional correspondence with Gary Bishop of the
University of North Carolina.

[1, 21].  If an efficient algorithmic method of eliminating
distortion could be found, HMD designers could be freed
from concern about the distortion that accompanies wide
FOV, and could concentrate on optimizing other lens
parameters.  Sharp in Japan is planning to develop a wide
FOV HMD, and has shown interest in just such an
approach [19].

Perhaps the most important use for an efficient distortion
correction would be in the arena of augmented reality, in
which virtual objects are superimposed onto a real world
view [2, 5].   Many feel that this largely untapped research
area could give rise to extremely promising training and
visualization applications. One of the most difficult
challenges facing augmented reality researchers is the
accurate, real-time placement of virtual objects onto the real
world view, commonly called the registration problem.  A
significant component of this problem is the static
misregistration introduced by optical distortion.  Techniques
for eliminating this distortion could have a powerful impact
in this field.

3. MAKING MAXIMUM USE OF DISPLAY AREA
Before an image can be predistorted, a graphics window
must be defined, and the view of the modelled world
through this window generated.  To maintain
psychophysical continuity and make maximum use of
available display area, the boundary of this graphics window
should match the boundary of the display viewport.
However, because distorted HMD screens are not
rectangular, achieving this continuity with HMDs is more
complicated than with traditional CRT displays.  We
defined the graphics window as the largest rectangle that fit
inside the outline of the distorted screen.

In order to fill this graphics window, it was necessary to
make adjustments to the distortion correction proposed by
Robinett and Rolland.  That correction is an exact reversal
of the modelled distortion, resulting in a graphics window
that has the same bounds as the undistorted display.
However, since the undistorted display is smaller than the
distorted display, this correction does not make good use of
the available display space (see again Figure 4) or fill the
graphics window we defined.  Our adjustments increased the
size of the predistorted image so that, when viewed through



Figure 5: Adjusting the predistorting correction
allows the entire distorted display extent to be
utilized.

the HMD lenses, it filled our graphics window (Figure 5).
We outline these adjustments below.

The boundaries of our graphics window depend on the
HMD's distortion, modelled by these equations:

xvn = xsn + kvsxsn(xsn
2 + ysn

2)

yvn = ysn + kvsysn(xsn
2 + ysn

2).

In the above notation, the distortion constant kvs is a
parameter of the optics being used.  (xsn,ysn) locates the
pixel on the HMD raster, while (xvn,yvn) locates the pixel
location after optical distortion.  For both of these
coordinate systems, the origin is located at the optical axis
of the HMD.  If the normalized right boundary of the
undistorted HMD screen is R/ws, then the right edge of our
graphics window has the distorted boundary

Rd = R/ws + kvs(R/ws)3.

Calculations of the distorted boundaries Ld, Td and Bd of
the other sides of the graphics window are similar.  The
resulting window is larger than the undistorted HMD
screen, and may have a different aspect ratio from the
undistorted screen.  To take account of this new aspect ratio
in our correction, we renormalized the graphics window
boundaries by dividing each of Ld, Rd, Td and Bd by
max(Ld,Rd,Td,Bd), and substituting them into the original
model in place of the undistorted window boundaries L/ws,
R/ws, T/ws and B/ws.

The severity of radial distortion increases with distance from
the optical axis.  Because our graphics window's boundaries
are farther from the optical axis of the HMD than the
boundaries of the undistorted HMD screen, distortion within
our graphics window is more severe than distortion within
the undistorted display screen.  To take account of this
increased distortion, we increased the magnitudes of the
distortion constant kvs and the predistortion constant ksv
slightly.

4. APPROACHES TO DISTORTION CORRECTION
One very straightforward approach to correcting for optical
distortion is optical rather than digital.  Before a normally
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Figure 6: A hypothetical correcting subsystem would
pass the undistorted image through a correcting lens
before display on an HMD.

generated image is presented on a distorting display, it can
be passed through a set of lenses that reverses the distortion
introduced by the display.  One could, for example, place a
video camera with correcting lenses in front of a computer
display, and send the output of the camera to an HMD.
This method does not introduce any latency into the
rendering pipeline* and skirts many of the filtering
problems introduced by digital predistortion.  However, this
approach does have its drawbacks.  New correcting lenses
are required for each new distorting lens.  The camera setup
described is not very stable, and if correcting lenses were
incorporated into HMD displays, they could increase the
bulkiness and expense of a display that already has
questionable ergonomics.  Nevertheless, an HMD system
with a separate predisplay and correction component (see
Figure 6) might prove useful.  See [4] for a description of a
similar system.

A digital predistortion of an image may be performed with
the use of the following equations, which approximate the
continuous relocation performed by optical predistortion:

xsn = xvn + ksvxvn(xvn
2 + yvn

2) (1)

ysn = yvn + ksvyvn(xvn
2 + yvn

2), (2)

where ksv is the predistortion constant.

Since the equations (1) and (2) are essentially parametric
cubics, the predistorting relocations might be calculated
dynamically and efficiently using well-known curve
rasterization methods [10, 18].  For example, after
perspective projection, polygon vertices could be
predistorted and their edges rendered as predistorted curves.
If the equation for the line defined by such an edge is

yvn = cxvn + d, (3)

the parametric equation that defines its predistorted
equivalent is obtained by substituting equation 3 into
equations 1 and 2:

*Note that most modern cameras integrate light for 1/30 of
a second, acting as a frame store.



becomes...

Figure 7: Undistorted scan lines might be
predistorted using integer-only rasterization
methods.

xsn = (ksvc2+ksv)xvn
3 + (2ksvcd)xvn

2 + (ksvd2+1)xvn. (4)

ysn = (ksvc3+ksvc)xvn
3 + (3ksvc2d+ksvd)xvn

2

+ (3cksvd2+c)xvn + (ksvd3+d). (5)

For accuracy, polygon fill and shading routines used with
this method would have to be adjusted to account for
predistortion.  Because this approach would have a variable
complexity dependent on world geometry, we call it the
geometry-dependent approach.

Rolland and Hopkins [13] are experimenting with a
algorithm related to the geometry-dependent approach that
uses a lookup table to predistort vertices.  Rather than
rendering predistorted edges, however, they minimize the
edge distortion by subdividing large screen polygons and
predistorting the new vertices.

Alternatively, after an undistorted image was rendered, each
image scan line could be rendered as a predistorted curve
(Figure 7).  Because this method would have a fixed
complexity dependent on image size, we call it the image-
dependent approach.  The predistortion of the zero-slope
scan lines corrected in this approach is an especially simple
case, making this image-dependent method easy to
implement in hardware.  By setting the slope c to 0 in
equations 4 and 5, we arrive at these much simpler
equations:

xsn = ksvxvn
3 + (ksvd2+1)xvn (6)

ysn = ksvdxvn
2 + (ksvd3+d). (7)

Predistortion for both the geometry- and image-dependent
approaches could be adjusted for different HMDs by simply
passing new screen boundary and distortion severity
parameters to the algorithm.

Finally, since the predistortion for the HMD being used is
usually well-known, it might be more efficient to
precalculate the relocation of each undistorted pixel into a
table, if sufficient memory is available.  Regan and Pose
have implemented such an approach in hardware [12].  Their
specialized architecture incorporates a pixel relocation
lookup table that allows any raster image to be predistorted
to correct for distortion in any sort of lens.
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Figure 8: The vertices in a rectangular mesh textured
with an undistorted image may be predistorted with
equations 1 and 2.  Since the texture indexes are
unchanged, this predistorts the undistorted image.

5. EXPERIMENTS WITH TWO OF THESE
APPROACHES
We implemented both the table-based approach and the
dynamic image-dependent approach in software on a Silicon
Graphics Crimson Reality Engine, and tested them with
320 x 240 images.  The predistorted scan lines generated by
the image-dependent method had very small slopes over
most of their length, and as a result the predistorting
relocation of successive scan line pixels exhibited a
significant amount of coherency.  We were able to take
advantage of this fact to reduce the amount of memory used
to store relocations in our implementation of the table-
based method to 25K.

Surprisingly, the speed of these two approaches did not
differ greatly.  With each of these approaches we were able
to predistort six graphics window frames per second, clearly
inadequate for real time graphics applications.  Testing
showed that most CPU time was spent transferring frames
between frame buffer and main memory.  This explained the
lack of any significant difference in speed between the two
approaches, and suggested that hardware implementations of
these algorithms could be quite effective.

All of the digital predistortion approaches discussed here
introduce image filtering complications that worsened with
the severity of the modelled distortion.  We experimented
with pixel by pixel blending on the predistorted image as a
solution and found it inadequate.  The resulting images had
a snowy, speckled look.  We obtained better results when
we used the Z-buffer value of the undistorted image pixels
to resolve relocation pixel conflicts.  While we did not
encounter this problem in our experimentation, this Z-
buffering approach could conceivably result in binocular
rivalry (right/left eye conflicts) in stereoscopic displays.
Both of these filtering solutions were simple software
approaches dictated by our real-time demands.  A more
complete solution was implemented by Regan and Pose in
their specialized graphics architecture, which passes the
image through a linear filter after pixel relocation.

6. PREDISTORTING WITH TEXTURE MAPS
Predistortion can be viewed as a special case of texture
mapping [8].  If the undistorted image is a texture, and the



TABLE 1: TABLE 2:
 Predistorted Performance Normal Performance

Performance of predistorting algorithm with textured and untextured world views, and Rendering performance
with differing undistorted source image resolutions.  Predistorted views were always for an undistorted virtual
rendered monoscopically at 640 x 480 resolution.  Reported predistortions per second world rendered monoscop-
are not geometry or world dependent and are highly variable.  Reported frame rates ically at 640 x 480 reso-l
include time required for rendering of undistorted source view, and so are dependent on ution.  The textured and
the size of the rendered world, which contained 8211 flat shaded polygons.  When tex- untextured worlds used
turing was used, 1588 of these polygons were mapped with 128 x 128 textures.  The for these tests were the
world contained five different textures.  The predistorted view was a textured mesh with same worlds used for  the
400 vertices, filtered bilinearly.  All textures were stored in a two byte internal format. tests reported in table 1.

Textures? Y e s N o Textures? Y e s N o

Source Res 6 4 0 x 4 8 0 5 1 2 x 2 5 6 2 5 6 x 2 5 6 6 4 0 x 4 8 0 5 1 2 x 2 5 6 2 5 6 x 2 5 6 Frames/Sec 20 25

Frames/Sec 10 14 19 11 14 19

Predis t /Sec 17 20 40 19 23 77

display surface a polygon, predistortion is simply a
mapping of a texture onto a polygon.  One salient
difference between predistortion and traditional texture
mapping is that unlike most textured polygons, the display
surface in predistortion must have a new undistorted image
mapped onto it for each new image frame.  Nevertheless,
this analogy provides a useful perspective on several of the
problems we discussed earlier, and suggests a new approach
to performing predistortion.

We can model the undistorted image space with a flat, two-
dimensional polygonal mesh.  Paired with each vertex in
the mesh is an index into the corresponding point in the
undistorted image (the texture) itself .  We then apply the
predistorting equations (1) and (2) to the vertices of the
mesh, leaving the texture indexes unchanged.  Figure 8
illustrates this process.  If the mesh is then rendered onto
the display screen, a predistorted image will appear.

Until recently, it was not possible to load new textures into
texturing hardware at interactive rates, and as a result,
undistorted images could not be predistorted with this
technique in real time.  But a new and largely undocumented
feature on high-end Silicon Graphics machines [15] has
made this predistortion approach practical.  Undistorted
images can be rendered to the frame buffer and addressed
directly by texturing hardware.

We have implemented this technique on a Silicon Graphics
Onyx Reality Engine II, and tested it on a virtual world
containing 8211 flat shaded polygons.  When a textured
view of the world was rendered, five 128 x 128 textures
were mapped onto 1588 of these polygons.  The
predistorted mesh contained 400 vertices, which in our
experience struck a good balance between over-sampling and
over-interpolating.  All textures were stored with a two byte
internal format.  Our results are displayed in tables 1 and 2.
Our scan converter required 640 x 480 image input, and so
the undistorted world was always rendered at 640 x 480
resolution.  Figure 9 shows a textured and undistorted world
view.  While the predistorted view of the world rendered
with predistortion was always rendered with 640 x 480

resolution, we varied the resolution of the source
undistorted image at three levels: 640 x 480, 512 x 256,
and 256 x 256.  Figure 10 shows a predistorted image
rendered with Figure 9 as its source texture.  Figures 11 and
12 show an undistorted image rendered at 256 x 256
resolution and a matching predistorted view.

Not surprisingly, rendering an undistorted view of the world
was faster than rendering a predistorted view of the world.
Note that adding textures to the predistorted world had little
impact on frame rate.  Adding textures to the undistorted
world, however, significantly impacted performance. This
indicates that a large part of predistortion's impact on
performance is due to its addition of texturing to an
otherwise untextured world.  By reducing the size of source
textures, one may trade image fidelity for significant
improvements in performance.  This would be particularly
appropriate when the resolution of the displays in the HMD
being used is less than NTSC.

Filtering has long been an important concern of texture
mapping researchers, and accordingly most texturing
systems provide many different filtering options, at various
levels of image quality and speed.  We found that use of
larger and more complex filters improved predistorted image
quality without significantly impacting overall
performance.

When considering the quality and accuracy of the images
produced with this approach, it is important to realize that
the equations 1 and 2, which form the basis for all the
techniques discussed in this paper, are themselves only
approximations of the necessary optical predistortion.  The
predistortion techniques discussed in sections 4 and 5
digitally sample these approximating functions. Texture-
based predistortion samples the approximating functions
much more sparsely than the techniques in sections 4 and 5.

7. CONCLUSION
This paper has described a method of correcting for optical
HMD distortion in real time.  The method makes use of
widely distributed texture mapping hardware.  As texture



Figure 9: An undistorted view of a virtual world
rendered at 640 x 480 resolution.

Figure 11: An undistorted view of a virtual world
rendered at 256 x 256 resolution.

mapping hardware improves, this technique will gain speed
and utility.
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