

Balance trucks: Using crowd-
sourced data to procedurally-
generate gameplay within mobile
games

Mark Lewis, Sylvester Arnab, Luca Morini, Samantha Clarke,
Lorenz Klopfenstein, Alessandro Bogliolo, Saverio Delpriori and
Alex Masters
Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:
Lewis, Mark Russell, et al. "Balance Trucks: Using Crowd-Sourced Data to
Procedurally-Generate Gameplay within Mobile Games." 2018 10th International
Conference on Virtual Worlds and Games for Serious Applications (VS-Games). IEEE,
2018.

https://dx.doi.org/10.1109/VS-Games.2018.8493412

DOI 10.1109/VS-Games.2018.8493412

Publisher: IEEE

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://doi.org/10.1109/VS-Games.2018.8493412
https://doi.org/10.1109/VS-Games.2018.8493412

Balance Trucks: Using Crowd-Sourced Data to
Procedurally-Generate Gameplay within Mobile

Games

Mark Russell Lewis, Sylvester Arnab, Luca Morini,
Samantha Clarke, Alex Masters

Disruptive Media Learning Lab. (DMLL)
Coventry University

Coventry, United Kingdom

Lorenz Klopfenstein, Alessandro Bogliolo, Saverio
Delpriori

Department of Pure and Applied Sciences (DiSPeA)
University of Urbino

Urbino, Italy

Abstract—Within the field of procedural content generation
(PCG) research, until now, the use of crowd-sensing data has
primarily been used as a means for the collection of information
and the generation of feedback relating to player experience
within games, and game aesthetics [1], [2]. However, crowd-
sensing data can offer so much more, supplying a relatively
untapped font of information, and inspiration, which might be
used within the creation of unique PCG game spaces or content,
whilst providing a highly visible outlet for the dissemination of
crowd-sensed material to users. This paper examines one such
use of crowd-sensed data, the creation of a gamification layer for
the CROWD4ROADS (C4RS) [3] application, SmartRoadSense
(SRS) [4]. The authors will open with a brief discussion of PCG.
Following this, an explanation of the features and aims of the
SmartRoadSense application will be provided. Finally, the paper
will introduce ‘Balance Trucks’, the SmartRoadSense
gamification layer, discussing the concepts behind using crowd-
sensed data within its design, its development and use of PCG.

Keywords—gamification; procedural content generation; game
design; video game; racing game, crowd-sensing

I. INTRODUCTION
The art of making videogames is a multidisciplinary

process that is extremely expensive in both cost and effort. A
high-quality triple-A title can require thousands of person
hours to develop, and production budgets often stretch to
millions of pounds. This expense is gradually increasing over
time, as new generations of technology; a new console or
graphics card, are released, making the requirements for
developing a title ever more complex. It therefore seems
logical that developers have a strong need to generate tools and
systems which will help to reduce the production costs and
effort put into the creation of videogame content [5].

Procedural content generation (PCG) within videogames
can be described as the use of a computers processing power to
create content via mathematical equations using small amounts
of data, or data which has been obtained indirectly from users,
as inputs. Togelius, Kastbjerg, Schedl and Yannakakis
simplify this definition, describing PCG as “the algorithmical
creation of game content with limited or indirect user input”

[6]. The use of PCG provides several interesting benefits for
the development of commercial games. The creation of tools
which can generate specific content for use within a game, after
some modification by a designer or artist, has become
relatively widespread within the industry; particularly when
used with artificial intelligence or the generation of
environments. PCG’s ability to provide infinite gameplay
supplies an interesting method for increasing replayability.
This is seen as an important factor within any videogame as it
is believed that if a title has a high replay value, players will
remain engaged and continue to play it [7]. These two uses of
PCG, the use of tools and the ability to offer endless gameplay,
reduce the effort required to construct a videogame and,
therefore, help to lower production costs [8]. PCG also
provides a highly visible platform for the content which is used
to create the game [9]. This is important to the authors of this
paper, who believe that this statement could be extended to
include the data which is used to create the content on display.

The first uses of PCG within videogames came about due
to a need to compress data and resolve issues surrounding the
lack of storage capacity and processing power found within
early home computers [7]. “Rogue” (1980) [10] is often
quoted as being the first computer game to utilise PCG as a
means for generating playable content. Indeed, it went on to
spawn a whole genre of RPG titles which are now referred to
as roguelike games. Arguably the most famous early exemplar
of PCG is Elite (1984) [11], which used a single seed number
to generate eight complete galaxies, each containing 256 solar
systems including planets, space stations, and economies that
the player could explore and interact with. Since the 1980s’,
PCG has been used for niche roles, sporadically, in games [8].
However, the last several years have seen a resurgence in its
use within commercial games. This may be due to what could
be described as ‘the Minecraft effect’. In 2011, Minecraft [12],
which utilises a seed number from the system clock to
procedurally generate a seemingly infinite gameplay
environment, saw massive commercial success and
reinvigorated how developers look at, and use, PCG within
their games. Recently, titles such as No Man’s Sky [13] and
the forthcoming Star Citizen [14] have moved the use of PCG

up another gear, generating galaxies, solar systems, and planets
in a similar manner to the original Elite, but with a scale and
detail that has never been seen before.

Within academia, the early use of PCG within videogames
was mostly ignored, and interactions between the developers
who were utilizing it and academics were almost nonexistent.
In the last 15-20 years, academic interest in the subject has
increased dramatically [8]. Researchers have since addressed a
range of PCG topics. Several authors have attempted to define
unified taxonomies for PCG [15], [16], and develop metaphors
which aid the understanding of design relationships with the
use of PCG [17]. Research has also been conducted into the
practical uses of content generation. These studies have
examined diverse uses for PCG, including subjects such as the
generation of levels for platform games [18], [19], the creation
of missions for action adventure games [20], the generation of
entire worlds [21] and even attempts to build software that can
procedurally generate complete games, from the ground up
[22]. Recently, focus of PCG research and development has
been directed at examining how complete levels, that are able
to adapt to the players inputs, and thus playing style, might be
created [23], [24].

In this paper, we describe the use of data gathered via
crowd-sensing technology to procedurally generate gameplay
levels and content for inclusion within a gamified layer of the
SmartRoadSense (SRS) application [4]. To our best
knowledge, this represents the first time that crowd-sensing
data has been utilised as a seed for generating gameplay and
disseminating that information back to the user.

The gamification of SmartRoadSense is aimed at fulfilling
four specific criteria: 1) the dissemination of crowd-sensing
data back to users of the application, 2) an increase in the
applications user-base, 3) the promotion of car-sharing and car-
sharing initiatives, 4) the provision of a platform which can be
utilised for gamification purposes by other projects funded by
the EU Horizon 2020 [25] research and innovation programme.

In the following sections, we will first provide an overview
of SmartRoadSense, describing how the application gathers
and utilises road surface data. We will then discuss the design
and development of our gamification layer, titled ‘Balance
Trucks’, and examine how it uses crowd-sensing data collected
by its parent application, SmartRoadSense, to create gameplay
and content in a manner which disseminates the data they have
gathered back to them. Finally, we will examine the challenges
that lie ahead for Balance Trucks as it progresses towards
completion and offer up our conclusions about the project.

II. SMARTROADSENSE
Developed by an international team, led primarily by the

University of Urbino, Italy, as part of CROWD4ROADS
(C4RS) [3], an EU Horizon 2020 funded project,
SmartRoadSense is a crowd-sensing system for the continuous
monitoring of road quality. The application promotes active
citizenship and allows volunteers to freely participate in the
collection of valuable road infrastructure data.

The system consists of three constituent components: i) an
Android/iOS application, which collects data from the triaxial

accelerometers and GPS sensors of an enabled smartphone and
generates location-based estimates relating to the quality of a
road’s surface; ii) a cloud-based service onto which the data
collected by the application is downloaded and aggregated with
existing cartographic data from OpenStreetMap [26], and iii) a
web-based user interface, which provides access to the data
(distributed under an open license, in CSV format), and an
interactive map showing a visual representation [4], [27].

The collection of SmartRoadSense data (see Fig.1) begins
with the associated application. Once the app has been started
by the user, it will quietly begin gathering data from the
smartphone’s accelerometers and GPS sensor as the user
drives. No further input is required until the end of a journey,
at which point the user can simply tap their device’s screen to
halt data collection. The gathered data is then processed within
the smartphone to generate a single number for each second of
the journey; a “roughness index” value, which estimates the
quality of the road’s surface at given points along the recorded
track; the speed of the vehicle at each point; and a timestamp.
Each data recording session is then given a unique identifier, a
track ID, and automatically uploaded at the next available
opportunity. Every 6 hours, new tracks are aggregated with the
pre-existing data on the SmartRoadSense servers and mapped
using OpenStreetMap data. Once this process is complete, a
new set of roughness index data for each of the sampled
locations is published for visualization and download on the
SmartRoadSense website [4], [28], [27].

Fig.1. The process of collecting SmartRoadSense data.

Other applications have attempted similar aims as

SmartRoadSense in the past, for example “Pothole Patrol” and
“Nericell”. In 2008, Pothole Patrol experimented with vehicles
fitted with tri-axis accelerometers, GPS, and computers, to
detect potholes; the experiment proved that of the anomalies
detected, 90% needed repair [29]. A contemporary of Pothole
Patrol, Nericell, utilised an array of smartphone sensors,
including accelerometers, microphones, GSM radio, and GPS,
to monitor traffic flow and road conditions [30]. Further
examples of vehicular crowdsensing include: “VTrack” [31],
which estimates possible traffic delays; “CTrack” [33], which
aims to generating accurate location data based on GSM radio
signals; “OpenSense” [33], a system which uses mobile sensors
to monitor urban air pollution; “Wolverine” [34], which
estimates traffic and road conditions; and several other studies
making use of common smartphones to collect data related to
road infrastructure [35], [36].

Whilst SmartRoadSense shares a lineage with each of these
crowdsensing applications, its continuous monitoring system
has been deployed for more than 3 years, collecting data thanks
to the contributions of more than 3000 users. The system is
being progressively scaled up, now being available to the
public in several countries, including Italy, the United
Kingdom, Romania, and Greece. It has already amassed a large

volume of data, with information gathered from over 18
million data points. This provides analysis for almost 52,000
kilometres of road surface; at time of writing. Within Italy,
Regione Abruzzo is in discussions with local transport
companies and municipalities with regards to the systematic
adoption of SmartRoadSense, whilst Regione Marche intends
to make use of the collected data when performing statistical
analysis and data validation tests. In Romania, agreements
have been made with local authorities who are interested in
utilizing the application’s data, whilst in the UK,
Buckinghamshire Advantage have recently begun using the
application on public transport and service vehicles.

III. BALANCE TRUCKS
The gamification layer of SmartRoadSense has been in

development since January 2016. During this time, the
concepts used within the gamification design have undergone
periods of radical change. In its original format, the design
consisted of a ‘create your own story’ adventure game [37].
This allowed players to create personalized characters before
presenting them with a section of story. At the end of each
section, the player would be required to select an action to
perform in response to the storyline. The chosen action would
determine an outcome for this section and define the next. This
process continued until the storyline was complete. The player
could then choose to replay a storyline which they had
previously attempted or select a brand-new storyline instead.

Whilst this approach was proven to be perfectly valid
during an early prototyping phase, it was remarked that the
gamification did not help to disseminate information about the
data which users would be collecting within SmartRoadSense
back to them. The concept of using the data alongside
procedural content generation methods to build gameplay
levels was discussed and examined. This led the team to define
three new gamification proposals; a scrolling shooter, a
platform game and a racing game. Each of these were
designed so that they could utilise PCG methods to generate
associated playable environments, and gameplay. With the
three proposals complete, they were disseminated to
SmartRoadSense partners for feedback. It was then decided,
by the entire team, that the gamification should be based on the
racing game proposal as this was the most relevant option,
providing a direct analogy for the data collection process, and
the easiest proposal to develop. However, questions were later
raised as to whether the gamifications multiplayer mode should
take the format of a balancing game. To answer this, a small
scale-survey which compared the two highest rated racing
games on the Apple App Store against the two highest rated
balancing games was conducted within Coventry Universities
Disruptive Media Learning Lab (DMLL). This showed, that of
the 24 students surveyed, 74% preferred racing games to
balancing; making racing the obvious choice for multiplayer.

Therefore, in single-player mode, Balance Trucks is a 2D
side-view racing game which sees the player being provided
with a vehicle and then challenged to complete a form of time
trial; transporting an object across each level in the fastest time
possible. Based on the feedback received from case studies,
Multiplayer mode does away with the use of objects and allows
players to simply race against each other across the

procedurally generated terrain. Throughout each level, players
can collect coins, boosters and rare collectable car parts. Each
of these are either procedurally generated, or procedurally
placed, using randomization and PCG grammars, to provide
additional subtlety and nuance to gameplay. In single-player,
points are awarded to each player based upon their time to
complete the level, whereas in multiplayer points are awarded
based upon the players finishing position. The amount of
points scored will be used to increase or decrease the player
characters rank, this will in turn dictate the difficulty of the
levels, as they are constructed, in single-player mode.

Within the gamification, the largest and arguably most
important component to be procedurally generated is the
playable terrain; the surface over which the players race. The
procedural generation of Balance Trucks terrain involves the
use of two forms of PCG: content selection, which is defined as
the selection of content from a library, in this case
SmartRoadSense data, and constraint satisfaction, which uses
algorithms that apply constraints to the generated content [38].
Terrain is generated using 200 concurrent data entries, taken
from the data collected by users within SmartRoadSense, and
converting them into a height-map, which resembled a graph.
The height-map is then modified to correct its scale and
balance out any major spikes or troughs seen within the data.
Further balancing is performed by comparing each of the used
data entries against the sum of its neighbors divided by two. If
the original numerical data is higher than the result of this sum,
it will be replaced with the sum itself, otherwise the original
figure will remain. If Data2 is the data being compared whilst
Data1 and Data3 are its neighbors, this can be formulated as
follows:

If Data2 > (Data1 + Data3) / 2 then Data2 = (Data1 +

Data3) / 2

If Data2 =< (Data1 + Data3) / 2 then Data2 = Data2

Finally, to provide smooth terrain at the start and finish of

each level, 10 new blocks of artificial data are added to the
beginning and end of the SmartRoadSense data, making 20
fake blocks in total. The data which is added to the start of a
level is generated using a random number between 0.0 and 0.3.
The data between this and the first piece of genuine
SmartRoadSense data is then generated using a similar
equation to that used for balancing. Data which is added to the
end of a level is generated in a similar manner, but in reverse;
with the very last piece of level data being a randomly
generated number and new data calculated between this and the
final piece of SmartRoadSense data. If Data2 is the number
being calculated, whilst Data1 and Data3 are its neighbors, the
formulas would be as follows:

First and Last Data = Random Between 0.0 and 0.3

Other Data = Data2 = Data1 + Data3

Once a playable surface has been generated, additional
elements, coins, car components and boosters are added. Coins
allow player to purchase items, such as boosters or additional
vehicles, within the games offline store. Collecting special
vehicle components unlock special vehicles, whereas boosters,
which can be collected in any game mode but are only
available for use within multiplayer, behave in a similar
manner to the power ups found within Super Mario Kart [40].
Each of the collectibles will be procedurally-generated and
placed into levels using PCG grammars, production rules, and
algorithms, which generate content whilst dictating their
frequency and availability. To provide an example of this,
there is a 1:750 chance of a special car component being
spawned onto one of the data points used to construct terrain; if
a component is spawned this chance is reduced to zero for the
remainder of the level.

With the terrain and additional elements generated, the
complete level is skinned using a series of art assets. These
have been created so that the level is gradually built up in a
series of layers; a background, two mid-ground layers (one of
which consists of the playable terrain) and a foreground. Each
of the layers are placed slightly apart and behind the preceding
layer to create a faux 3D parallaxing effect. This artwork has
been generated by students from Coventry University’s Faculty
of Arts and Humanities under the banner of Phoenix
Interactive; a Disruptive Media Learning Lab (DMLL) project,
which teaches students about the games industry by involving
them within the process of making games. A diagram showing
the complete process of generating levels within Balance
Trucks, the gamifications relationship with SmartRoadSense
and its users is shown within Fig.2.

Fig.2. The interaction between users, data, procedural content generation,

and gameplay.

At the end of each level, in both single and multiplayer,

players will be presented with a range of information relating
to their in-game performance. In single-player, this will
include the time that the player takes to complete the level, the
amount of points they score, the number of coins they collect,
etc. In multiplayer, the information supplied will include the
player’s finishing position, the amount of points they have
scored, and the amount of coins they have been awarded. Any

points which the player gains will be added to the levelling
system and the player will rank up accordingly, should their
total pass the threshold for a level increase.

Within academic circles, there has been some discussion as
to whether content selection offers sufficient complexity to
warrant being called PCG [40]. The authors, however, agree
with Smith, who states that “content selection, however simple,
is a form of PCG when it is used to procedurally create an
environment for the player to explore…” [39]. When used in
combination with constraint selection, this provides the fastest
method for generating content within Balance Trucks, and it
allows SmartRoadSense data to be heavily reflected within the
gameplay environment. This fulfils one of the EU 2020
criteria; that of disseminating SmartRoadSense data back to
users.

IV. CONCLUSION
The SmartRoadSense gamification has undergone a long

period of iteration and change. The design team did not set out
with the aim of creating something which utilised PCG.
Rather, the intention was to make the most fun and engaging
game possible. However, whilst reviewing the gamification
design, the team investigated how PCG could be used to create
gameplay from SmartRoadSense data, which would also allow
for the dissemination of data, which users had collected, back
to them. This led to a complete re-examination, and thereafter
re-design, of the gamification layer which would tie it more
closely to its parent application.

By early November 2017, a new detailed design had been
completed. This design utilises SmartRoadSense data, which
has been gathered by the player themselves, and simple PCG
methods as a basis for fun and engaging gameplay. Over the
past few months, work on the project has moved into the
development stage. The design and development of assets to
reflect the levels and terrain associated to the SRS data has
been a key focus. As part of the co-creative process to ensure
variety in the art work that would provide assets for the PCG,
students from the Faculty of Arts and Humanities were
involved in the creation of the artwork for inclusion within the
game. Several students were recruited and have since worked,
alongside and tutored by the design team, to generate a range
of artwork; including the gamification user-interface, vehicles
and elements for use in the construction of procedurally-
generated gameplay levels.

This process began with the creation of mock-ups showing
how the gameplay environment and vehicles might look
(Fig.3), plus mocks showing how each user-interface screen
would work. Each of these is gradually being turned into full
artwork for inclusion within the gamification (Fig.4). The on-
screen display, sometimes called the HUD, has been finalised,
barring any last-minute changes, and delivered to the code
team in Urbino, alongside a range of other assets (Fig.5). Tests
have also been run to determine how levels will be constructed
and this has led to the realization that the utilization of a full
testbed would be of great benefit to the team as development
advances. Creation of this testbed is now in progress.

Fig.3. Mock-up of a Balance Trucks level, showing individual layers used to
generate a parallax effect.

Fig.4. A finished Balance Trucks level.

Fig.5. Mock-up of a Balance Trucks level with finalized user-interface.

Looking to the future, the development of the

SmartRoadSense gamification still faces a great many
challenges. Whilst the gamification, and its associated
gameplay, are exceptionally well defined in terms of visual
style, a large volume of art assets are still required to ensure
that the game environments do not look visually repetitive.
Coding of a testbed is in progress, and this will eventually form
the basis of the gamification itself. However, as anyone who
has worked within the games industry could testify, this will no
doubt throw up a whole new range of issues as development
progresses, which we will disseminate in follow up
publications. Not least of these will be the need to balance the
gamification. The degree to which this is performed, and the
resulting quality of gameplay, can literally make or break a
game, making it key to the success of Balance Trucks.

ACKNOWLEDGMENTS
The SmartRoadSense project would like to thank the

following for the creation of artwork: Kimberley Bannister,
Emilia Byrne, Nyasha Mhazo, Michael Murphy, Charlotte
Palmer, Jia Tan, Vytautas Vasiliuskas, and Lina Vysniauskaite.

This project received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 687959, and the Disruptive Media Learning Lab,
UK.

REFERENCES
[1] J. Togelius, A.J. Champandard, P.L. Lanzi, M. Mateas, A. Paiva, M.

Preuss, and K.O. Stanley, “Procedural content generation: Goals,
challenges and actionable steps,” Artificial and Computational
Intelligence in Games, Dagstuhl Follow-Ups, 6, pp. 61-75, 2013.

[2] C. Pedersen, J. Togelius, and G.N. Yannakakis, “Modeling player
experience for content creation,” IEEE Transactions on Computational
Intelligence and AI in Games, 2 (1), pp. 54–67, 2010.

[3] http://www.c4rs.eu/
[4] http://smartroadsense.it/
[5] S. Oliveira, and L. Magalhães, “Adaptive content generation for games”,

Computação Gráfica e Interação (EPCGI), 2017 24º Encontro Português
de, pp. 1-8, 2017.

[6] J. Togelius, E. Kastbjerg, D. Schedl, and G.N. Yannakakis, “What is
procedural content generation? Mario on the borderline,” in PCGames
’11, Proceedings of the 2nd International Workshop on Procedural
Content Generation in Games, ACM Press, 2011.

[7] N. Barreto, A. Cardoso, and L. Roque, “Computational creativity in
procedural content generation: A state of the art survey,” In Proceedings
of the 2014 Conference of Science and Art of Video Games, 2014.

[8] J. Togelius, J. Whitehead, and R, Bidarra, “Guest editorial: procedural
content generation in games,” IEEE Transactions on Computational
Intelligence and AI in Games, 3 (3), 2011.

[9] E.J. Hastings, R.K. Guha, and K.O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Transactions on
Computational Intelligence and AI in Games, 1 (4), pp.245-263, 2009.

[10] M. Toy, G. Wichman, K. Arnold, and J. Lane, “Rogue,” A.I. Design,
1980.

[11] D. Braben, I. Bell, “Elite,” Acornsoft, 1984.
[12] M. Persson, and J. Bergensten, “Minecraft,” Mojang, Microsoft Studios,

and Sony Computer Entertainment, 2011.
[13] Hello Games, “No Mans Sky,” Hello Games, 2016.
[14] [C. Roberts, Star Citizen, Cloud Imperium Games, Unpublished.
[15] J. Togelius, G.N. Yannakakis, K. O. Stanley, and C. Browne, “Search-

based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games 3 (3), pp.
172-186, 2011.

[16] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), 9
(1), ACM Press, 2013.

[17] R. Khaled, M. J. Nelson, and P. Barr, “Design metaphors for procedural
content generation in games,” CHI '13 Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems , ACM Press, pp.
1509-1518, 2013.

[18] A.B. Moghadam, and M. K. Rafsanjani, “A genetic approach in
procedural content generation for platformer games level creation,” 2nd
Conference on Swarm Intelligence and Evolutionary Computation
(CSIEC), 2017.

[19] M. Kerssemakers, J. Tuxen, J. Togelius, G.N. Yannakakis, “A
procedural procedural level generator generator,” 2012 IEEE
Conference on Computational Intelligence and Games (CIG), 2012.

[20] J. Dormans, “Adventures in level design: Generating missions and
spaces for action adventure games,” PCGames '10 Proceedings of the
2010 Workshop on Procedural Content Generation in Games, ACM
Press, 2010.

[21] M. Nitsche, C. Ashmore, W, Hankinson, R. Fitzpatrick, J. Kelly, and K.
Margenau, “Designing procedural game spaces: A case study,” in
Proceedings of FuturePlay, 2006

[22] J. Togelius, and J. Schmidhuber, “An experiment in automatic game
design,” IEEE Symposium On Computational Intelligence and Games,
CIG '08, 2008.

[23] J. Togelius, S. Karakovskiy, J. Koutník, and J. Schmidhuber, “Super
Mario Evolution,” 2009 IEEE Symposium on Computational
Intelligence and Games, CIG2009, pp.156-161, 2009.

[24] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario AI
Competition,” IEEE Congress on Evolutionary Computation (CEC), pp.
1-8, 2010.

[25] https://ec.europa.eu/programmes/horizon2020/
[26] http://www.openstreetmap.org/
[27] V. Freschi, S. Delpriori, L. Klopfenstein, E. Lattanzi, G. Luchetti, and

A. Bogliolo, “Geospatial data aggregation and reduction in vehicular
sensing applications: The case of road surface monitoring,” International
Conference on Connected Vehicles and Expo. ICCVE, 2014.

[28] G. Alessandroni, L. Klopfenstein, S. Delpriori, M. Dromedari, G.
Luchetti, B. Paolini, A. Seraghiti, E. Lattanzi, V. Freschi, A. Carini, and
A. Bogliolo, “Smartroadsense: Collaborative road surface condition
monitoring,” in Proceedings of the Eighth International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies,
Ubicomm 2014. IARIA, 2014.

[29] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H.
Balakrishnan, “The pothole patrol: Using a mobile sensor network for
road surface monitoring,” in Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services. ACM Press,
pp. 29–39, 2008.

[30] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: Rich
monitoring of road and traffic conditions using mobile smartphones,” in
Proc. of the 6th ACM Conference on Embedded Network Sensor
Systems. ACM Press, pp. 323–336, 2008.

[31] A. Thiagarajan et al., “VTrack: Accurate, energy-aware road traffic
delay estimation using mobile phones,” in Proc. of the 7th ACM
Conference on Embedded Networked Sensor Systems. ACM Press, pp.
85–98, 2009.

[32] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and L.
Girod, “Accurate, low-energy trajectory mapping for mobile devices,” in
Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’11. USENIX Association, pp.
267–280, 2011.

[33] K. Aberer et al., “Opensense: open community driven sensing of
environment,” in Proceedings of the 1st International Workshop on
GeoStreaming (IWGS ’10), pp. 39–42, 2010.

[34] R. Bhoraskar, N. Vankadhara, B. Raman, and P. Kulkarni, “Wolverine:
Traffic and road condition estimation using smartphone sensors,” in
Proceedings of COMSNETS ’12, pp. 1–6, 2012.

[35] K. Chen, M. Lu, G. Tan, and J. Wu, “CRSM: Crowdsourcing based road
surface monitoring,” in Proceedings of HPCC EUC ’13, pp. 2151–2158,
2013.

[36] V. Douangphachanh and H. Oneyama, “A study on the use of
smartphones for road roughness condition estimation,” Journal of the
Eastern Asia Society for Transportation Studies, vol. 10, no. 0, pp.
1551–1564, 2013.

[37] S. Clarke, S. Arnab, M. Lewis, L. Morini, S. Depriori, A. Bogliolo, & L.
Klopfenstein, “A gamified approach for facilitating a user-engagement
strategy for public-led collective awareness platform for road sensing,”
in Proceedings of the 11th European Conference on Games Based
Learning, ECGBL 2017 (pp. 79-87). Academic Conferences and
Publishing International Limited, 2017.

[38] G. Smith, “Understanding procedural content generation: A design-
centric analysis of the role of PCG in games”, Proceedings of the ACM
CHI Conference on Human Factors in Computing Systems (CHI 2014),
2014.

[39] A. Sullivan, “Content Selection vs. Content Generation”, Expressive
Intelligence Studio, https://eis-blog.soe.ucsc.edu/2010/06/content-
selection-vs-content-generation/, 2010.

[40] S. Miyamoto, Super Mario Kart, Nintendo Co. Ltd, 1992.

	Balance Trucks cs
	Balance_Trucks_Using_Crowd_sensing_Data_to_Procedurally_Generate_Gameplay_within_a_Mobile_Application

