Published in Proceedings of VS-GAMES 2013: 5th International Conference on Games and Virtual Worlds for Serious Applications,
pages 146-149; definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2013.6624242

Smoke and Shadows: Rendering and Light
Interaction of Smoke in Real-Time Rendered Virtual
Environments

Christopher J. Bass
Faculty of Engineering and Computing
Coventry University
Coventry, UK

Abstract—Realism in computer graphics depends upon digi-
tally representing what we see in the world with careful attention
to detail, which usually requires a high degree of complexity in
modelling the scene. The inevitable trade-off between realism and
performance means that new techniques that aim to improve the
visual fidelity of a scene must do so without compromising the
real-time rendering performance.

We describe and discuss a simple method for realistically
casting shadows from an opaque solid object through a GPU
(graphics processing unit) based particle system representing
natural phenomena, such as smoke.

Keywords—Computer Graphics, Virtual Environments, Natural
Phenomena.

I. INTRODUCTION

A successful virtual environment as depicted in modern
computer games depends on immersing the user in a
convincing virtual world and lighting plays an important
element in the creation of convincing 3D virtual worlds.
Real-time speeds are also essential so that the user can interact
with the virtual environment without any delays, which would
break the user’s immersion. There are a variety of well-known
existing lighting techniques that are capable of attaining
real-time performance. Many of these are designed for the
lighting of opaque solid objects, but when confronted with
gaseous phenomena such as smoke, which is translucent, these
lighting models become inadequate. While there are other
methods for simulating these phenomena [1], a frequently
used technique for representing such insubstantial substances
are particle systems.

Advances in computer graphics hardware and 3D graphics
APIs (application programming interfaces) have freed software
developers from using the fixed function graphics pipeline.
With the arrival of the programmable pipeline, developers
can now utilise the GPU in new ways, allowing new effects
to be created to improve graphics in applications such as
computer games. New and more accurate illumination models
than previously possible, as well as particle systems, can now
be implemented through the use of programmable shaders,
resulting in the creation of more realistic virtual environments.
The addition of programmable geometry shaders to the already
existing vertex and pixel shaders allows for a range of new

Eike Falk Anderson
The National Centre for Computer Animation
Bournemouth University
Poole, UK

effects as geometry shaders can generate new geometry on the
fly by creating and appending new primitives to the shader’s
output stream. Input and output streams are not required to
have the same topology, so the geometry shader can be used
to turn single input points into billboards (camera aligned
rectangular textured primitives).

When particle systems are used, their shadowing helps
to define their position and shape, with different kinds of
shadowing effects resulting from different shadowing tech-
niques:

e Cast shadows are shadows that are cast by a particle
system and that are visible on other solid objects in
the virtual scene.

o Self-shadows are shadows that are cast by particles and
that affect other particles in the same particle system
by overshadowing them.

e External shadows are shadows that are cast by solid
models in the virtual scene onto a particle system,
placing the particles in shadow.

The use of shadow maps is a common approach to
implementing cast shadows from particle systems. Particles
are often represented as translucent billboards, therefore
requiring shadowing techniques to be implemented differently
from shadows cast from solid opaque objects, and their
translucency becomes an issue. These difficulties can make
shadows look unrealistic and therefore a more advanced
shadowing approach may be required. Cast shadows often
tie in with the self-shadowing of a particle system where
the resulting self-shadowing information, often stored as a
shadow map, can be reused to create the cast shadows.

Extending our previous work [2], in this paper we describe
a simple method for casting external shadows onto a volume
of ‘smoke’ particles, simulated using a dynamic GPU-based
particle system. This method renders particles as billboards
and is capable of running at interactive frame rates that would
allow it to be implemented within a computer game or other
real-time rendered virtual environment.

Published version is © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Published in Proceedings of VS-GAMES 2013: 5th International Conference on Games and Virtual Worlds for Serious Applications,
pages 146-149; definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2013.6624242

II. RELATED WORK

The use of shadow volumes [3] is a common method
for adding shadows to solid objects in a scene. Shadow
volumes can be created from the solid object geometry by
extruding the back face of the model to infinity. Pixels inside
the shadow volume are rendered as shaded whereas those
outside are not, which is usually determined via a stencil
buffer implementation, such as ‘depth fail’ [4] which is also
known as ‘Carmack’s reverse’ [5].

Shadow maps [6] provide an alternative method for adding
shadows to a scene. For this, first a height map is generated
from the light source’s point of view, mapping the distance
from the light source to all the occluding shadow objects.
Then, during the rendering of the scene, a comparison is
made between the distance of the pixel to the light and the
value that is stored in this height map. If the distance to the
light is greater than the value stored in the height map then
the pixel is in shadow and rendered accordingly.

The main techniques for the simulation of smoke can be
broken down into different categories and include particle-
based Lagrangian systems, grid-based Eulerian methods, and
hybrids. The particle system Lagrangian approach involves
modelling smoke as a group of particles that are born in an
initial position and state and then move according to a set of
rules or equations until they are destroyed or reset. A good
survey of computer graphics representations for smoke is
presented by Stopford [7].

Particle systems are well suited to the SIMD (single
instruction multiple data) architecture of GPUs as a single
instruction can be used to simultaneously govern many
particles of the same particle system. The parallel processing
capabilities of modern GPUs provide a vast improvement to
simulation speeds for most particle systems and for smoke
simulation via a particle system a GPU implementation
is advisable to reap the benefits of parallel processing. A
common method for a GPU implementation involves using
textures with particle data stored in its colour channels. This
approach was used by Latta [8] to create a GPU-based particle
system containing roughly one million particles. Kolb et al.
[9] built on this by adding support for collision detection with
geometry. Now with the geometry shader and the stream out
functionality of modern graphics hardware [10], particles can
be stored as vertices with simulation operations performed in
the geometry shader. Latta [11] presents a useful overview
on particle systems, briefly describing the main methods for
implementing them on CPU and GPU.

A particle system which represents smoke should interact
with external shadows from other objects in the scene so
as to look realistic and properly integrated into the scene,
which it otherwise would not (Fig. 1). Most methods for self-
shadowing of particle systems require particles to be sorted
along an axis so that the opacity and shadowing information
can be accumulated for each particle in the correct order.
This process is computationally demanding but there are
optimisations, which can reduce this complexity, e.g. those

Fig. 1. GPU vertex based ‘smoke’ particle system without any form of
shadowing.

employed by Green [12]. Deep shadow maps [13] can be
used to add self-shadowing to particle systems with translucent
particles. Whereas regular shadow maps store a single depth
value for each pixel, a deep shadow map stores a ‘visibility
function’ which estimates the amount of light that passes
through at different depths. Unfortunately deep shadow maps
are computationally expensive and therefore unsuitable for a
demanding real-time solution. Opacity shadow maps [14] on
the oher hand provide a real-time solution for self-shadowing.
They are distributed throughout the volume and face towards
the light source, each rendered from the point of view of
the light source and accumulating the alpha values of the
particles contained up to the depth of the opacity map. These
opacity maps store opacity values at different depths through
the volume which can then be used to calculate the shadowing
at different depths when rendering the volume.

III. SHADOWED SMOKE RENDERING METHOD

We use a very simple particle system that stores particles
as vertices — using vertex buffers for storage — to simulate
smoke. The system, which does not attempt to accurately
simulate smoke, uses a seeding buffer for initialisation and
particles are spawned in a grid from a ground plane, drifting
upwards along the y-axis before being removed from the
simulation. The particle system runs entirely on the GPU,
i.e. particles are created and destroyed in the geometry
shader, so there is no need for CPU intervention. Input and
output buffers are used afterwards to store the particle system
simulation data which are swapped each frame. Once the
particle system has been updated, the remaining scene objects
are updated.

In our attempts to add external shadows cast onto the
particle system we have experimented with both shadow
mapping and shadow volume techniques. We found shadow
mapping to be the more suitable solution for our purposes,

Published version is © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Published in Proceedings of VS-GAMES 2013: 5th International Conference on Games and Virtual Worlds for Serious Applications,
pages 146-149; definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2013.6624242

Fig. 2. Flowchart of the processes involved in rendering a frame with our
technique.

as this requires only a simple operation to determine if a
particle is located in shadow or not and as it is trivial to pass
a shadow map as a texture input when rendering our GPU
vertex based particle system.

When rendering a frame, a shadow map is created and the
scene objects are rendered with shadows. The shadow map
is then reused when rendering the particle system to apply
external shadowing to the particle system. We then sample
and compare the depth in the shadow map to the actual depth
of the particle in the pixel shader to determine if a particle
pixel is located in shadow and accordingly render it with the
appropriate colour. Fig. 2 shows a flowchart describing the
processes that take place for rendering a single frame using
this technique.

Our initial implementation [2] suffered from aliasing arte-
facts resulting in rough pixellated edges of the shadows. As we
were using shadow mapping, our method also suffered from
these artefacts throughout the 3D shadow, as there are hard
edges where the shadow cuts through particles. Soft particles
[15] are a technique to remove the hard edges that occur
where a 2D billboard intersects 3D geometry. The original soft
particles technique uses the scene depth buffer when rendering
particles and as the distance between the particle and the depth
buffer shortens, alpha blending is used to blend the particle out.
If integrated with our technique, soft particles could be used
to alpha blend particle pixels which intersect 3D geometry, but
using the original soft particles technique would not remove
artefacts caused by 2D (billboard) particles intersecting our
shadow map. To overcome this we have developed a similar,
simple solution which uses the depths stored within the shadow
map to blend particle pixels.

Fig. 3. Soft particles technique used in our system.

Fig. 3 illustrates how we have implemented this modified
soft shadow technique by using the shadow map depths. This
technique supports particle billboards that are partially in
shadow and partially lit. To overcome the limitations of our
initial implementation we sample the shadow map in the vertex
shader, calculate the distance between the particle position
and the shadow map sample and pass the result to the pixel
shader. In the pixel shader we then repeat a similar process
to calculate the distance between the pixel and the shadow
map sample. This then allows us to calculate the pixel shading
using a simple weighting function between the two depths: as
the depth values change, pixels can be smoothly shaded from
being in full shadow to being fully lit without any hard edges
appearing, as there is no longer a sharp cut-off between pixels
in shadowed and lit areas.

Published version is © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Published in Proceedings of VS-GAMES 2013: 5th International Conference on Games and Virtual Worlds for Serious Applications,
pages 146-149; definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2013.6624242

IV. RESULTS

Fig. 4 shows results using our initial technique. While
running at real-time speeds on modern consumer graphics
hardware, there are some artefacts as a hard edge appears at
the cut-off between pixels located in shadowed and lit areas.

Fig. 4. Initial implementation with external shadowing effect. Artefacts (hard
edges) within the ‘smoke’ are visible.

Fig. 5 shows results using our improved technique with
our version of soft particles. While still running at real-time
speeds, the artefacts are significantly reduced.

Fig. 5. Final results, including our soft particles (inspired by Lorach [15]),
rendered at 124 frames per second on an ATI Radeon HD 5770 graphics card.

V. SUMMARY AND FUTURE WORK

In this paper we have presented a simple real-time
3D shadowing method for casting external shadows onto
dynamic, translucent particle systems, suitable for use in
virtual environments, such as computer games. Our technique
is implemented on a GPU vertex based particle system using
a typical billboarding approach for rendering particles to
represent smoke, and improved by the addition of a soft
particles technique for reducing hard edge artefacts. Not
only does this system result in visually convincing scenes,
but keeping the particle system on the GPU also allows the
application to run at real-time speeds and frees the CPU up
for other tasks.

Future work will likely concentrate on further reducing
rendering artefacts, possibly by employing a different shadow
mapping technique, such as PCSS (percentage-closer soft
shadows) [16] to remove aliasing from the shadow map, which
would have the added benefit of providing a varied soft edge
to the 3D shadow depending on the distance from the light
and the occluding model. Another avenue for exploration may
be the use of volumetric particles for representing the smoke.

REFERENCES

[1] K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H.-Y. Shum, “Real-time
smoke rendering using compensated ray marching,” in SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers, 2008, pp. 1-12.

[2] C.J. Bass and E. F. Anderson, “Real-time smoke rendering and light
interaction,” in Eurographics 2010 - Posters, A. Hast and 1. Viola, Eds.
Eurographics Association, 2010.

[3] E C. Crow, “Shadow algorithms for computer graphics,” SIGGRAPH
Comput. Graph., vol. 11, pp. 242-248, 1977.

[4] B. Bilodeau and M. Songy, “Real time shadows,” in Creativity 1999,
Creative Labs Inc. Sponsored Game Developer Conferences, 1999.

[5] J. Carmack. (2000) Carmack on shadow volumes. NVIDIA Developer
Zone.

[6] L. Williams, “Casting curved shadows on curved surfaces,” SSIGGRAPH
Comput. Graph., vol. 12, pp. 270-274, 1978.

[7]1 D. Stopford. (2006) Representing smoke in computer graphics. Project
Report, The National Centre for Computer Animation, Bournemouth
University.

[8] L. Latta, “Building a million particle system,” in Game Developers
Conference 2004, 2004.

[9] A. Kolb, L. Latta, and C. Rezk-Salama, “Hardware-based simulation
and collision detection for large particle systems,” in Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
2004, pp. 123-131.

[10] D. Blythe, “The direct3d 10 system,” ACM Trans. Graph., vol. 25, pp.
724-734, 2006.

[11] L. Latta, “Everything about particle effects,” in Game Developers
Conference 2007, 2007.

[12] S. Green. (2012) Volumetric particle shadows. NVIDIA Developer
Zone.

[13] T. Lokovic and E. Veach, “Deep shadow maps,” in Proceedings of
the 27th annual conference on Computer graphics and interactive
techniques, ser. SIGGRAPH 00, 2000, pp. 385-392.

[14] T.-Y. Kim and U. Neumann, “Opacity shadow maps,” in Proceedings of
the 12th Eurographics Workshop on Rendering Techniques, 2001, pp.
177-182.

[15] T. Lorach, “Soft particles,” NVIDIA DirectX 10 SDK, 2007.

[16] R. Fernando, “Percentage-closer soft shadows,” in ACM SIGGRAPH
2005 Sketches, 2005.

Published version is © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

