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Abstract— Virtual characters are an integral part of many 
games and virtual worlds. The ability to accurately synchronize lip 
movement to audio speech is an important aspect in the 
believability of the character. In this paper we propose a simple 
rule-based lip-syncing algorithm for virtual agents using the web 
browser. It works in real-time with live input, unlike most current 
lip-syncing proposals, which may require considerable amounts of 
computation, expertise and time to set up. Our method generates 
reliable speech animation based on live speech using three blend 
shapes and no training, and it only needs manual adjustment of 
three parameters for each speaker (sensitivity, smoothness and 
vocal tract length). Our proposal is based on the limited real-time 
audio processing functions of the client web browser (thus, the 
algorithm needs to be simple), but this facilitates the use of web 
based embodied conversational agents. 
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I.  INTRODUCTION 

    In recent years, virtual characters have been increasingly 
appearing in different applications which require the 
reproduction of speech content in real-time. It is well established 
that non-verbal aspects play an important role in communication 
[1]. Thus, to enhance believability, virtual characters need to 
move their lips according to what they are saying, among other 
features such as suitable gestures and facial expressions. Using 
virtual characters instead of speech-only communication can 
improve the human-computer interaction in several aspects [2] 
and many virtual world applications can benefit from lip-
syncing: video phone calls via avatars, tutors for hearing-
impaired, embodied conversational agents and even movie and 
computer games virtual characters. 

Believable lip movements according to speech have an 
important role as speech is perceived through both visual and 
audio cues together: the McGurk effect [3] proves that the 
combination of discrepant acoustic and visual cues can change 
the perception of the acoustic signal. Additionally, accurate lip 
syncing for virtual humans can help the hearing-impaired and 
improve intelligibility in noisy situations [4] [5]. 

Lip-syncing has been an active research area for many years, 
where knowledge and expertise in speech processing, computer 
graphics and even psychology are required. We review below 
several lip-sync techniques based on different approaches that 
have been proposed in recent years. Although many solutions 
provide real-time lip-sync, usually their parameters are 
generated using prerecorded speech and then the lip-sync is 

reproduced in real-time. Few solutions generate lip-sync based 
on live input, and due to the complexity of their algorithms, they 
cannot work in the web browser. 

In light of the importance of using virtual characters for 
human-computer interaction and virtual worlds our work 
focuses on developing virtual characters in the most common 
internet application, the web browser. Web browser 
technologies have been improving in the last years: the 
introduction of WebGL made possible the rendering of complex 
scenes [6] and the current Web Audio API [7] provides several 
real-time audio processing functions implemented in 
assembly/C/C++ code. 

Currently, there are no applications capable of real-time lip-
sync using the web browser. This paper introduces a novel web-
based and real time lip-sync technique, suitable for use with 
web-based virtual characters. It is based on computing the 
Fourier transform of the audio input to obtain the energies of 
different frequency bands, which are then mapped through a set 
of rules to three visual parameters, the weights of three blend 
shapes. Because our system is speaker dependent, the user can 
modify three parameters to improve the lip-sync: sensitivity 
threshold, smoothness and vocal tract length. Our solution 
generates and reproduces lip-sync with no perceptible delay. 
However, due to the processing limitations of the web context, 
certain lip configurations are not possible. 

II. RELATED WORK 

A. Acoustic features / phonemes extraction 

Over the last decades several methods have been proposed, 
with two established approaches to analyze speech. In one of 
them, acoustic features such as fundamental frequency, Linear 
Predictive Coding (LPC) and Mel-Frequency Cepstral 
Coefficients (MFCCs), among others, are extracted from the 
speech signal [8]. When using audio-driven articulation, 
additional acoustic features can be extracted, such as prosody 
and intensity, which can change the lip-sync and overall facial 
expression [9]. However, these methods may be highly speaker 
dependent as they rely on the training data [10] and can be 
difficult to implement as they may require extensive expertise. 

In the other approach, custom or external phoneme 
recognition algorithms are used. Due to the recent advances in 
automatic speech recognition [20], mature algorithms can be 
used to extract phonemes. Phoneme-driven articulation has the 
advantage of being speaker independent in comparison with 
audio-driven articulation, but it does not take into account 



prosodic acoustic information and it cannot be used in real-time, 
as the next phoneme is not available until recognized.  

B. Visual features mapping 

Once the speech has been analyzed, the extracted audio 
features or phonemes are mapped to lip parameters of the virtual 
character, using visemes, action units, codewords, control 
parameters, etc. These visual parameters define the 
deformations of the face and can have different levels of 
complexity. For example, some researchers use the standard 
MPEG-4 [12], which defines about 66 displacements and 
rotations of feature points of the face, while others use a small 
set of predefined facial deformations or blend shapes [13]. 

When using multiple visual parameters, manually mapping 
audio-features or phonemes to these parameters might be very 
cumbersome. Therefore, data-driven audio-visual mappings 
have been used in most recent research approaches, both audio-
driven and phoneme-driven articulations [14, 10]. Data-driven 
techniques use recorded corpora to extract visual parameters 
which are associated to the acoustic features or phonemes. 
Results can achieve high accuracy, but as the techniques rely on 
recorded corpora they can create speaker dependent animations, 
as lip trajectories contain information about a person’s identity 
[15]. Thus, transferring these visual parameters to characters 
with different visual features can be complex, even more when 
using non-human characters. 

Most approaches that use manual mappings associate 
phonemes to specific blend shapes or predefined visemes, so that 
they can deal with a comprehensive small set of acoustic and 
visual parameters. These approaches do not need to analyze a 
recorded corpus, which can reduce the amount of necessary 
work and material. For example, [16] requires manually 
designing 441 animations between phonemes, and [13] uses 16 
predefined blend shapes to map phonemes. 

C. Real-time lip-sync 

Although several solutions dealing with live input speech 
have been proposed, few have received attention. One of the few 
real-time phoneme-driven approaches [11] uses a prediction 
table to try to estimate the next facial deformation without 
knowing the forthcoming phoneme. Almost all the other 
solutions dealing with live input are audio-driven, as the 
recognition algorithm introduces no visual delay and several 
audio frames can be computed and blended for each video frame 
[14, 17]. Nevertheless, in human communication, visual speech 
comes before audio speech [18], and it can be argued that it is 
nearly impossible to perfectly match and generate lip-sync in 
real-time with live input, as visual speech should start a few 
milliseconds before the audio speech. However, [14] proved that 
real-time lip-sync is still a valid solution, as their real-time lip-
sync improved speech intelligibility.  

III. METHOD OVERVIEW 

Our approach is based on manually mapping simple audio 
features to very few visual parameters, namely, the weights of 
three blend shapes. Most audio-driven articulations extract 
complex audio features which cannot be manually mapped. 
Moreover, speech recognition algorithms use frequency 
features, such as MFCCs and LPC, which cannot be extracted in 

real-time through the web browser API. We use the real-time 
available data, the short-term spectrum, and compute the 
energies of several frequency bands to drive the blend shapes. 

Our mapping aims to relate different frequency-band 
specific energies to visual parameters. Focusing initially on the 
vowels (and later on the consonants), we define a series of 
frequency-based rules that drive the weights of three blend 
shapes corresponding to different lip configurations: kiss, mouth 
open and lips pressed. They control respectively the horizontal 
aperture of the mouth, its vertical aperture and the volume of the 
lips, and thus a variety of lip configurations can be achieved.  

The user can change three acoustic parameters: vocal tract 
length (speaker dependent), smoothness (language/speaker 
dependent) and sensitivity threshold (signal dependent). As the 
speech frequencies and features can be different for each person 
[19], we permit to scale them according to a vocal tract length 
factor. We also permit to change the smoothness of the 
animation, as speakers with a higher speech rate might need a 
more reactive lip-sync. We want our system to work with 
different microphones and situations, so a sensitivity threshold 
can be adjusted to avoid undesired background noise. 

IV. AUDIO PROCESSING 

In this paper we use a simple energy-based vocal tract model. 
We estimate the energy of the formants to produce visual 
features. We extract a smoothed short-term power spectrum 
density (st-PSD) in real-time by means of a function provided 
by the Web Audio API [7]. This closed function processes each 
audio block through the following steps: the input samples are 
windowed with a Blackman window and then the Fast Fourier 
Transform (FFT) is computed. The output st-PSD is smoothed 
over time with previous outputs (1) and then converted to dB (2). 
We used audio blocks of 1024 samples at a sampling rate of 44.1 
kHz. 

A. Web Audio API FFT 

 We do not detail Blackman windowing or FFT as these steps 
are well known, and not customizable. Smoothing over time 
involves using the previously smoothed data: 

 ෠ܺሾ݇ሿ ൌ 	߬	 ෠ܺିଵሾ݇ሿ ൅ ሺ1 െ ߬ሻ|ܺሾ݇ሿ|,			݂ݎ݋	 ቄ
݇ ൌ 0,… ,ܰ െ 1
0 ൏ ߬ ൏ 1

	 (1) 

where ܺሾ݇ሿ	is the complex frequency domain data computed, 
෠ܺሾ݇ሿ	is the smoothed one and ߬ is a smoothing variable defined 
by the user, which ranges between 0 and 1. The final step is the 
dB conversion, which provides ܻሾ݇ሿ, the output of the Web 
Audio API function: 

 ܻሾ݇ሿ ൌ 20	 logଵ଴ ෠ܺሾ݇ሿ ݇	ݎ݋݂				, ൌ 0,… , ܰ െ 1 (2) 

B. Bounding frequencies and energy bins 

The output of this function, which ranges between -25dB and 
-160dB approximately for properly scaled speech signals and the 
applied FFT length, is scaled and increased by a user defined 
sensitivity threshold ߜ (set to 0.5 by default) through (3) to map 
the dynamic range to the interval [-0.5,0.5]. 

 ሶܻ ሾ݇ሿ ൌ ߜ ൅ ሺܻሾ݇ሿ ൅ 20ሻ/140,				݂ݎ݋	݇ ൌ 0,… , ܰ െ 1 (3) 



giving the processed smoothed st-PSD ሶܻ ሾ݇ሿ .  

The processed st-PSD (3) is divided into frequency bands, 
and the energy is computed for each one. We used log-scaled 
data instead of signal intensity to compute the energy because it 
is the available output of the API function. These bands have 
been defined empirically (see below), and the bounding 
frequencies can be scaled with a user defined vocal tract length 
factor ߛ. The bounding frequencies ܨ௕௜௡௦ are defined by (4): 

௕௜௡௦ܨ  ൌ ሾ0, ,ߛ500 ,ߛ700 ,ߛ3000 ݖܪ	ሿߛ6000 (4) 

In our experiments we used the length factors 1 for females 
and 0.8 for males. These bounding frequencies are then 
transformed to frequency data indices		݀݊݅ܨ : 

௜௡ௗሾ݉ሿܨ  ൌ 	
ଶே

௙௦
݉	ݎ݋݂				,௕௜௡௦ሾ݉ሿܨ ൌ 0,… ܯ, െ 1 (5) 

where ݂ݏ is the sampling frequency, ܯ is the number of 
bounding frequencies and ܰ is the number of samples per audio 
block. The energy for each bin ܧሾ݉ሿ		is computed only taking into 
account positive values of the processed st-PSD: 

ሾ݉ሿܧ  ൌ
ଵ

ி೔೙೏ሾ௠ାଵሿି	ி೔೙೏ሾ௠ሿ
	∑ ሶܻ ሾ݆ሿ

	ி೔೙೏ሾ௠ାଵሿ
௝ୀ	ி೔೙೏ሾ௠ሿ 	ݎ݋݂						, ൜

ሶܻ ሾ݆ሿ ൐ 0
		݉ ൌ 0,… ܯ, െ 2

(6) 

Fig. 1. Example of the processed st-PSD (3) for phoneme /a/, with divisions 
in different energy bins by bounding frequencies with a factor of 1. 

 One of the crucial parts of our algorithm is the definition of 
different energy bins and bounding frequencies. In our system, 
we focused on the energy and frequency of the formants for each 
vowel, without taking into account the fundamental frequency 
component. We used references for average vowel formants 
(Table 1) and analyzed the energy that each vowel would 
produce in different frequency regions through observation. 

TABLE I.  AVERAGE VOWEL FORMANTS [19] 

Vowel (IPA) Formant F1 (Hz) Formant F2 (Hz) 
/a/ 850 1610 
/e/ 390 2300 
/i/ 240 2400 
/o/ 360 640 
/u/ 250 595 

 

It is important to note that the frequencies for each formant 
will vary depending on the speaker. Males tend to have a longer 
vocal tract than females and may require a smaller factor. The 
following paragraph will be explained as if the vocal tract length 
factor was set to 1 (4). 

The first energy bin, between 0 and 500 Hz, represents the 
fundamental frequency and low-frequency formants. We 
discarded this first energy bin in the visual mapping, as it is not 
a distinctive feature. The second energy bin, between 500 and 
700 Hz, is quite crucial together with the third bin (700 to 1800 
Hz), as both contain most of the formants. We found that these 

bins would be different across the vowels and could provide 
important information for the visual mapping. The fourth and 
last bin, between 1800 and 6000 Hz, mostly represents the 
second formants of the vowels /e/ and /i/ and partly the energy 
for some fricatives such as /s/ and /f/. 

V. VISUAL MAPPING 

The system has to be as ‘speaker independent’ as possible, 
and associating specific frequency features to detailed visual 
features can generate wrong animations when the system is used 
by different speakers. Thus, we kept our visual features as 
simple as possible, using just three blend shapes. Opening the 
mouth is the most basic one, all the vowels use this blend shape. 
The kissing blend shape is used to differentiate between vowels, 
/o/ and /u/ are representative of this blend shape. For fricative 
consonants, the lips pressed blend shape is used. We created a 
set of rules to drive these blend shapes according to the energy 
of the frequency areas. 

Fig. 2. From left to right: default face, kiss blend shape, lips pressed blend 
shape, mouth open blend shape. 

Once the energy from the frequency bands has been 
computed, the three visual parameters are computed using the 
equations: 

௞௜௦௦ܵܤ  ൌ 	 ൜
1 െ ሾ1ሿܧ	ݎ݋݂				,ሾ2ሿܧ2 ൒ 0.2

ሺ1 െ ሾ2ሿሻܧ2 ∙ ሾ1ሿܧ	ݎ݋݂				,ሾ1ሿܧ5 ൏ 0.2
 (7) 

ܤ  ௟ܵ௜௣௦ ൌ ሾ3ሿܧ3	 (8) 

௠௢௨௧௛ܵܤ  ൌ 	0.8ሺܧሾ1ሿ െ ሾ3ሿሻܧ (9) 

where ܧ[i] is the energy for bin i, ܵܤ௞௜௦௦, ܤ ௟ܵ௜௣௦	and ܵܤ௠௢௨௧௛ are 
the respective weights for the kiss, lips closed and mouth open 
blend shapes.  

Fig. 3. Example of blend shape weights for different vowels. 

 



VI. IMPLEMENTATION 

We implemented a web-based system using a 3D scene 
editor and engine, WebGLStudio [21], which supports blend 
shapes and animations, necessary for virtual characters and real-
time lip-sync. We used the current Web Audio API [7] to 
process the audio in real time. 

In addition, we also implemented the system in a non-web-
based system. We used the game engine from Blender [22] to 
render the characters and apply the blend shapes in real-time. 
We implemented the real-time audio processing within a real-
time 3D audio rendering engine, TASCAR [23]. Since clean 
speech signals are available in virtual acoustic environments, the 
sensitivity to noise is not relevant in this context. 

VII. RESULTS AND DISCUSSION 

We tested both systems with live input and different speakers 
and with several speech audio files. The quality of computer 
generated characters has increased enormously over the years, 
thus making it difficult to compare the results of subjective 
quality ratings of virtual characters. In consequence, using 
subjective quality scores is not the best evaluation, as these 
scores would change over the years and would depend on the 
appearance of the virtual character. In order to provide an 
objective evaluation we are preparing a speech intelligibility 
test, as in [14]. 

Compared with other lip-sync systems, the solution that we 
present is fast and simple to implement. A high level of expertise 
is not required and there is no need to use a corpus to train the 
system. The lip-sync can be applied to several different 
characters with little effort. From the implementation point of 
view, there are many libraries that implement the FFT in real-
time and our frequency rules are quite straightforward to 
implement. In order to achieve better performance, the user can 
adjust the three acoustic parameters (sensitivity threshold, 
smoothness and vocal tract length) to improve the lip-sync 
result. Our solution is then very useful for many applications that 
do not require high accuracy lip-sync and cannot spend many 
resources in it. 

Many proposed lip-sync solutions focused only in the audio-
to-visual mapping. The configuration of the lips is highly 
affected by prosody and mood, therefore reproducing lip-sync 
without taking into account prosody or facial expressions would 
be a quite limited approach, similar to generating speech without 
any prosody. Thus, it is important that the lip-sync is easy to 
integrate with existing facial animation systems. Our approach 
can be easily integrated with facial animation systems that use 
blend shapes, as facial blend shapes can be applied at the same 
time to change the overall facial expression or slightly modify 
the lip-sync. 
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