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Abstract 

VRaptor, a VR system for situational training that 
uses trainer-defined scenarios is described. The trainee 
is represented b y  an avatar; the rest of the virtual world 
is populated b y  virtual actors, which are under the con- 
trol of trainer-defined scripts. The scripts allow reac- 
tive behaviors, but the trainer can control the overall 
scenario. This type of training system may be very 
useful in supplementing physical training. 

1. Introduction 

This paper presents VRaptor (E assault planning, 
- training, or gehersal), a VR system for situational 
training. VRaptor lets the trainer define and redefine 
scenarios during the training session. The trainee is 
represented by an avatar; the rest of the virtual world 
is populated by virtual actors, which are under the con- 
trol of trainer-defined scripts. The scripts allow reac- 
tive behaviors, but the trainer can control the overall 
scenario. 

VRaptor supports situational training, a type of 
training in which students learn to handle multiple sit- 
uations or scenarios, through simulation in a VR envi- 
ronment. The appeal of such training systems is that 
the students can experience and develop effective re- 
sponses for situations they would otherwise have no 
opportunity to practice. Security forces and emergency 
response forces are examples of professional groups that 
could benefit from this type of training. A hostage res- 
cue scenario, an example of the type of training sce- 
nario we can support, has been developed for our cur- 
rent system and is described in Section 3. 

Since control of behaviors presupposes an appropri- 
ate representation of behavior and means of structuring 
complex behaviors, we survey related work on behavior 
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simulation in Section 2. 
In the Virtual Reality / Intelligent Simulation 

(VR/IS) lab, our basic VR system [16] allows multi- 
ple human participants to appear in embodied form (as 
avatars) within a common, shared virtual environment. 
The virtual environment may also contain virtual ac- 
tors. Using this inlfrastructure, we have developed the 
VRaptor system. VRaptor adds oversight and session 
control by a trainer, through a workstation interface. 
This interface, described in Section 4, allows selection 
of roles and actions for the individual virtual actors, 
and placement of them in the scene. 

In Section 5 we present the architecture of the simu- 
lation component of VRaptor, and in Section 6 discuss 
the representation of scenarios in terms of scripts and 
tasks. 

2. Related work 

Since our focus in this research is on the scripting 
and control of virtual actors, we survey work toward 
building animations or behaviors which are either au- 
tomated or reactive, and especially work which offers 
hope of allowing realtime implementations. 

2.1. Behavioral animation 

Behavioral animation has developed from the early 
work of Reynolds [15], on flocking and schooling behav- 
iors of groups of simulated actors; recent work in this 
vein includes that of Tu and Terzopoulos [17]. Systems 
that deal with smaller groups, or individual behaviors, 
are reviewed in the following sections. 

2.2. Ethologically-based approaches 

Ethologically-based (or biologically-based) ap- 
proaches deal with action selection mechanisms. Since 
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intelligent behavior should emerge naturally in this 
approach, some form of reactive planning may be 
used. An approach that included reactive planning 
in a system providing simulation capabilities was 
developed by Maes [7], and subsequently extended 
into a distributed form in the work of Zeltzer and 
Johnson [18, 191. Maes has demonstrated a sys- 
tem called ALIVE which provides simulated actors 
responding to users’ gestures (see M a s  et  al [8]). 
Blumberg [3] describes a ethologically-based system 
which is embedded in the ALIVE framework. 

2.3. Other approaches 

Alternative approaches for simulation of reactive, 
situated actors have also been developed by Bates and 
Loyall [6], Becket and Badler [2], the Thalmanns and 
their group [ll], and Booth et a1 [4]. The system of 
Bates and Loyall does not do any actual planning, al- 
though it does allow a range of actions to be reactively 
invoked, and supports the implementation of simu- 
lated simple actors that have an extensive repertoire 
of behaviors and include simulated emotional states. 
The system appears to make programming action se- 
quences, as behavior segments, relatively straightfor- 
ward. The system of Becket and Badler uses a net- 
work of elements (PaT Nets) to get reactivity. There 
is a higher-level, nonreactive planning component. The 
Thalmanns have explored some behavioral features in 
conjunction with synthetic actors, and they use a re- 
active selection of (fine-grain) strategies in association 
with synthetic vision in the cited work. 

The work of Booth et a1 proposes a design for a state 
machine engine, which hierarchically combines state 
machines and constraint resolution mechanisms. This 
mechanism is described more fully in Ahmad et al [l]. 

In general, systems such as those developed by 
Zeltzer and Johnson, Bates and Loyall, and Becket and 
Badler assume an underlying stratum that deals with 
continuous, feedback-controlled domains, and provides 
a set of constituent actions (perhaps constituted from 
smaller primitive actions). The set of constituent ac- 
tions are invoked by the reactive planning component. 
That is, these authors separate the creation of single, 
continuous actions from the selection and invocation of 
those actions. Nilsson [9, 101 combines both aspects of 
action in one formalism, called teleo-reactive programs. 
Multiple levels of more detailed specification are pro- 
vided through procedural abstraction. 

2.4. Individual behaviors and expressive movement 

Recent work by Perlin [12, 131 has shown that to 
an interesting extent, relatively simple kinematic tech- 
niques can create movement that is both natural and 
expressive, the latter being made apparent through 
the example of a dancer figure animated by his tech- 
niques. More recent work by Perlin and Goldberg [14] 
has extended their work into multiple figures using a 
distributed system. 

3. Testbed scenario 

Hostage rescue, our testbed scenario, is the sort of 
operation an organization such as the FBI Hostage Res- 
cue Team is called upon to perform. For a simple initial 
capability, we assume the rescue should take place in 
a single room. This type of operation is called a room 
clearing. Traditionally, training of response teams for 
such scenarios involves the use of a “shoothouse”, a 
physical facility that models typical rooms and room 
arrangements, and is populated with manikins or pa- 
per cartoon drawings for the adversaries. Such facilities 
lack the flexibility and l i t  the degree of interesting in- 
teraction (the manikins may move only in simple ways, 
if at all). Our shoothouse scenario exhibits an alterna- 
tive in which figures can move through a range of pro- 
grammable actions. In addition, the physical facility 
is rather expensive to operate; our VR system should 
provide a more cost effective training option. (How- 
ever, we do not foresee entirely replacing the physical 
shoothouse with a virtual one in the near future.) 

3.1. Components of a room clearing operation 

A room clearing operation proceeds in the following 

1. Breach through door(s) or wall to create an entry 

steps: 

into the room. 

2. Toss a stun grenade (or flashbang) into the middle 
of the room. This creates a diversion, and as the 
name implies, stuns the inhabitcants of the room 
with blast and light. 

3. Forces enter the room in pairs, each member of 
the pair to cover either the left or right side of the 
room from the breached opening. Each steps into 
the room along the wall and then forward. Thus 
each can clear his own section of the room. 

4. Commands are given to the room occupants to 
“get down”, and not resist. 

2 



Figure 1. Allowed Virtual Actor Locations 

5. Shoot armed adversaries. 

The total attack time may be only a few seconds for a 
single room. 

3.2. Training for a room clearing operation using 
VR 

There will be one or more trainees who will be prac- 
ticing the room clearing operation; these will be the 
intervention forces. The trainees will be using immer- 
sive VR. 

The trainers will control the training session by set- 
ting up scenarios and monitoring the trainees' perfor- 
mance. The trainers will use a multiple-windows work- 
station display that provides a 3D graphics overview of 
the virtual environment (i.e. the room) and a user in- 
terface to define the scenario and start the session. 

The room occupants will be simulated using virtual 
actors. These actors will carry out roles and actions 
assigned by the trainer, subject to reactive changes as 
the scenario proceeds, such as an actor getting shot. 

4. VRaptor user interfaces 

4.1. The trainer's interface 

The user interface for the trainer consists of a 3D 
viewing window of the virtual environment and a set 
of menus. Using the menus, the trainer can control 
the placement of the actors in the room, assign them 
roles of either terrorist or hostage, and select scripts 
for each actor. The scripts are subject to constraints 
of applicability to the current position and pose of the 
figure. The menu choices adjust dynamically to re- 
flect the current actor placements and scenario. Fig. 1 
shows possible starting locations for the virtual actors. 
Views of the actors from within the room are shown in 
Figures 2 and 3. Typical menu choices for the actors' 
responses when the shooting starts are: 

Figure 2. Virtual Actors in Room 

Figure 3. Another View of Actors 
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0 give up and put hands in air, then on head 

0 dive for the floor and give up 

0 do nothing - i.e. dazed 

0 fight (if adversary) 

Except where noted, the actor may be either a hostage 
or an adversary. 

A 

4.2. The trainee’s interface 

Puppet 
Controller 

The trainee is immersed in the scene. The trainee is 
provided with a Head-Mounted Display (HMD)l and 
views the scene from the eye point of the appropriate 
avatar. The trainee holds a weapon which is currently 
a Baretta 9mm replica instrumented to detect trigger 
pulls and clip insertion or removal. This weapon pro- 
vides the weight and feel of a real Baretta, but is lack- 
ing the recoil. The headmount and gun each have an 
electromagnetic tracker mounted on it, and in addition, 
electromagnetic trackers are mounted on the hand not 
holding the gun, as well as the lower back. 

Puppet 
Controller 

5. Virtual actor system 

The virtual actor simulation is a distributed set of 
cooperating components. There are two types: 

1. An actor/scenario controller component 

2. A puppet server component 

The simulation requires one actor/scenario component 
for the application, and one puppet/server component 
for each virtual actor. Basic supporting behaviors are 
installed in the lower-level (‘puppet server’) support 
modules. Higher-level behaviors appear as tasks dis- 
patched on an actor-specific basis (see Sec. 6). 

5.1. The actodscenario controller 

The actor/scenario controller manages all the actors 
and tracks the state of the simulated world. Higher- 
level behaviors are programmed as tasks in this com- 
ponent. These tasks are determined by a trainer us- 
ing the menu system. Each actor is represented in the 
controller component by an object, which communi- 
cates to the appropriate puppet server for that actor. 
The controller sends commands to the puppet server, 
which carries out the command by animating the fig- 
ure of the actor appropriately. Figure 4 illustrates this 
concept. This figure shows two actors, but in general 

‘We have been using the 01 Products PT-01 HMD 
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Figure 4. Virtual Actor Components 

there can be many. The appropriate components (and 
processes) would be replicated for each actor. The ac- 
tor/scenario controller implementation uses the Umbel 
Designer2 environment. This environment allows an 
object-oriented design approach. 

The actor/scenario controller contains a component 
which evaluates the gun position and orientation at 
trigger pull event time to determine which (if any) ac- 
tors were hit. When an actor is hit, the actor/scenario 
controller overrides the current activity of that actor 
to force an appropriate response to the hit; e.g. the 
actor falls dead in a manner appropriate to its current 
position. 

5.2. The puppet server 

The puppet server component uses the NYU kpl  
language interpreter modified to provide 1/0 that is 
compatible with the VR/IS system (see Sec. 7.3). It 
runs kpl  code rewritten to extend Ken Perlin’s orig- 
inal ”dancer” code [12, 131 with new behaviors and 
with techniques for building more elaborate behav- 
iors through chaining simple behavior elements. Com- 
mands are sent from the actor/scenario controller by 
TCP/IP connections to the specific puppet server 
through an intermediate proxy for that puppet server 
(not shown in Fig. 4). This indirect route accomodates 
a lower-level menu interface to the individual puppet 
server for development of new basic behaviors. (Per- 

2A product of Inflorescence, Inc. 
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lin’s original interface creates tcl/tk menus; essentially 
the same kind of code interfaces with the proxy.) 

6. Scripts and multitasking 

Central to our research is provision of user- 
manipulatable scripting. To provide this, we use the 
tusk abstraction at the actor/scenario controller level. 
The mapping of script to tasks is one-to-many; multiple 
concurrent tasks may be required in general to  realize 
all aspects of a particular script. For simple cases, one 
task may do. 

There are also once-per-timestep condition checks 
taking place. These checks are a type of callback proce- 
dure registered with the simulation control mechanism 
of the actor/scenario controller. These check proce- 
dures can set variables, suspend or terminate a task, 
or signal a semaphore to wake up a task. An example 
of a task is given in figure 5. 

6.1. Tasks and threads of control 

We use Umbel Designer to provide a simulation- 
time task capability. Tasks have the ability to consume 
simulated time, while procedures are (conceptually at 
least) instantaneous. This task abstraction allows for 
both sequencing actions and pausing for either a speci- 
fied delay time or until some condition is satisfied. One 
task can call another, which causes the calling task to 
wait for completion of the called task. In addition, 
tasks can be started so that they run asyncronously 
with the caller. Generally when a task terminates, at 
the end of its code block, the thread of control running 
that task terminates. In the case that the task was 
called from another task, the calling task resumes. 

Tasks are implemented in terms of simulated time, 
but we constrain the simulated time to match real time. 
Obviously this can only be done if the real time re- 
quired to do the tasks’ computation is not too great. 
Thus runtime efficiency can be a major issue. This is 
somewhat alleviated in our architecture by having the 
division into large-grain high level control on the part 
of the actor/scenario controller and the fine-grain con- 
trol on the part of the puppet servers. The latter run 
in parallel with the tasking computation. 

6.2. Task dispatching 

Tasks must be dispatched based on both the partic- 
ular actor involved and his assigned script. In addi- 
tion, overall scenario control may require one or more 
tasks to control scenario startup and monitor progress 
through the scenario. For an example, see Figure 5. 

task terrorist-sitting-fight (a: actor); 

begin 
var i: integer; 

I Assume have initially action-sit-relax 3 
{ flashbang has already occurred, so cringe: 1 
choose-puppet-action( a.puppet. 

action-cover-f ace-sit ) ; 
delay( 1.5 {secs) 1; 
choose-puppet-target( a-puppet, 

choose-puppet-attention-rnode( a.puppet. 

delay( 0.25 {secs) 1; 
choose-puppet-action( a.puppet, 

while an-avatar-lives do 

target-snl-human-1 ); 

attn-looking ) ; 

action-sit-shoot ) ; 

for i := 1 to nun-rounds-terrorist-has 
while an-avatar-lives do 

begin 
delay( 0.5 {secs) 1; 
actor-fires( a ); 

end; 
choose-puppet-action( a.puppet, 

delay( 0.45 Csecs) 1; 
choose-puppet-attention-rnode( a.puppet. 

action-sit-relax ); 

attn-alone ) ; 
end; 

Figure 5. Simple Task Example 

The task terrorist-sitting-f ight can be part of 
an actor’s assigned script. It is called only after the 
main simulation task has caused the flashbang to oc- 
cur. Hence the timiig in this task is relative to that 
occurrence. (The procedure calls that refer to the ac- 
tor’s puppet send control messages to the puppet server 
for this actor.) Should the actor controlled by this task 
be shot, the task will be not be allowed to continue con- 
trolling the actor, and an appropriate dying action will 
be invoked from the puppet server for the actor. 

7. VR environment modules 

Our current VR environment combines different 
types of simulation modules with specialized display 
and sensor-input modules in a distributed architecture. 
The term modules here means separate executables, 
with each typically running as a single Unix process, 
but frequently with multiple threads of control. The 
module types include the following: 

1. The VR Station display 

2. Polhemus tracker input module. 
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3. An avatar driver 

4. Virtual actor modules as described in Sec 5.  

file that describes the part of the world that it con- 
trols. The major output data from the figure drivers is 
transforms for the figure’s joints and placement in the 
world. Thus figure drivers can move- the figures that 
,.hey control simultaneously in all views. The first three types of modules above will be described 

in more detail in the following sections. The VR en- 
vironment consists of multiple instances of these types 
of modules. 8. Summary and future work 

7.1. The VR Station 

The VR Station is the display driver module for the 
user. It provides an immersive view of the world, with 
remotely-driven real-time updates of the positions and 
orientations of objects and subobjects in the world. 
Typically, there are multiple instances of the VR Sta- 
tion running on separate CPUs, each with its own 
graphics pipeline hardware (typically an SGI Crim- 
son with Reality Engine, or Onyx with Reality Engine 
2). A VR Station instance is used by a participant 
in the scene (with an avatar), who in our testbed sys- 
tem would be a member of the intervention forces. VR 
Stations can also be used by observers who have no 
visible representation in the simulated world (stealth 
observers). The trainer’s view is of this type. 

7.2. The avatar driver and tracker input 

The avatar driver is based on that described in High- 
tower [5] ,  modified to accomodate placement of the 
right hand tracker on the gun held by the trainee. 
This placement of the tracker maximizes accuracy in 
evaluation of the aim of the weapon. There are also 
trackers on the left hand, the small of the back, and 
the head. An auxiliary module acquires the tracker 
data and sends it to both the avatar driver and the VR 
Station instance that supplies the HMD view for the 
participant. There is an avatar driver instance and a 
tracker input module instance for each trainee. 

7.3. Communication from avatar and actors to the 
VR Station 

All of the VR Station instances “see” the same 
world, although each VR Station can show a different 
view of it. Thus, the communication from the figure 
drivers (avatar driver and the puppet server modules) 
to the VR Station must allow this sharing. This re- 
quirement is met in the current Ethernet implementa- 
tion using multicasting of UDP datagrams. 

Each VR Station instance independently loads data 
files that describe the world and the figures in it. Each 
figure driver (avatar or actor) loads a corresponding 

This paper has presented VRaptor, a VR system for 
situational training, that lets the trainer define and re- 
define scenarios during the training session. Trainees 
are represented by avatars; the rest of the virtual world 
is populated by virtual actors, which are under the con- 
trol of trainer-defined scripts. The scripts allow reac- 
tive behaviors, but the trainer can control the overall 
scenario. 

Initial feedback from potential users is promising. 
Future work includes adding features and improving 
the trainer’s control. We want to extend the trainer’s 
interface to allow selection and juxtaposition of more 
basic behavior elements through icons, which would ex- 
tend the trainer’s control of scripts to a finer-grained 
form. For deployment in actual training, monitoring 
and logging the trainee’s performance would be necess- 
sary. This would allow performance review with or 
without the trainee present, and allow the trainer to 
evaluate scenarios with respect to difficulty or need for 
improvement. Also, the system could be used in plan- 
ning an assault, and this monitoring capability would 
then be one way of accessing competing plans of attack. 
We hope to eventually evaluate the VRaptor system for 
training effectiveness. 
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To be submitted for inclusion as color plate in 
VRAIS ’ 9 7  Proceedings: 

Caption: Trainer’s view of the shoothouse 


