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Abstract

Developers of interactive exhibits often struggle to find appropriate input devices

that enable intuitive control, permitting the visitors to engage effectively with the

content. Recently motion sensing input devices like the Microsoft Kinect or Pana-

sonic D-Imager have become available enabling gesture based control of computer

systems. These devices present an attractive input device for exhibits since the user

can interact with their hands and they are not required to physically touch any part

of the system. In this thesis we investigate techniques to enable the raw data com-

ing from these types of devices to be used to control an interactive exhibit. Object

recognition and tracking techniques are used to analyse the user’s hand where move-

ment and clicks are processed. To show the effectiveness of the techniques the gesture

system is used to control an interactive system designed to inform the public about

iconic buildings in the centre of Norwich, UK. We evaluate two methods of making

selections in the test environment.

At the time of experimentation the technologies were relatively new to the image

processing environment. As a result of the research presented in this thesis, the tech-

niques and methods used have been detailed and published [3] at the VSMM (Virtual

Systems and Multimedia 2012) conference with the intention of further forwarding

the area.
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Chapter 1

Introduction

There has always been a need for interactive exhibitions which are discussed in Sec-

tion 2, most of which are focused on providing a means in which to gain knowledge on

a particular subject and or subjects. Usually, there are large quantities of information

that are difficult to disseminate to the masses without a medium that is intriguing

and informative.

Traditional historical exhibition techniques are recognised throughout the world.

An exhibition is mostly, but not strictly, the term used for a collection of items on

display. Archaeological heritage data is collectively growing and is being accumulated

from various sources, some of which are highly detailed. It is of growing concern as

to what information should be presented publicly, how the data is handled, how it is

presented and to what audience.

Architectural information on discovered artifact’s may be attained with conven-

tional methods such as historical documentation, literary material and according to

research by Kwee et al. [30], internet resources, who also split information into two

categories, hard and soft. Firstly, hard information usually consists of the physical,

tangible attributes of the artefact, its blueprints and design (if available). Secondly,

1
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soft information gives details on the artefacts original intentions and narrative through

time. Categorising information aids in interpretation and assimilation but it is not

necessarily possible to divide into simple categories. Although these are valid infor-

mation gathering techniques they do not offer an interactive or empirical experience,

furthermore their presentation may not be tailored for public viewing. Secondly, even

though internet resources may be readily available and easily acquired the historical

validity may be lacking.

The ideas behind this project were to enable such interaction in which information

on a specific subject could be presented, the subject being the twelve listed buildings

found in and around Norwich City. Rich archives on these buildings had and is still

being gathered and stored in a collective database owned by the Norwich Heart. The

twelve listed heritage buildings span the Norman, medieval, Georgian, Victorian and

modern eras.

Figure 1.1 shows all twelve listed buildings and consist of Norwich Castle, Norwich

Cathedral, The Great Hospital, The Halls - St. Andrew’s and Blackfriars, The Guild-

hall, Dragon Hall, The Assembly House, St James Mill, St Johns Roman Catholic

Cathedral, Surrey House, City Hall and The Forum.

‘HistOracle’ became the project name, having a loose meaning towards an oracle

of history.

1.1 Aims

Designing and creating an interactive and informative experience proved challenging

as there are many technical and ergonomic aspects that must be considered. The
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Figure 1.1: The Norwich twelve listed heritage buildings. From left to right: (1A)
Norwich Castle, (2A) Norwich Cathedral, (3A) The Great Hospital, (4A) The Halls
- St. Andrew’s and Blackfriars, (1B) The Guildhall, (2B) Dragon Hall, (3B) The
Assembly House, (4B) St James Mill, (1C) St Johns Roman Catholic Cathedral,
(2C) Surrey House, (3C) City Hall, (4C) The Forum

aims initially discussed were in place to roughly guide the project and were a larger

superset of aims that this MSc fell under. These aims consisted off;

1. Enable a more extensive exploration experience of selected listed buildings in

the Norwich area.

2. The ability to view these buildings from different time periods using custom 3D

model data.

3. Display contextual information, in the form of text, videos, images, audio files

etc. about the currently viewed structure.

4. To actively retrieve information from a database enabling expandability to add

new listed buildings.

5. Create a system that is compatible on multiple platforms with a multitude of

technology such as touch-screens, wireless input, haptic feedback devices and a

standard mouse and keyboard.
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In addition to the aims previously explained it was originally decided that extra

functionality was required. This included;

1. To render Norwich in real-time using pre-built models created from LIDAR.

2. Rendering shadows and using other processing techniques to create realistic

images.

3. Enable free exploration of Norwich using an intuitive navigation system.

It was clear that certain aims were out of scope, such as enabling complete freedom

to explore and producing a product that was compatible with many forms of input

device. Enabling freedom of movement involves many techniques to be implemented

as part of the overall system, in scope of the project there was not enough time to

complete these. Also, it was decided that concentrating on a single input device

(gesture input) was more suitable, although transferring control to other devices was

not a large task.

1.2 Motivations

The field of virtual historical environments spans a multitude of theoretical and prac-

tical application. Virtual immersive technologies have been accessible for private and

public uses for decades but in recent years (15 or so) newer technologies have created

possibilities for real-time historical interactive virtual environments with a variety of

input devices.

Currently there is a lot of emphasis on technologies such as the devices used in

this project. Their uses span into a multitude of areas, offering new possibilities to

individuals where physical touch is not possible or desired. Some of these areas in-

clude but are not restrained to; medical imaging (for situations like surgeries [38]),

security [46], environment mapping (real time 3D environment generation) [52] and
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virtual reality [27]. Technologies such as the Panasonic D-Imager and the Microsoft

Kinect are relatively new. There is the potential for ever advancing gesture based

applications which could aid people throughout their lives as well as entertain. The

practical applications of devices such as these expand beyond simple entertainment

purposes.

Figure 1.2: The futuristic interface used in the film Minority Report. Image taken
from [1]

The line between fantasy science-fiction and reality is beginning to merge. The

ability to accurately track and acknowledge the presence of a person and individual

hand and fingers is something that Hollywood will manufacture (or fake) whereas sci-

ence will produce. A prime example of the pre-conception of this technology comes

from the film ’Minority Report’, in which the protagonist interacts with a computer

via a spatially static holographic interface, using autonomous gesture input (can be

seen in Figure 1.2).
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Chittaro et al.[10], Lepouras and Vassilakis [34], and Niederauer et al.[44] have

presented exhibitions that succeeded in capturing the publics attention, showing that

interactivity can play a large role in the success of an exhibition.

In the next Chapter (2), this work among other relevant work is discussed in

context of presenting information on particular historical subjects in informative and

interactive ways, including the use of contemporary technologies such as depth in-

terpretation. In the rest of the thesis, subjects are discussed relating to both image

processing (Chapter 3) and 3D rendering (Chapter 4). Some topics include depth

analysis and hand tracking, which concentrate on the practicalities of finding and

tracking an object in a scene using depth data, and the methods used to help elimi-

nate errors. Also, 3D model organisation and loading which explains how an efficient

loading method was used to load large amounts of data in relation to current graph-

ics hardware, for displaying on screen interactively. Finally, the results (Chapter

5) from public testing are presented and discussed in regards of the success of the

whole project, followed by a discussion and a conclusion of the project and the results

gathered (Chapter 6) .



Chapter 2

Background

2.1 Navigation Techniques

We are exposed to navigational tasks regularly; for example we use our extremities

to coordinate and navigate ourselves to complete particular tasks such as interact-

ing with our surroundings. We perceive our environment through our senses with

the freedom to view in any direction. Successful navigation in a virtual environment

requires consideration of many contributory factors such as sensory orientation and

interface expectations, which are discussed throughout this chapter. Furthermore,

common problems associated with navigation faced by interface designers of virtual

environments are; transitions between point A and B, the restrictions applied to tran-

sitional movement, viewport rotation and the input/output expectations. We learn

by playing, interacting with objects, solving puzzles and also from observation, all

of which can be supplied with augmented and virtual reality. Research by Mosaker

[43] shows that tourists interacting with a cultural heritage system, want to learn

through doing, being told, observing and asking. Engagement with the activity is

paramount to a users experience. They want to feel the presence of time and enjoy

the cultural involvements tied to the object/artefact. Without user navigation, vir-

tual environments would not provide an interactive experience, rather place the user

in an expensively rendered environment that could have been computer and presented

7
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via other methods.

2.1.1 Viewpoint Control

Since the late 70’s, there has been research into view or ‘camera’ control within a

virtual environment that has proven that user and application requirements both

play important roles in influencing application design. It is widely considered that

the metaphor explanations of camera control by Ware et al.[61], give clarity to the

three control types that are consistently used in graphics applications, ‘eyeball-in-

hand’, ‘scene-in-hand’ and ‘flying-vehicle-control’. Firstly, it is clear that a degree of

understanding can be attained by each title. Assumptions can be formed as to how

the camera system will respond to user input due to the physical representation of

the metaphor. One can assume that while physically holding an object certain possi-

bilities arise such as complete freedom of rotation and movement around the object,

hence the ‘eyeball’ is ‘in hand’. Continuing this logic, further deductions can be made

in reference to the ‘scene-in-hand’ and ‘flying-vehicle-control’ in that both navigation

techniques produce different results, flying vehicle control giving complete movement

with the six degrees of freedom, enabling the user to traverse over the landscape

according to a directional vector, usually calculated from the viewing angle. Impor-

tantly, their research has shown that the interpretation of these metaphors/descriptive

control methods greatly affects user understanding and interaction, even before first

use.

Movement in a 3D environment is measured within six degrees of freedom con-

sisting of translation and rotation in each axis. The degree of control given to a user

often dictates the success of a navigational system. For example, flight simulators
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promote realistic control of an aeroplane; in this case the user would be able to per-

form movement in each axis (yaw, pitch and role) whereas a car simulator is restricted

to yaw (left and right).

The metaphors created by Ware et al.were a significant contribution to the field of

virtual 3D viewpoint control, providing a clear overview of how we interpret and anal-

yse physical navigational tasks. Evaluation of these metaphors in real situations was

undertaken by Bowman et al.[7] who substantiate Ware’s research, suggesting that a

successful virtual travel technique promotes a collection of seven component; speed,

accuracy, spatial awareness, ease of learning, ease of use, information gathering and

level of immersion. For example a video game requires speed, accuracy, ease of use

and ease of learning for fast passed action and real-time events. On the other hand, a

historical simulation is solely focused on the reconstruction of an environment where

spatial awareness, information gathering and ease of use are paramount. Moreover,

their research consisted of experimental navigation using head tracking hardware and

the flying-vehicle metaphor. Restrictions were applied to the X and Y axis, showing

that virtual reality navigation using head and limb tracking hardware was improved

when the user was able to traverse the environment via pointing instead of looking

in the desired direction.

However, navigation in 3D environments is not strictly contained to confined ar-

eas, which the previous control systems are tailored for. Environmental navigation

in arbitrary virtual environments is advancing and becoming easier to navigate. The

possibilities that arise from ‘flying-vehicle-control’ do not accommodate large scale

navigation, furthermore if this type of control were to be used in an environment

requiring large movements, errors would occur and accuracy would be lost. Af-

ter studying various existing control metaphors, Mackinlay et al[35] and Fukatsu
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et al.[22] developed techniques in which the user gained movement control over vast

environments. Mackinlay realised this technique by placing a marker on the target

geometry, the viewpoint then traverses towards the target until reached - similar to

a more locally based technique by [5]. When the distance between viewpoint and

target decreases, camera speed is also reduced, thus enabling both rapid and con-

trolled movements towards a point of interest. Furthermore, this provides adaptive

movement as control is relative to distance, giving the advantage of detailed, scalable

movement over large and small distances. Although advantageous for traversing an

environment efficiently there is little or no discussion of spatial awareness (defined as

a necessity for a successful camera system by Bowman et al. [7]), a user could become

disoriented due to rapid movement to new locations.

Fukatsu et al.[22] try to remedy this issue by concentrating on providing both

global and local viewpoints simultaneously. Their research introduced the user to

multiple viewpoints of the virtual environment. The local view being that of the first

person, from the user’s position and orientation and the second global ‘bird’s eye’

view situated above, maintaining a constant distance from the users global viewpoint

coordinates (defined along the positive Y and negative X axis). Experiments were un-

dertaken involving tasks set in a tailored virtual environment such as a maze, where

landmarks and points of interest were placed. Task completion time was recorded

to analyse discrepancies between bird’s eye view settings, such as orientation and

proximity. Furthermore, the technique gives a unique overlay detailing positional in-

formation to the user, enabling a further understanding of their surrounds, ultimately

improving accuracy while positioning objects and presenting a global understanding

and perception of size, but does not offer a complete overview of the entire environ-

ment which is proposed by Stoakley et al.[54].
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Figure 2.1: World In Miniature (WIM).

The world-in-miniature (WIM)

was coined by Stoakley as a cam-

era metaphor essentially providing a

3D overview of the geometry being

explored, in this instance, presented

via augmented reality on a sepa-

rate hand-held tablet (Figure 2.1).

An advantageous perspective was

rendered, encouraging the benefits

gained from map-like tasks. More-

over, this is also reflected in the ‘through-the-lens’ technique which, proposed by

Stoev et al.[55], is an augmentation of both the WIM and bird’s eye view. The user

is presented with a ‘magic lens’, offering a secondary window that renders the scene

from a different location and view orientation. In this example, an external hand-

held pad is used to further augment the interaction process with a ’grab-and-drag’

style of movement, where the pad can be dragged to any position. Two positional

states also give behavioural control, the first translating the magic lens according to

the users viewpoint and the second retaining a static position in all axes. Also, the

pad offers a preview window in which the viewer is able to adjust their secondary

view precisely without requiring the user to physically move to the location. Fur-

thermore, these techniques are similar to the ‘bird’s eye’ view previously discussed,

each providing valuable positional information in different situations, the first offering

intuitive cognitive recognition of orientation and position, the latter providing multi-

ple, scalable points of view that enable easy object manipulation in a 3D environment.

In more recent years, the study of camera controls and their constraints has been

carried out by Fitzmaurice et al.[19]. Their research collected valuable information
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consisting of user ability, experience and tolerance in a commercial 3D modelling

environment. Furthermore, the research contained a mix of techniques previously

mentioned, applied in an examinable fashion where data was collected on various

aspects of interaction. Close examination showed that user interaction with 3D soft-

ware, both beginners and experienced users, can be considerably enhanced by a clear

user interface. Moreover inexperienced users often fall into previously learned habits

or become confused in 3D space, often transferring their own understanding of 2D

applications to 3D tasks. Moreover, it was found that beginners were often unaware

of particular tools available and compensated with other methods, often worsening

the situation. User interaction is also researched and is discussed later in Section (2.3).

2.1.2 Virtual Exhibits

Camera metaphors previously discussed fare well in situations that involve or require

direct user input. Due to the requirements of an interactive virtual environment com-

plete control of the camera may not be possible, in these situations other traversal

techniques could be implemented to provide the desired level of interaction. Envi-

ronmental immersion can be conveyed in two common methods, the first being an

interactive 3D environment containing informative object models, the second encap-

sulating a consecutive path of pre-rendered environmental images enabling 360 degree

viewpoints at pre-defined stops.

Furthermore, the utilisation of a tour based systems has been explored by mu-

seums, the gradual progression through an information rich environment aids in the

assimilation of data as Galyean [24] describes. This progressive restriction is a simple

but effective analogy that provides the opportunity to explore a confined area (Figure

2.2) moreover, the area available for exploration progresses along a pre-defined path.
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The system consists of a central anchor in which the viewpoint is attached to; any

movement is dictated by a spring situated between the anchor and viewpoint thus

restricting the user from distancing themselves from the central anchor. It was found

that the ‘river analogy’ encouraged people to explore but also provided more control

over intentional focus points in the environment.

Figure 2.2: The ‘river’ analogy including a path of travel, spring
constraint and maximum travel distance from each node.

Applying constraints to a user’s experience can be limiting and sometimes frus-

trating due to the confinement within a designated area, on the other hand it offers

the narrator or system designer to apply strict guidance to the user’s experience.

Laycock et al.[32] promote a system that combines efficient rendering of complex vir-

tual environments such as detailed architecture and interaction using pre-rendered

haptically aware movies. Due to the overhead required by haptic devices it is difficult

to render high quality architecture and maintain an efficient runtime for the haptic

device. Haptic feedback offers a higher level of user immersion and direct physical

feedback that extends the user’s understanding of the object in a virtual environment.

However, achieving a high quality image while incorporating haptic feedback can be
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problematic as a feedback device usually requires the application to be running at 1

kHz. Furthermore, this method of haptic preservation is realized by rendering a con-

secutive set of environment maps that depict a scene along a set path (often multiple

branching paths, giving the impression of freedom). The maps are then rendered in

realtime, removing the need to render the geometry directly and enables the pro-

cessing power to be directed towards the haptic feedback device. Camera control is

initialised using a spring system, assigning a virtual spring for both the X and Y axes

separately much like the river analogy described in [24]. While the user interacts with

the scene clicking in the direction they wish to move, this movement amount is cal-

culated based on the magnitude of the spring force. While camera rotation is active,

interaction with haptic objects is disabled to force a distinction between movement

and object interaction, helping to stop confusion.

Although this analogy efficiently maintains the viewer within a specified path it

does not dictate how or when the automatic path is generated. Intuitive high level

exhibition design is a difficult topic in which Elmqvist et al.[17] and Chirrato et al.[10]

both provide systems that attempt to remedy user compatibility with exhibit creation

and automatic tour generation, respectively. The first consists of automated indoor

and outdoor navigation of arbitrary environments calculated using voxels and path

finding algorithms. The first being a voxel (volumetric element) representation of

the environment in question using a recursive subdivision of space. This 3D voxel

representation can then be used to deduce clear ‘visibility sets’ in which groups of

voxels are stored together determined by their visibility and proximity to the points

of interest. Furthermore, redundant voxel sets can be disregarded which in turn in-

creases efficiency. All information is stored in a scene graph, depicting appropriate

segment connections providing logical steps between spatial nodes. Elmqvist’s re-

search showed that tour generation computation times were not hindered by model
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complexity (number of vertices) due to the combination of voxelisation and standard

TSP (Travelling Salesman Problem) heuristics. On the other hand scenes containing

high amounts of occlusion, such as the interior of a museum, produced fast com-

putational times. Although an efficient path generation method is described, scene

manipulation including artefact placement is not mentioned. Intuitive control over

artefacts in a 3D virtual environment is paramount for general acceptance as virtual

exhibition creation software.

Unlike Elmqvist, Chittaro et al.[10] created a system that enabled the curator to

design a virtual tour from start (artefact and location selection) to finish (automated

tour calculation) as shown in Figure 2.3. These efforts resulted in the ability to

generate fully interactive tours from lesser experienced users, reducing the need for

professional input.

Figure 2.3: A real-time rendering of a finalised
tour with items placed in the virtual environ-
ment using the design system.

Curators are presented with a

system based around familiarities

gained from other software packages

and general operating system use.

Tour creation is based on Views of

Interest (VOI), specific objects (usu-

ally artefacts) or manually desig-

nated views (such as murals) can be

created which help to aid the cura-

tor through the design process and

is used later to automatically con-

struct the tour. Moreover, a differ-

ent weighting is associated with each VOI, where a definition of how the object is

treated is defined between a full field of view, front facing items, non occluding items
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and visual size. The first describes whether the artefact is entirely included in the

view; the second defines the front of the object that should be visible including a

tolerance of 40 degrees. The third states if the object is able to be occluded by other

artefacts in the scene. Finally, size defines the proportional amount of screen space

the artefact covers. Moreover, this information is used to automatically generate the

tour path from one VOI to another. The curator is able to link VOI’s using a tailored

interface that displays connecting nodes and their start, end and transitional vari-

ables. Unlike voxelisation segmentation, the automated tour generation renders each

room to an image from an isometric top-down viewpoint where a pixel depicts a seg-

ment of the room, thus enabling a safe path to be calculated through the environment

avoiding impassable objects, similar to the techniques proposed by Leronutti et al.[26].

On the opposite side of the spectrum, customised virtual exhibits are usually pre-

fabricated to some degree as well as the environment in which the design is under-

taken. The idea of using existing design and rendering software has been researched

by Lepouras and Vassilakis [34], and Niederauer et al.[44] who delved into the realm

of commercial game engines; CryEngine, Unigine and the Unreal Engine are all so-

phisticated examples. As specifically tailored hi-end systems require a large amount

of development time, game engines offer an inexpensive graphical alternative. Thus

the engine is a self contained rendering system normally consisting of many rendering

techniques, user interface for custom development and often rules that can be applied

to the objects in the virtual world, such as physics. For example, if the system re-

quired a high visual quality, most current game engine designs allow for the use of

the most current techniques, enabling development time to be placed elsewhere.
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2.2 Recognition

In the field of computer vision, body, face and limb recognition is at the forefront

of sophisticated HCI techniques as it holds possibilities for further envelopment into

arbitrary virtual environments. Furthermore, as well as obvious entertainment and

gaming application it is an autonomous means of interaction with the physical world,

and a potential method in which to aid in arbitrary social and everyday tasks. Real

world applications is an area researched by many, Zhou and Hoang [70] implemented

robust security surveillance tracking in which individuals could be recognised and

tracked even at a distance.

2.2.1 Wireless Recognition

It is only logical to progress into the area of full body recognition (including limb and

individual body part recognition), which in many situation is an amalgamation of

techniques previously described that can satisfy more natural forms of spatial inter-

action. A conclusion can be made from naturalistic input such as those discussed, is

that it is usually more intuitive to users because they are the controller. The notion

of unencumbered control without restrictions has been explored by various scientists

including Johan Warren [62]. A system intended for input via body recognition can

either provide a small number of abstract actions which are easy to comprehend, or

many actions which can be interpreted as literal translation. Higher detail facilitates

the capacity for better translation, movement becomes nearer that of the users, nat-

ural and more literal which is nearer to a one-to-one relationship. More advanced

recognition techniques and higher bandwidth allocation can foresee detailed expres-

sive input that can react to an individual’s personality and performance.

Previous research into the relatively new area of full body motion capture and
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recognition has shown that current hardware is more than adequate for handling fa-

cial and body recognition in real-time. The aim of wireless gesture recognition is to

enable completely free and unhindered application control using only hand and body

gestures. A simplistic approach has been taken by Laakso and Laakso [31], who de-

veloped a cost-effective system aimed towards game control. The configuration uses a

top down approach, approximating the user’s position and mass by segmenting them

from the ground, using a bounding volume placed around the user’s mass aids in cal-

culating the contour of the limbs. A vector is then composed using the least-squares

method giving the vector’s length and direction, indicating the fingers. From this,

predefined gestures are interpreted as rudimentary actions such as move, jump, shoot

etc. Although effective, taken out of a tightly controlled environment the system

could be prone to errors.

Figure 2.4: Augmented reality controlled via a visual goggles-and-glove approach
where the thumb and forefinger are visually tracked while interacting with the envi-
ronment. This approach is extremely restrictive due to the confined environment and
hardware required.

Segmentation of individual body parts for recognition is one of many tasks that

have to be overcome in a system that requires it. Firstly, it is usually more efficient

to work with processed images where the background has been removed, this aids in

defining movement amongst elements, as described by Maes et al.[36], Chu et al.[13]
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and Carbini et al.[9]. Each technique differs in gesture processing but all are facili-

tated by background removal techniques.

Maes et al.[36] aimed to create fully autonomous interactive agents with specific

behavioral patterns, such as a dog. The system aimed to provide an augmented real-

ity without the need for intrusive wearable hardware such as a headset. Instead, the

user is presented with a large screen acting as a ‘magic mirror’ in which all augmented

information is displayed in conjunction to the user’s actions. The user’s 3D volume

is used in conjunction with the ground plane to determine positional information,

furthermore this is used for autonomous agents to navigate and interact. Intuitive

control is given when interacting with virtual buttons; the user must make a “pointing

gesture” over the required button which then selects the appropriate button. ALIVE

(Artificial Life Interactive Video Environment) lends itself to multiple environments

such as entertainment, teaching, training and digital assistants. Moreover, it was ad-

vantageous over a more cumbersome approach like goggles-and-gloves, experimented

by [8], in which nodes placed on a table in a uniform square grid were used to visually

calculate positional information. The same nodes are used on the users glove (seen

in Figure 2.4), enabling interaction with augmented objects but limits the user to a

first person view, where errors in accuracy and confusion can occur on orientation in

the virtual environment.

Image processing was researched by Chu et al.[13] where compiled image informa-

tion was gathered via four or more cameras, fitted with infra-red (IR) filters enabling

low light level calibrations. Although, this decision implied that only a single user

could be traced at any one time due to the difficulties encountered when segmenting

IR information. Segmentation of streamed information is vital for classification, in

order to aid in this process Chu et al. used back lighting to silhouette the users figure.
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Visual information is then processed using four sets of scan lines, vertical, horizontal

and at 45 and -45 degrees (Figure 2.5). Under the assumption that users interact

with the system while standing, vertical scan lines are used in conjunction with the

horizontal scan lines to calculate the user’s volume (torso). Extremities are then pro-

cessed when movement occurs, enabling detection of pointing direction according to

volume mass collection. Both these techniques are used to translate body gestures

into actions appearing to the user or in the virtual environment but neither handle

multiple inputs.

Figure 2.5: The scanlines used to detect the users volume. Four angles are used,
vertical, horizontal, 45◦ and -45◦.

The latter uses a more advanced method of facial and hand recognition, defined

by Carbini et al.[9] in which the left and right hand are treated separately, the first

for (main hand) is used for selection and the other hand for manipulation. The image

is divided into 16 segments, discarding those that do not contain facial or extremity

information or any sign of movement. Furthermore, as multiple users could be tracked

at once the bounding volume of each unique user had to be determined. Boundaries

of the individual’s ‘working sphere’ is placed around the user with the head at the

origin. This acts as an efficient detection area and also provides indication when two

working areas intersect, also accommodating for body shape and eradicates detection

errors when user proximity is too close, disregarding hand gestures in this area (Fig-

ure 2.6).
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Figure 2.6: On the left, 1, 2 and 3 are the working boundary, recognition area and
ignored area, respectively. An example of multiple working areas, a and c are in-
dividuals with unique working areas and b is the intersection at which gestures are
ignored.

Correct sampling is paramount for hand gesture recognition, for example sign

language, an alternate method of hand extraction is proposed by Quek [47] in which

hand strokes are extracted from streaming video via edge detection, yielding motion

vectors from this data. Information is smoothed to locally align and reduce noise

from the result. Vector calculations are intrinsic for motion estimation with 2D data.

This is also realised by Yang et al.[67], showing that trajectories can be estimated

by a two frame comparison. Furthermore the system is engineered to recognise pat-

terns in dynamic images without prior knowledge of the subject. Sign utterances

(hand gestures) are recognised from hand location, shape and motion. Images are

processed and segmented using a multi-scale segmentation method, regions between

consecutive frames are matched to obtain two-view correspondence. Transformations

are then computed using the two-frame correspondence enabling pixel level trajecto-

ries to be computed (Figure 2.7). At the final stage of analysis, a time delay neural

network (TDNN) is used to recognise feature vectors in temporal space.

Recognition via feature vectors (not unlike those used by Quek [47]) has been

proposed by William T. Freeman and Michal Roth ([21]) in which feature vectors are

used to distinguish explicit hand gestures. The underlying process consists of two
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Figure 2.7: On the left are the final calculated vectors from the motion segmentation.
On the right pixels of the same intensities and feature correspondences are grouped.

phases, training and practical application. During training the dominant orientations

in the image are calculated using the feature vector histogram. This histogram is gen-

erated by analysing contrasting areas in the image, where heavily contrasting areas

are considered. Figure 2.8 depicts an orientation histogram example. The image (a)

produces the raw histogram (b) where a clearly defined spike represents the vector an-

gle found in the image. Due to the computational capabilities of the hardware during

experimentation these feature vectors were categorised into 36 bins. Therefore each

feature was required to be aware of its neighbours, this was accomplished by blurring

the histogram (c). The polar plot of the resulting histogram was then saved as the

comparison, where the angle is considered to be the direction of intensity gradient

plus 90◦.

Although the proposed technique is generally robust against lighting discrepan-

cies, it is fundamentally flawed in various respects. As the training process provides

the option to configure the system to recognise static gestures, feature vectors do

not offer much leniency between similar gestures. It is uncommon that the user will

produce the exact pre-defined posture, small variations in hand orientation produce

significantly different polar plot images but are usually considered to be identical by
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the user. Furthermore, for the system to successfully attain gestures from real-time

data the hand must dominate the screen which is impractical for any real-world usage.

Figure 2.8: A simple example of the orien-
tation histogram, starting with the original
image which is processed into a raw his-
togram, blurred and then processed into a
polar plot for gesture recognition (a, b, c
and d respectively.

Enabling recognition via trajectories

is also utilised by Kenji Oka et al.

([45], [49]) who propose a novel sys-

tem which enables desktop (literal) in-

teraction with detection of multiple fin-

gertips. The technology used is infra-

red, where advanced prediction tech-

niques and hand gestures are analysed

to interact with the work surface to per-

form specific tasks. They are quick to

point out that their system has advan-

tages over similar methods which use

colour and/or background segmentation

to successfully track a users hand, this

is due to the use of an infra-red cam-

era.

The method proposed initially searches for the user’s hand via a search window

of a fixed size, which including part of the wrist, indicating the user’s orientation.

This region is then analysed using normalized correlation with a circular template of

appropriate size (this was reliable as the distance between the camera and the user’s

hand was consistent, although the size was varied depending on the size of the image

initially found). The center of the user’s hand is discovered by morphological erosion,

the idea being that the center of the hand contains the largest volume and erosion
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exposes this area.

Figure 2.9: An exam-
ple of three fingertips be-
ing tracked and interact-
ing with the desk, aug-
mented by the projector.

Fingertip prediction was enabled by the use of vec-

tor trajectories, opening possibilities for object manipu-

lation. Trajectories were predicted by analysing fingertip

positions between frames, this enabled the calculation of

velocity. The sum of the square of distances between de-

tected and predicted fingertips is computed for all possible

combinations, taking the result with the least sum as the

most reasonable. This enabled the recognition of symbolic

gestures, based on the Hidden Markov Model of multiple

fingertips.

2.2.2 Recognition using 3D Data

Previous research discussed have directed their work towards facial, limb and body

recognition using technologies that provide 2D positional information. This decision

was not necessarily out of choice but due to hardware limitations at the time. When

considering active motion capture for body and gesture recognition the progressive

step is to acquire information on all three dimensions X, Y and Z. The third axis (Z)

contains depth information of the scene, which can vastly increase the recognition

accuracy when processing all given information. Recent technological advancements

have enabled hardware that can seamlessly stream depth information (Z) alongside

traditional video (X, Y) without the need for any spatially aware external devices

such as headsets, VR gloves or accelerometer hardware.

Some of the first substantial research in this field was carried out Krumm et al.[29]
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whos methodology included a visual recognition system for seamless home integra-

tion that could aid in general remote tasks such as pausing a video when the viewer

leaves the viewing area. ‘EasyLiving’ uses two or three stereoscopic cameras to track

up to three individuals via RGB and depth image data. Pixel disparities within a

small range were calculated to create ‘people shaped blobs’, their location, (past and

present) was stored for each instance. Using the knowledge of the cameras location

in the room a individual can be tracked, evaluating positional information from all

cameras.

Engineering a multi-person full -body recognition system using 3D/stereoscopic

data to successfully compute and react to user presence is difficult when only con-

sidering a single input type such as colour histogram in streaming data. This was

realised by Darrell et al.[15] who understood that exploiting multiple visual process-

ing techniques would increase robustness, theoretically if one module were to fail the

next could succeed. Processing visual information for segmentation consisted of first

smoothing the image and removing disparities with a morphological closing operator,

face pattern detection then pinpoints probable faces in the scene. Flesh hue regions

are then classified, components are then connected using stereo image data and finally

individual attributes are recorded for each new individual (Figure 2.10 (a), (b) and

(c) respectively). Furthermore, effort was placed in storing information on tracked

individuals, enabling short, medium and long-term tracking, the former processing

individuals continuously in view and the latter relying on statistical appearance mod-

els which determines an individual’s physical attributes. Darrel et al. concluded that

range data, or depth data, was significantly important for person segmentation in

arbitrarily complicated scenes, also that face pattern analysis was the most successful

element for individualisation.
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Figure 2.10: Face detection shown in (c) is accomplished with flesh hue region detec-
tion (a) and elemental composition using stereo data (b).

Contemporary research in the area of 3D data processing has proven beneficial

in areas outside computer graphics, such as medical imaging, aiding the hearing

impaired, a form of polygraph and sign language interpretation [42], which is notori-

ously hard to understand digitally due to the complexity of hand gestures and lack of

boundaries between signs [66]. The benefits of acquiring and handling 3D for gesture

recognition have been explored by Malassiotis et al.[37] whos research showed that

this step towards complete wireless freedom is extremely important in the area of full

body recognition and is enabled by techniques such as 3D image acquisition. The

system designed does not rely on colour, illumination and camera configuration and

other determinate environmental attributes as 3D data is less prone to interference

and is sufficient to segment the user’s arm and hands from the background. The image

is segmented to help categorisation, assuming that the body is formed of clusters, the

arm, forearm hands etc. Clusters are formed by analysing the depth data, measuring

the Euclidian distance which forms small regions with respect to their neighbouring

pixels. Clusters are then merged according to cluster variance, terminating when a

certain number of clusters is reached. These then form extremity information which

can be categorised by their shape, such as the elongated shape of the arm as seen in

Figure 2.11.
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Figure 2.11: Depth information displayed as colour (red to green), where red indicates
a smaller depth value thus is closer to the source (camera). This information is
processed to give segmentation of the hand and arm and forearm.

2.3 Interaction

Given the opportunity scientists and software developers would design the most in-

triguing multi-user systems possible, as technology advances; new possibilities that

have never been realised become possible. Furthermore, technologies such as touch

screens and 3D positional cameras (Zabulis et al.[68]) have been in the pipeline for

many years but have only recently been realised and become commercially available

such as the Microsoft Xbox Kinect.

2.3.1 Efficient Human-Computer Interaction

Interactions between human and computer (HCI, Human-Computers Interaction)

greatly affect the outcome and understanding held by the user, a well designed inter-

face will stay incognito, only becoming obvious when needed. On the other hand a

poorly designed interface will hinder the applications performance and even prevent

the user from completing desired tasks. Each unique system (in the context of non-

automated commercial and non-commercial products) requires input in some form

such as haptic devices, head tracking hardware, a stylus and traditional mouse and

keyboard are all valid methods of input and provide advantages in different scenarios.
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Careful consideration of interaction theory can translate to well developed HCI

techniques, the methodologies proposed by Fitzmaurice at al.[19] (previously dis-

cussed), and Chittaro et al.[11] both realise that augmentation of the physical trans-

lates differently when confined in a virtual environment. The first methodology con-

centrates on the visual representation and interpretation of possible 3D actions that

can be executed. ‘Safe navigation’ is an interesting theory in which a set of rules are

offered and sometimes applied to the user. For example, the user can be restricted to

a building environment with the use of collision detection. Research showed that best

results were produced when interface buttons were within the user’s visual focus and

easily accessible. Moreover, important or commonly used buttons could be defined

by their size, colour and transparency highlighting their importance. Knowing what

the user requires means the navigation can be customised to the specifications. For

example there are differences in navigation requirements, when viewing ‘object-in-

hand’ the navigation would be restricted to zooming and rotation around the objects

axis. On the other hand, ‘free’ navigation implies the user would be able to walk

around the scene, meaning motion would be the primary navigational motivation.

Readily available inexpensive hardware, such as a mouse and keyboard, are not al-

ways suitable for system that requires multiple or advanced input techniques in order

to achieve specific application requirements. Advanced hardware input devices, such

as touch screens and head tracking hardware, offer a multitude of input techniques

but are sometimes out of a projects budget. Zeleznik et al.[69] defined a multi-gesture

technique that only requires the input of a single button input device, giving obvious

advantages over other technologies. Traditional camera control systems use interfaces

that require interaction with multiple button hardware devices or via on-screen con-

trols mapped to particular control processes. Using gestures with ‘UniCam’, a single
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button is needed to manipulate all camera control, leaving other buttons for appli-

cation specific functions. The ‘UniCam’ enables the user to directly control camera

operations via basic gesture interactions (Figure 2.12). Camera navigation includes

translation, orbiting around a point of interest (scene in hand analogy), animating

focus on an object’s surface and zooming in on a region of the object. Screen space is

divided into sections, each defining specific functions. For example, the screen edge

constitutes rotation, when clicked on the user is able to rotate around the object.

Navigation starts by recording the original input device position and determining the

direction in which the user moves the cursor. Different directions trigger different ac-

tions, these actions include; vertical movements either zoom or translate horizontally,

horizontal movement enters the 2D film-plane translation mode. Zeleznik’s virtual

environment interaction techniques do not cover unique ground but rather present an

efficient method of interaction with previously developed concepts, more specifically

it enhances the ‘scene-in-hand’ control type.

Figure 2.12: This diagram shows the initial gesture control entry conditions, where
the start and end ‘clicks’ are evaluated in regards to their vectors, applying the
appropriate action (translate, zoom, strafing and rotating) when detected.
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Although well tailored towards single click input, more advanced input devices do

not necessarily interface as efficiently. Moreover, this gestural recognition was fur-

ther researched and substantiated by Mine et al.[41], who moved into the concept of

full body gestural input. This area is a mixture of computer science, sensory study

and kinaesthesia (the body’s awareness of locomotion and position of extremities in

space). Natural human instinct is to interact with object in a very physical manner;

often gaining knowledge of an object’s use by the objects physical constraints (e.g. a

bottle top can only be unscrewed along a single axis). Working within ‘arm’s reach’

provides clues towards the user’s proprioception (perception of limb orientation and

position), where framing user interaction and working within their working volume

gives real-world tactile information which can improve the user’s tactile experience,

thus decreasing task completion time [41]. Certain mandatory and common tasks

can become problematic when interfacing with a virtual environment purely by body

gestures. Mine’s research showed that certain user interface (UI) tasks, such as menu

interaction, have to be executed in a different manner. Menu elements are usually

required for general tasks but become lost when situated in world coordinates, es-

pecially when freedom of movement is given. On the other hand, elements that are

consistently present, rendered in screen space coordinates, obscure the scene behind.

It was found that enabling invocation to a ‘pull-down’ menu, with a fixed location sit-

uated just above the user’s field of view, access was simple and kept other extremities

to continue interaction with the scene behind. Widget control is also used to manip-

ulate objects within the virtual environment, such as scale, movement and rotation.

Research showed that the use of a physical widget tool over virtual widget represen-

tations situated on the selected object enabled a more tactile experience, fortifying

accuracy during manipulation tasks and improving task performance. Representa-

tion of virtual movement controls play a vital role in accuracy and understanding, as

shown by Chittaro et al.[12] and Fitzmaurice [19], who applied widget details to each
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bounding box selection, the first applying visual aids to the geometry such as trans-

parency, to visualise object placement. Both interaction and navigation are closely

tied together, if one is clearly defined, the other usually follows suit.

Figure 2.13: An example of three individuals
(blue, green and red) being tracked using a sin-
gle computer and information from four cam-
eras. Each individual is separated from the
background and represented in three dimen-
sions.

Human computer interaction (HCI)

spans a wide variety of areas, hard-

ware devices and techniques; fur-

thermore it is an integral aspect of

computer science as it dictates many

aspects of day-to-day and profes-

sional interaction. Such technologies

that encapsulate the ability to track

multiple users in a spectrum of sit-

uations offer themselves to installa-

tions such as virtual museum exhibi-

tions. For example, when consider-

ing a traditional museum exhibit the

aim is to provide as much informa-

tion, in the form of media, text etc.,

within a confined area and to the masses. It is clear this implies that visitors were

encouraged to enter and exit exhibits as they please, so information needed to be

presented in an upfront and captivating manor. Zabulis et al.[68] describe a system

that intuitively handles multiple users, presenting each with contextual information

based on their location, length of visit and native language. The visual tracking

system consists of eight cameras situated above the exhibition area connected to two

computers, information from all cameras is synchronised over both computers (Figure

2.13). Visual information is processed into a 3D matrix consisting of voxels, as the
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voxels become occupied their state becomes 1.

A voxel is considered occupied when all images return an approximately similar

result. Generating a voxelized reconstruction of the controlled environment aids in

tracking multiple targets, certain scenarios require close examination such as multi-

ple visitors entering the tracking area in close proximity and users standing near one

another. As information is distributed on an individual level, each visitor is tracked

as a unique blob, when a blob divides into two the secondary visitor becomes unique,

inheriting the language settings of its parent. Finally, as each visitor enters the exhi-

bition (through the appropriate language gate) they are presented with the artefact

at its original size, displayed via two short throw rear projectors. The display is seg-

mented into a 5 x 4 grid enabling 20 interaction slots, as the distance between visitor

and screen decreases information dynamically changes according to the time spent

in particular locations and the slot in which the visitor is standing. Furthermore,

results were positive, resulting in visitors becoming fascinated with the technology

used but eventually taking a deep interest in the exhibitions content. Moreover, the

advantage of a system only requiring commercial hardware is its expandability and

robustness, the number of computers required for efficient image processing is directly

proportionate to the number of cameras used and the number of cameras required

is determined by the estimated number of multiple users (3 cameras are adequate

for tracking 4 individuals). Although the discussed methods are robust for a large

amount of scenarios there are particular problems that cannot be addressed, such as

users rotating in close proximity and individual limb/head tracking which is advan-

tageous for a more detailed, immersive experience.
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2.3.2 Hand and Body Gestures

Restrictive interaction has been shown to be detrimental to task performance, Barrie

et al.[4] attempted to design a system in which virtual objects can be manipulated in

an augmented reality but results showed that the use of low powered wireless sensors

(Figure 2.14) and headset became cumbersome and impractical. The system was

restricted by the headset connections and also assumes that the user is fixed is space,

meaning only the top half of the body is used to capture.

Figure 2.14: The diagram shows node placement on the arm and forearm. Gestures
are tailored for virtual radio control giving generic controls over volume and stations.

With the advancement of depth devices such as the Microsoft Kinect and Pana-

sonic D-Imager the availability of these devices and the depth data has become easily

attainable. For such projects such as Barrie et al. have proposed, the possibility of
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increased accuracy and functionality would be vast. Frati and Prattichizzo [20] have

seen the potential of combining both traditional physical tracking technologies with

the Microsoft Kinect and proposed a technique which allows the user to control an

avatar, where items can be manipulated. To attain this, they use the depth infor-

mation from the Kinect to aid in haptic accuracy. This is accomplished by firstly

processing the depth data from 11bit to 8bit information. The closest object to the

device (which is assumed is a hand) is computed, then the bounding box calculated in

which OpenCV is used to establish the fingertips. Haptic hardware was then attached

to the user’s hand, providing tactile information of the interaction between the user’s

avatar and virtual objects (seen in Figure 2.15).

Figure 2.15: The diagram the Kinect based
haptic system where the Kinect is placed in
front of the user. The screen shows both the
tracking algorithm results (right) and virtual
environment and avatar (left).

A more contemporary and natu-

ral mode of interaction without the

requirements (physical hardware at-

tached to the user) of the previous

interactive techniques is proposed by

Boulos et al. [6] who describe the

use of multiple technologies to en-

able full control of 3D map software,

such as Google Maps, Bing Maps 3D

and NASA World Wind using only

gestures. The project is highly de-

pendent on specific SDK (software

development kit) environments from both Microsoft and other companies. The use of

OpenNI and FAAST Middleware enabled environmental exploration including nav-

igation, rotating, zooming, panning and tilting. Because of the dependencies found

in this project, adaptation to hardware that is not developed by Prime Sense was
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essentially impossible, limiting the software to a niche set of devices.

Moving towards hand segmentation, Matthew Tang [59] proposes a technique in

which the hand can be recognised using the Microsoft Kinect via skin estimation and

balancing, also using the Microsoft Kinect SDK. Using a combination of colour and

depth filtering (e.g. the low resolution depth data is used to segment skin colours

in both the foreground (hand) and background (neck)) accuracy was found from

experimentation between the two, meaning that lower light levels produced poor skin

tone results but could be rectified a certain degree with the depth information. The

centre of mass (essentially the centre of the hand) was calculated with Equation 2.3.1.

Where N is the number of pixels in the image, p(x, y) is the probability that the pixel

at (x, y) is part of the hand. Then the centre of mass (xc, yc) is simply calculated as

such:

xc =
1

N

∑
(x,y)

xp(x, y); yc =
1

N

∑
(x,y)

yp(x, y) (2.3.1)

Image data was then filtered by angle offset of the hands centre using Equation

2.3.2, producing information on the hand and converted into a histogram of 80 bins.

a(x, y) = tan−1(
x− xc
y − yc

) (2.3.2)

Finally, the result could be evaluated with SURF features. These features were

then used for gesture recognition, which identified sequences of poses (e.g. hand open,

hand closed would classify as a ‘grasp’. Vice versa would classify as a ‘dropping’

gesture). The hardware used for these projects is discussed in more detail in the next

Section, along with their commercial realisation.
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2.4 Commercial Environment

Deployment of full body tracking technologies in a commercial environment opens

new possibilities for human computer interaction, especially games development. It

is well known that the games development sector of computer graphics is one of the

largest facilitators of new input and graphical techniques. Furthermore, the casual

gaming market has aimed to provide completely wireless and interactive experiences

with affordable hardware. One of the first mass-produced commercially successful

wireless devices is the Nintendo Wii remote.

Figure 2.16: Cluster set numbers, where clusters are distributed evenly over each axis
in a circular formation. This aids in simplifying positional information. It was found
that (b) produced the best results as the user did not often move the Wii controller
directly behind themselves.

The controller is primarily used for Nintendo Wii game interaction but offers

development and experimentation in other areas outside of the gaming environment.

Motion and rotation can be detected by accelerometers in the Wiimote (Nintendo Wii

Controller) which can be translated into gestural input. Furthermore the Wiimote of-

fers spatial awareness, gathering information on the controller’s position, orientation

and movement in 3D space. Moreover, the system designed by Schlömer et al.[50]

first quantities the accelerometer data (which is provided as a vector) using a k-mean

algorithm. Two filters are used to simplify input data, an idle state and a directional

equivalence filter. A Hidden Markov Model is then used to aid in gesture recognition
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as it allows for variance in input, then a Bayes-classifier is used for the remaining

component. Information is quantified for readability via cluster sets, each cluster is

placed in circular form, consisting of eight cluster points distributed equally around

the circle (Figure 2.16). Points are orthogonal axis aligned and restricted over the

three axis, (X, Y and Z) creating a quantified sphere of detection nodes.

Microsoft Xbox Kinect (code name Project Natal), consists of a 8-bit VGA camera

and 11-bit 640x480 monochrome depth sensor for accurate facial and body recogni-

tion (Figure 2.17). Currently, hardware at this commercial level is only available from

Microsoft, the device offers formidable gesture and facial recognition with up to six

individuals tracked at once, two of which 48 individual joint positions are recognised

[28, 63]. Limor Fried (founder of Adafruit Industries) stated that the Kinect would

take “thousands of dollars, multiple Ph.D.s and dozens of months,” to develop and

“You can just buy this at any game store for $150” [65]. Capability of the device

also implies that it could be tailored for other purposes such as aiding in education,

helping rehabilitation or people with disabilities, and other commercial functions.

2.5 Interactive Rendering

There are many factors to consider when rendering historical 3D data and multime-

dia. Visual representations of existing or past historical data, such as architecture, is

an experience that transcends the visual interpretation and combines many external

factors which hold meaning when considering the structure’s social and environmen-

tal background. Maintaining these non tangible values is often difficult in a virtual

reconstruction. However, the more accurate the reconstruction the easier it is to con-

vey the structure’s narrative thus providing a deeper and more authentic impression.

On the other hand, it can be misleading to the viewer if the visual quality is aimed
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Figure 2.17: Depth information from the Kinect displayed in real-time [2]. The
subject includes a chair with a sleeping cat, surrounded by various objects. Each
pixel can be seen returning the correct depth information with the chair presented in
the foreground.

towards photorealism. Photorealism may give the viewer the impression that the

visualisation is exactly how the historical site looked at the time viewed [71].

It is considered that a frame rate of 60 (Hz or frames per second) can justifiably

be called interactive. Values below start to become apparent to the viewer, on the

other hand anything above is wasted due to our inability to process visual informa-

tion at higher rates [14]. Virtual historical reconstructions depend heavily on the

validity and accuracy of the historical data. There are various methods of data col-

lection, especially when considering 3D data, which offer real-world accuracy in terms

of geometric detail. However, some methods offer highly detailed results that are ap-

plicable for offline rendering but unsuitable to be used in a real-time environment.

Specialised techniques have been developed especially for architectural documenta-

tion purposes such as laser scanning (for the exterior and interiors of architecture)
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and LIDAR (Light Detection And Ranging) which is used to construct geological in-

formation over large areas. Furthermore, the information produced by laser scanning

technologies is extremely high resolution, resulting in extremely detailed 3D models.

Both Ashley et al.[48] and Stumpfel et al.[56] reconstruct degraded historical sites in

3D form, such as the Parthenon, Greece, with laser technology. Importantly, they

both recognise the potential in 3D documentation as the reconstruction of segments

could be reformed to create a complete understanding of the original structures.

Diagram 2.18 is an example of laser scanned geometry from The Odeion of Gortyna

[48]. A novel method of constructing archaeological sites is discussed by Guidi et

al.[25] who demonstrated how multiple technologies such as radar sensors, TOF laser

scanning, triangulation range cameras and close range photogrammerty) can be amal-

gamated to aid in the reconstruction process. His findings showed that the combina-

tion yielded efficient results, providing more complex geometry in areas of interest,

such as statues and relief modelling, and simple geometry for larger structures such

as walls, columns and arches. On the other hand, 3D data can be created via more

conventional means such as hand modelling (CAD), using architectural blue-prints,

images and other tangible resources, as shown by Sundstedt et al [57]. Furthermore

this technique lends itself to real-time rendering as conventional modelling methods

give control over the complexity and consistency of the 3D data.

An important area in historical visualisation is what should be displayed and

when. This applies in two respects, firstly it is common that the acquisition of data

is undertaken after important structural elements have been removed, are missing

or have been destroyed thus data needs to be manually constructed. Secondly, if a

visualisation application is to accommodate large numbers of 3D data, measures need

to be taken to accomplish interactive rates, which is discussed in Section 2.6.
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Figure 2.18: A partial 3D reconstruction of The Odeion of Gortyna using laser scan-
ning technologies.

Temporal and structural uncertainty is a prominent problem in historical data.

Time is notoriously difficult to handle when visualising structures as their integrity

and construction may have changed radically without record or clear reason in times

such as war. Handling time based data sets is important due to the user only being

able to view the architecture/object from a single point in time. These data sets

can be overlapping, where uncertain structural additions are present in a particular

time period. Thus enabled the user to decide the time period viewed and for content

to be changed dynamically. Uncertainty also contributes to the way in which data

sets are rendered; ncertain or incomplete data sets such as structural data can be

shown to be uncertain using visual cues. Methods to display uncertainty have been

researched by Sundstedt et al.[71] who experimented with rendering particular parts

of the geometry with different degrees of transparency according to the certainty of

an artefact. For example if an artefact had a certainty probability of 0.2% the items

transparency could be rendered with this figure. Furthermore, other visual cues such

as blurring, depth of field, pseudo colours, contour lines, blinking materials, wireframe
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and sketch like qualities can be used as visual indications. Geometrical techniques

can be employed such as rising and sinking, representing the building’s construction

and demolition according to the time period visualised.

2.6 Efficiency

Efficiency in interactive real-time systems is of up most importance when consider-

ing frame rates and user interaction. In a virtual environment the complexity of the

scene directly relates to visual performance. Furthermore when rendering hundreds

even thousands of buildings for a cityscape, equally processing billions of triangles in

an intricately constructed and highly detailed model, forethought must be placed in

techniques that aim towards discarding geometry from the rendering pipeline when

required. There are many techniques that are applicable for historical visualisation

systems which accomplish both occlusion and culling. Sections 2.6.1 describe some

of these techniques and their validity.

2.6.1 Visibility Culling Techniques

There are particular aims that occlusion and culling techniques try to satisfy, but

all attempt to shorten render time and increase efficiency. To briefly summarise, the

fundamentals are to exclude any primitives from the render pipeline if a visibility

check returns false. In the context of view frustum culling, if any item is outside of

the frustum bounding box it is considered not to be visible to the viewer.

Occlusion Culling

Peter Wonka et al. [64] concentrate on visibility pre-processing, in detail they have

produced a visual culling method which offers real practical application in the context

of large, open scenes. In essence they aim to solve situations in which large areas of
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occlusion can be culled due to overlapping, or occluder fusion (the occlusion that

occurs from the summation of occluding objects). Peter Wonka et al. noticed that

the inaccuracies that occur with occluder fusion could be remedied with the use of

pre-processed sampled areas and the process of ’shrinking’ occluding objects to en-

able sampling visibility from the interior of the sampled area, in which the graphics

hardware plays a large role.

Efficiency is gained by using previously developed technologies that are in essence

purposed for different results. Speed is gained by using the graphics hardware ca-

pabilities, shadow mapping is a common computational task that is aimed towards

generating areas of shadow in real-time (discussed in section 2.7.1), the technicalities

behind generating such shadows involve the z-buffer. Furthermore the technique is

making use of data that is already present during the rendering phase of computation.

A two-pass technique is used to successfully cull objects.

To generate the sample point, the orthographic projection of the scene is rendered

into the z-buffer which creates the cull map. The visibility for each cell can then be

determined by comparing the z-value in the cull map to the z-value of the bounding

boxes of each object in the scene grid at that cell.

The general idea behind occlusion culling in urban areas is to reduce the number of

items that are rendered before the rasterization phase. Laura Downs et al. [16] took

a similar approach to [64], but rather than generating cell occlusion maps, occlusion

is accomplished by generating an occlusion horizon in which object could be removed

from rendering. The technique is based on a projected horizontal view and assumes

that most occluding objects can be described by a height field. The cull horizon is
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generated by traversing a plane from eye to the horizon extent (front-to-back). Ob-

jects that are not obscured are added to the rasterization list, then to the occlusion

horizon, offering an extremely fast method of quickly creating occluder fusion and

removing all objects occluded from the user’s perspective.

Although efficient, there are requirements that stated each object to be considered

for occlusion was evaluated by its CVP (convex vertical prism), meaning another

step was required if these were not explicitly provided. Furthermore, a very present

limitation to this technique is the inability for vertical accent. The algorithm is defined

within the natural limitation of a human, for example an urban drive through.

2.7 Scene Realism

Realism is relative to the scope of the project and the individual’s interpretation of vi-

sual information. The stage at which the realism of a virtual environment is decided is

at design, this decision greatly affects the methods used to construct, gather and ren-

der 3D information. As previously discussed, added realism often means complicated

arbitrary geometry which in terms of real-time performance is more computationally

expensive, as discovered by Todt et al.[60] who generated models specifically for static

offline rendering, similar to static transitional techniques described in Section 2.1.2,

which were too complex for a real-time environment.

Furthermore, a scene is considered to be aimed towards realism when visual rep-

resentations of artefacts, architecture and environments contain real world elements.

There are various integral visual cues that can make a scene more realistic, correct

lighting and shadows give indications towards a more authentic representation. These

techniques are discussed in the next section.
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2.7.1 Shadows

The realism of a scene can be greatly increased by the addition of shadows. As

shadows are present where light is, modelling a realistic scene without them can pro-

duce flat images. Furthermore, shadows can aid in spatial awareness as they produce

another layer of detail, giving the viewer information on distances between objects,

for example a bouncing ball in relation to the ground and the lighting source. The

most typical method of generating shadows in real-time is using shadow maps as they

are more suited to hardware processing. A major advantage of shadow mapping is

that it places the bulk of the rendering process into techniques that are firmly set in

graphics hardware architecture, texture mapping and depth buffering. Shadow maps

are adequately suited for real-time applications due to no extra geometry calculations.

It is generally considered that shadow map techniques are accepted as one of the

most efficient and robust means in which to produce shadows in a real-time environ-

ment. This is partially because shadow map techniques are directly supported by most

graphics hardware (created via depth buffering and texture mapping). Furthermore

advanced shadowing techniques can be produced on devices that are not necessarily

at the fore-front of their area. The general implementation of shadow mapping is as

follows; pz ≤ shadowmap (px, py). Where p defines a point in the light’s image space.

Then the texture is mapped to the scene according to the viewpoint image plane.

pr
pq
≤ texture2D

(
ps
pq
,
pt
pq

)
(2.7.1)

The advantage of shadow and depth maps is that it is faster to calculate and

process data from multiple light sources. This involved multiple passes, these differ-

ent passes are described in detail by [51]. Segal et al. describe three passes, hidden

surface removal, shadow testing and final rendering. Thus for multiple lights, mul-

tiple passes are required, unless differed shading is implemented. Furthermore, the
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performance of shadow mapping does not depend on the geometry in the scene and

its complexity, meaning highly detailed models do not hinder the shadow process [39].

Aliasing problems are introduced when creating shadows with shadow maps. ASM

(Adaptive Shadow Maps) developed by Fernando et al.[18] aim to rectify aliasing is-

sues by adaptive subdivision, hierarchically categorising shadow map segments in

accordance to the detail needed, computed from a set of viewer perspectives. Fur-

thermore the technique is view dependent, providing possibilities for both internal

and external lighting conditions such as landscapes and cityscapes. This research

shows that ASMs are versatile, conforming to the amount of memory assigned and

producing crisper un-aliased shadows. Figure 2.19 shows the comparison between

conventional shadow maps (left) at 2,046 x 2,046 against Adaptive Shadow Maps

(right), effectively at 65,536 x 65,536, both using 18mb of system memory.

Figure 2.19: A comparison between conventional shadow maps at 2,046 x
2,046 (right), and Adaptive Shadow Maps at 65,536 x 65,536 (right). Clear
aliasing issues are present on the left, where ASMs sacrifice a small amount
of performance to aid aliasing issues.

Although Fernando et al.[18] have created high quality perspective dependant
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driven shadow maps the final result showed ASMs to be more computationally expen-

sive which is unsatisfactory when considering real-time performance requirements. A

similar, more efficient parametrization of shadow maps was proposed by Stamminger

and Drettakis [53]. Aliasing occurs when the user’s viewpoint is zoomed and the

shadow map boundary is visible at texture pixel level. The size of the pixels on the

occluders surface are at:

d = ds
rs
ri

cosβ

cosα
(2.7.2)

Aliasing occurs when the dsrs/ri becomes too large. Perspective shadow maps trans-

form scene and light information into post-perspective space using the camera matrix

which is then used to generate the shadow map. Moreover, point lights are generally

inverted, creating an orthogonal view and enabling aliasing issues to occur in the

distance where fewer pixels are present and detail is not needed.

Figure 2.20: A comparison between ASM and RMSM shadow maps. Each square of
the blue grid represents 32x32 texels, finer areas are present closer to the viewpoint
coordinates resulting in more accurate shadows where needed.
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Dynamic scenes are commonplace in computer graphics. Although ASM’s im-

prove on traditional shadow maps they cannot handle interactive rates when process-

ing moving objects due to the expensive means in which edge-detection is calculated.

Lefohn et al.[33] introduced RMSMs (Resolution Matched Shadow Maps) which im-

proved directly upon ASM’s by generating all shadow information in a single step

rather than iterating through each page request. Furthermore, the majority of the

processing is carried out on the GPU which is optimised for tasks such as geometry

and shadow calculations. The algorithm consists of three major steps, firstly all ge-

ometry is rendered including shadow information (s, t, z1), shadow map coordinates

and depth information, respectively. Depth information is then transformed into light

space. Secondly, a set of shadow pages is created using sort, scan and gather, remov-

ing all non-unique elements for compaction. Finally, the quadtree of shadow maps is

generated by rendering both quadtree page tables and memory textures. This is then

used to lookup shadow information, gathering the highest resolution page that is of

equal or higher quality than the request page. Thus, this technique can be used for

static scenes such as architecture by recycling previously rendered quadtree informa-

tion but at a cost of using more physical memory. Figure 2.20 shows both ASM (left)

and RMSM (right) shadow mapping.

The addition of shadows aids in the understanding of the scene, especially when

a virtual environment consists of many individual items. It provides depth, offer-

ing extra positional information which ultimately aids with scene realism and spatial

awareness. In the next Chapter, image processing is discussed, describing the tech-

niques used throughout the project including the experimentation and outcomes.
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Image Processing

This Chapter covers the implementation of all technical aspects of the project in-

cluding image processing algorithms such as hand recognition, hand tracking, gesture

recognition and error handling. Also, particular decisions are discussed that were

made during implementation in favour of successful results. Later, model handling,

real-time rendering and the rendering pipeline are discussed.

When implementing image processing in conjunction with real-time rendering

techniques, performance and efficiency are a high priority. Image processing and

real-time rendering can be computationally intensive especially in situations where

both are required simultaneously, which is becoming a common occurrence in areas

such as contemporary computer games, an example being those that use the Microsoft

Kinect, such as Kinect Sports [40].

During implementation all aspects of the project evolved according to constant

user feedback. As expected, the largest changes were seen in context of all image

processing techniques, usually resulting in more robust and efficient algorithms. It

was also obvious that there were many methods of accomplishing the same result,

which were investigated before implementation. Furthermore, it was also found that

there were the possibilities of improvement in many areas; this was due to the field of

48
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image, depth and body tracking consistently evolving under both the academic and

public spotlight.

Firgure 3.1 shows the image data flow, including high level processing such as

depth thresholding and gesture and finger analysis.

3.1 Hardware Analysis

In this instance two devices were available that provided 3D depth information, the

Panasonic D-Imager and the Microsoft Kinect. As efficiency is important, reproduc-

ing code for each output device was impractical, so acquiring and working with raw

data from the two devices involved studying their image output specifications at a

low level, thus enabling an understanding of each devices output data structure.

As both devices varied in image depth size, the code was written to handle different

input data types but was also efficient in recycling as many algorithms and as much

code as possible. Advantages were gained from adaptive code for both devices as

results were consistent, furthermore pointing towards expandability to other devices.

Panasonic D-Imager Microsoft Kinect
Image Size (W x H) 160 x 120 640 x 480
Range (meters) 1.2m - 9m approx. 1.2m - 3.5m approx.
Horizontal Field of View 60◦ 57◦

Vertical Field of View 44◦ 43◦

Framerate (Hz) 30 30
VGA Output Type 8-bit grey scale 8-bit colour
Depth Output Type 11-bit 16-bit
Depth Technology Infrared Laser

Table 3.1: Panasonic D-Image and Microsoft Kinect hardware comparison table.
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Figure 3.1: This Figure provides a high level overview of how the image processing
is initialised and processed, showing the data flow from either device and the object
tracking, finger and gesture analysis.
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Both devices aim to provide image data that is purposed for use in varying sit-

uations and both use different technologies. The D-Imager acquires depth by mea-

suring the time between emission (via infra-red LEDs) and reception (infra-red lens),

also known as the time-of-flight (TOF). This time is then analysed, representing the

distance between camera and subject. The technology lends itself to real-time ap-

plications as the entire scene is processed at once. However, there are major issues

involving the device’s LED signal strength and false positives. For example, artificial

illumination emits relatively low levels of infra-red light compared to natural light,

which contains far more (approximately 1 watt and 50 watts per square meter, respec-

tively); therefore is easily interfered, disrupting depth values and returning incorrect

readings.

Microsoft opts to use a different method of spatial analysis. By design the Kinect

uses an infra-red laser projector, a technology that provides robust readings and over-

all superior result over the D-Imager. The ‘Time coding’ technique makes use of the

projected pseudo-random infrared spots by using two depth images, one infra-red

view of the target spots and the other is the hard coded virtual pattern projected

into the environment. Furthermore, the physical distance between laser projector and

infra-red CMOS sensor differ, so each image (real and virtual) are specially engineered

to be offset; with this information stereo triangulation is used to calculate each depth

point according to the disparity in the images.

This technique offers clear advantages. Importantly it is not susceptible to envi-

ronmental effects such as natural infra-red sources due to the laser projector produc-

ing a high intensity dot field which yields clear points of interest. On the other hand

there are potential issues with pseudo random points; information is attained from a

pre-defined number of infra-red laser points rather than infra-red waves as an entire
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image, theoretically meaning fine data could be lost as image data at a pixel level is

created with depth smoothing (the interpreted values between each point).

Initial examination of the technical specifications showed that there was a large

discrepancy in image resolution and output format. Three conclusions were made

from these observations; firstly the Kinect provides a larger image to work with, thus

offering more detail at greater distances. Secondly, the D-Imager only provides an

8-bit grey scale image, eliminating the possibility of colour processing techniques. Fi-

nally both RGB and depth data is structured differently where the D-Imager produces

11-bits and the Kinect produces 16-bits, therefore when working with data streams

of different bit values processing must conform to both.

3.1.1 Image Acquisition

The first phase of developing an image processing library that was not tied to specific

hardware was creating a basic foundation on which any device could be used. This

involved experimentation with different capturing methods. As the Kinect was not

officially supported for software development in a Windows environment at the time,

exploration into third party libraries was required. On the other hand, the D-Imager

was supplied with a simple means in which to access raw image and depth information

thus requiring no other intermediary platform. Project requirements meant access to

raw information from both cameras was vital, therefore a third-party library was re-

quired to ascertain flexibility with the Kinect.

After researching potential libraries two were chosen for testing, OpenNI and
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OpenKinect, the latter being open source. Firstly, OpenNI was founded by the de-

signer of the Microsoft Kinect PrimeSense. Core functionality is based on the com-

bination of individual nodes, each node offering access to the cameras data streams

(colour camera, depth information and sound). After experimentation it was found

that even though more advanced techniques are included such as tracking and full

skeletal recognition, only PrimeSense devices were usable. In conclusion, functional-

ity was varied but flexibility was minimal meaning separate algorithms would have

had to be devised for both devices, thus being impractical.

Figure 3.2: Tests were carried out on different material types approximately one meter
in distance to analyse how both devices reacted. This diagram shows both RGB (A)
and depth images (B) from the Panasonic D-Imager. Various materials are present
including plastic, glass, ceramics and leather (from left to right).

Secondly, OpenKinect is an open source library that provides basic interaction

with the Kinect. The core functionality is restricted to accessing data streams, but

it enables access to the raw data values which was essential, therefore making it the

better option. Below are the initial images taken from both devices. This was a
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Figure 3.3: This diagram shows both RGB (A) and depth images (B) from the
Microsoft Kinect. Like the previous diagram, various materials are present including
plastic, glass, ceramics and leather (from left to right).

preliminary test to analyse image quality and to become familiar with the limitations

of both.

The screenshots in Figure 3.2 and 3.3 show both RGB (image set A) and depth

images (image set B) from both devices; the depth information has been processed

into a colour image (16bit to 8bit conversion). At first, an RGB scale conversion was

used to standardise image data over both devices. Both devices were tested under

the same conditions with the intention of highlighting each device’s limitations with

different materials (plastic, metal, glass, porcelain and leather). It is clear that cloth

(right) do not pose a problem to either device. Depth values returned were mostly

consistent, even minor details such as fabric folds are detected.
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Figure 3.4: Example of depth clarity,
where the colour gradients represent
distance.

The examples in Figure 3.4 shows the

clarity of depth images from both devices,

where the colour grading is based on dis-

tance from closest to farthest (red, yel-

low, green and blue). The scene con-

sists of three chairs, each approximately

1, 2 and 3 meters from the devices

(1, 2 and 3 seen in B and D). Finer

details that are present in the Kinect

depth representation cannot be seen in

the D-Imager, such as the shelf found

on the back wall. It was also clear

that negative values, or values that do

not and should not hold any bearing on

the final depth image are negated com-

pletely by the Kinect, where as the D-

Imager still interprets these values as valid

distances, these errors can be seen in

3.5.

On the other hand, major discrepancies be-

came apparent between the two technologies

when placing reflective and metallic objects in

front of both devices. As previously discussed, each technology uses infra-red but in

very different ways; reflective objects such as windows, watches, chrome and porcelain

are often found in environments in which devices like these are used, therefore it is

paramount that signal quality is not material dependant. Material surface becomes
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an issue with the Panasonic D-Imager, as glass is both reflective and transparent.

Issues occur due to information being reflected and passing through, this is then in-

correctly interpreted by the D-Imager which produces random depth values. This

becomes even more apparent when the device is situated in a open naturally lit area,

Figure 3.5 shows the random values being produced (the multi-coloured scattering)

which greatly hinders the consistency of the depth information, almost rendering it

unusable without heavy error handling.

Figure 3.5: An example of the Panasonic D-Imager situated in a large structure
mostly constructed with glass and metal. Results are greatly affected by sunlight and
reflections from multiple surfaces.

3.1.2 Data Handling

As previously stated, the initial stages of implementation showed that a generic inter-

face was required to interact with both cameras. This intermediary platform consisted

of an accessor class based around the device context. Both device contexts were con-

structed in a similar manner, consisting of standard output calls that in turn filled

locally stored variables with new data, if data was available. For efficiency a pointer

was returned, enabling the option of direct access or data duplication (which was
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more common) for image analysis. Data from each device was supplied with the

same number of bits but a different range; both devices supplied a 16 bit stream.

Eeach device produced different maximum depth values, the D-Imager ranging be-

tween 0 to 1500 and the Kinect between 0 and 2048. Retrieving and storing these

data values required a storage type which was an array of unsigned short which holds

values between 0 and 65,535.

Image processing is a large area in computer science and has been developed by

numerous companies such as Intel, Microsoft and Apple. More specifically, Intel has

developed a fully functional open source image processing library in collaboration

with WillowGarage named OpenCV. In the context of depth processing, OpenCV

does not offer any direct functionality for use with device’s such as Kinect, rather it

offers general functionality that can aid in processing.

OpenCV was chosen due to its more flexible nature. For example, placing data

into OpenCV matrix container’s (Mat) did not require anything more than ensuring

the containers data pointer was assigned to the devices data values. This technique

meant data allocation into each RGB matrix container was extremely fast, but on the

other hand it did not work with 16-bit depth values as more processing was required.

Thus all function computations had access to both raw data and OpenCV matrix

conversions, opening major processing functionality to all image data gathered.

3.1.3 Program Cycle

For clarity the system cycle passes through two states, session in and out. While

implementing functionality for both hand searching and tracking it became clear that

state-based code segmentation would aid in application definition. The following
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algorithm is a high level overview of image processing from start to finish.
Program cycle

1: if New data available then
2: Update local variables with new image data.
3: Perform depth thresholding.
4: Convert processed depth map into grey scale image (16bit to 8bit).
5: if Currently Not Tracking then
6: Perform hand search on processed depth map image.
7: if Hand found then
8: Assign hand rectangle size and position.
9: Change current session to tracking.
10: end if
11: else if Currently Tracking then
12: Ensure bounding rectangle is inside the depth map image size.
13: Perform error checking.
14: if Errors found then
15: Accumulate error time.
16: if Error Time ≥ Error Threshold then
17: Clear memory.
18: Change current session to idle.
19: end if
20: else
21: Perform mean-shift on found object.
22: Perform gesture recognition using depth map.
23: Perform click recognition.
24: if Click type = Grasp Select then
25: if Click = Left Click then
26: Simulate Left Click.
27: end if
28: else if Click Type = Hover Select then
29: if Button hover detected then
30: Accumulate hover time.
31: if Hover Time ≥ Hover Threshold then
32: Reset variables.
33: Simulate Left Click.
34: end if
35: end if
36: end if
37: end if
38: end if
39: end if

This logic proved inexpensive to process and furthermore it enabled a quick-in,
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quick-out approach, meaning individuals could interact with the system for a short

period without the need of image and hand re-calibrations for the next user. They

could also deliberately remove themselves from tracking by dropping the hand in

use. This was deemed advantageous while watching media as direct interaction is not

required.



60

3.2 Depth Image Processing

The following section covers all areas involved with image processing, including the

libraries and techniques used to create an easily modifiable image processing founda-

tion and then continues to explain core algorithms, aimed towards a convenient and

expandable image processing library.

Sections are ordered in chronological order; the image processing pipeline has a

natural sequence from start to finish which are defined by prerequisites. These in-

clude depth and adaptive thresholding, image accumulation, object recognition, hand

analysis and hand tracking. To successfully track an object such as a hand, the image

first needs to be filtered, removing any unwanted background artefacts. Accepting an

object of certain dimensions involved evaluating its temporal size, if it meets certain

criteria it is then tracked. When a hand is found it can then be further evaluated in

regards to individual fingers for gesture recognition.

3.2.1 Depth Thresholding

Thresholding is a technique that filters a set of data, often discarding values above

or below a given threshold and converting an image into binary format. A maximum

threshold will return all values that are below the value provided where as a minimum

threshold will return all values greater than the provided value. Multiple thresholding

involved mixing both the maximum and minimum methods e.g. only returning values

that fall between the minimum and maximum.

Early research showed that colour space was not available, this meant that back-

ground removal, which relied heavily on colour, could not be used. Therefore an



61

inexpensive alternative was produced. The same principle can be applied to depth

information; thresholding depth data produces consistent results, creating data that

is easy to work with.

Figure 3.6: In this example situation six objects (spheres) are in front of the camera
and within the device’s field of view. Each object is at a different distance from
the camera, 2 and 5 being the closest and furthest away, respectively. Distance is
represented as colour, through red to green.

In Figure 3.6, a to f represent distances between the camera and objects, 1 to 6.

Each dotted line defines the distance between the device and the closest part of the

object. This differs according to each device and its distance from the object. In this

case, if depth thresholding was performed on an arbitrary static range (e.g. between

1 and 2 meters) a slice of the environment would be produced, revealing sphere 2

and 3 in full and a small portion of sphere 1. Governing the distance in which pixels
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are accepted enables fine control over image segmentation, providing consistent data

for further processing. Furthermore computational complexity is very low meaning a

large amount of processing time is saved for more complicated tasks.

Although efficient, there were disadvantages that hindered functionality when con-

sidering a context in which many objects fight to be the closest to the device. In a

busy scene, the closest object to the device is segmented, working on a first come

first served basis, but as to what and where the object is located is not known at this

time, thus more information was needed to successfully attain and track the object.

3.2.2 Adaptive Thresholding

As previously explained attaining a statically defined image segment based on depth

values was relatively trivial but did not offer much expandable functionality. There-

fore an adaptive (or dynamic) threshold was considered to improve depth segmenta-

tion.

During experimentation it became clear that unintentional movement away and

toward the device was commonplace. In terms of depth analysis, certain issues arose;

hand tracking initialisation (explained in Section 3.3.2) was engineered to provide ap-

propriate upper and lower thresholds but did not update in accordance to the user’s

position. Thus turning away (rotating) and returning or stepping backwards and

forwards etc. created special conditions that often invalidated the initial threshold

values. The following algorithm aids in consistent tracking.

Depth tracking algorithm

1: for i = 0 to History − 1 do
2: DepthHistory[History-i-1] = DepthHistory[History-(i+1)-i]
3: if DepthHistory[i] > 0 and DepthHistory[i+1] > 0 then
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4: Deviation ← DepthHistory[i] = DepthHistory[i+1]
5: end if
6: end for

The algorithm passes values from the front to the back of an array, keeping a

history of previous depth values. The average depth deviation is used later for further

examination, it is calculated at this point in the processing pipeline to save CPU time;

D =
h−1∑
i=0

mvi −mvi−1 (3.2.1)

Where (h) defines the number of values and (mv) hold the minimum distance

values which are constantly updated each processing loop. The resulting signed (+/−)

value (D) indicates the objects movement and relative speed (measured in arbitrary

units) towards or away from the camera.

3.2.3 Image Accumulation

The byproducts of thresholding as described in Sections 3.2.1 and 3.2.2 are a lack

of spatial awareness and the tendency to analyse objects that are not necessarily

of interest. Therefore, this issue was remedied using depth accumulation at a pixel

level. The aim was to ignore parts of the environment that were static, or near static.

Therefore, all objects that were analysed and found to be the closest to the device

were stored in image format for later access if certain conditions were met (such as

their physical presence over time). Positional information of objects was essential for

assessing image data; this was stored via binary images which could be analysed as a

whole to determine if pixels were static over a period of time.

Figure 3.7 shows how depth accumulation works at different distance segmenta-

tions (Depth Slice) to produce the binary image, which are then analysed for static

object’s (Binary Accumulation). In this example only four depth slices have been
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Figure 3.7: In this example situation two objects (spheres) are in front of the camera
and within the device’s field of view. Each object is at a different distance from the
camera, slices a to d are represented by their depth slice, the binary accumulation
shows areas in which objects are fixed and recorded over time.
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taken for consideration. Furthermore, static object recognition is time dependant;

the longer an item is stationary the greater the chance it is added to the binary ac-

cumulation image. A pixel satisfies conditions and is added to the binary static map

when each pixel in all history images are present and aligned.

Slices a to d mark the progressions in the minimum depth associated with each

image processing loop, as object’s are recognised as static their associated binary

map pixels mark locations in which to ignore. When new image data is available

(e.g. stored binary accumulation information is accessed) the depth values which are

ignored do not flag as the closest object in the scene, enabling scene evaluation to

move on to the next closest object or in this example, the smaller sphere.

DE(x, y) =

{
1, if

∑Drows

i=0

∑Dcols

j=0

∑H
k=0H(i, j)k = 255

0, otherwise
(3.2.2)

Where each binary image (H) is evaluated (x,y) for either a positive or negative

value (positive being black (0) and negative being white (255)). The resulting evalu-

ated binary image contains pixels that represent static areas; these pixels have been

determined by positive pixels in each depth history image.

The aim of post processing depth information is to attain a clear picture of the

object(s) of interest. When this phase is completed the resulting information can be

further analysed for particular hand and finger positions. To accomplish this, object

recognition is used to recognise and track specific areas which is explained in detail

in the next section.
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Figure 3.8: As a result of depth slicing the closest object in this scene is initially
considered for tracking. The highlighted area to the right depicts the segmented
area.

3.3 Object Recognition

Object recognition is an extremely important phase in successfully finding and track-

ing a hand. Common image recognition techniques can be computationally expen-

sive and sometimes inaccurate; some examples include feature and template-based

matching. The basic premise to template matching is acquiring a convolution mask

(template) that best resembles the object(s) to be located; it is usually performed

on pre-processed images where thresholding or edge detection has taken place. The

result is found from the sum of the coefficients, but is an intensive task as it requires

a convolution kernel to process each pixel. When completed the positions of the best

fit values are retained.

Alternate techniques become a possibility due to the extra depth information;

certain issues are circumvented such as complicated backdrops interfering in detection

(in reference to the Kinect only), reducing the need for complete feature recognition

over an entire image (found in template matching). Depth information can also
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be treated as a grey scale map, depending on how the data is handled this can

become advantageous, combining the possibilities found with depth information and

traditional image processing techniques.

3.3.1 Techniques for Hand Recognition

During implementation many iterations of hand recognition were attempted. At-

tempts aided in refining a technique that was contextually appropriate, producing

the most concise results while not being overly intensive. Initial attempts included

frame differencing and depth analysis, both of which used bounding box analysis but

analysed image data differently. Initial attempts were aimed to easily activate track-

ing, creating a means in which to identify the user’s controlling hand.

Firstly frame differencing was tested, results seen in Figure 3.9) and show the dis-

crepancies between temporal images. As video data is streaming, immediate changes

between frames were calculated with framen ∧ framen−1. When discrepancies were

prominent enough to analyse, due to a wave, the bounding box was accepted for

tracking (bounding box analysis is explained in the next section). Frame differencing

supplied regularly consistent results but was greatly affected by a variety of common

situations, such as lighting changes, environmental irregularities and the distance be-

tween camera and user (it is more difficult to analyse frame discrepancies (such as a

wave) when the user is at a greater distance).

Secondly, depth analysis was a progression towards intuitive tracking initialisation

as issues became prevalent with image differentiation; the nature of frame differenc-

ing required persistent movement over a short amount of time (e.g. a wave), this in

turn presented an object that could be tracked. A consequence of motion detection



68

Figure 3.9: To the left the raw depth image (grey scale), to the right is the frame
differencing result of a wave, seen as a pink highlight.

is inaccuracy of the original object shape, therefore while an object may be found its

defined bounding box tended to inaccurately describe the underlying object, which

caused issues further down the processing pipeline.

The next approach tested took advantage of the discrepancies in temporal depth

images. The idea behind this type of depth analysis was treating the provided depth

information as a rectangular pressure pad, calculating a synthesised depth evaluation

map based on depth values over time. Therefore actions such as a press (in this

context a press means a sudden change in depth usually towards the device) could

be seen and used for tracking initialisation, thus eliminating underlying issues such

as inaccuracies in positional information described previously.

Through testing it was found that initialising system tracking via blanket depth

analysis required a significant change in depth over all. Furthermore, a balance was

needed between the physical movement required to enable tracking and ease of use;

this balance could not be equal due to the unpredictability of the environment. For

example, objects rapidly moving towards the camera could be falsely interpreted, be-

cause of this accepted depth values had to be relatively high creating situations that
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were difficult to analyse.

3.3.2 Object Recognition via Bounding Box Analysis

At this point in the processing pipeline the depth image had been filtered to best seg-

ment the hand in focus, or in this case the closest object. Therefore a large segment

in the recognition pipeline has been fulfilled; creating meaning from the filtered data

was the last step in recognising a potential hand. A few viable methods were available

to accomplish this; one of which was previously mentioned, template matching could

have been applied to the resulting depth slice but due to the clear results that depth

slicing produced it was deemed unnecessary. An alternative technique was developed

that took advantage of the pre-processing that had already taken place.

Gaining more information on sliced object’s is accomplished with a combination

of locating image contours and bounding box techniques. The next stage of bounding

box analysis is finding the object’s contours using an OpenCV implementation of S.

Suzuki border following algorithm [58]. As a result the bounding box can be calcu-

lated, producing the tightest possible vertically aligned object area (bounding box)

and its coordinates relative to the overall image.

Initial attempts at hand tracking resulted in using the bounding box information

directly, tracking the closest object that satisfied a specified area defined by a pro-

portion of the entire depth image. This was the most rudimentary method in which

to track the object of interest but contained many disadvantages. For example, con-

sistent depth thresholding coupled with definition of the object’s minimal area would

provide a size and position, but experiments showed that translation was imprecise
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and tracking would occur on unwanted object’s. Thus there was a need for con-

trol over how, what and when an object was tracked. A few techniques were added

between initial object recognition and object tracking to reduce error.

Figure 3.10: This figure depicts the acceptance of an object for tracking. To the left,
the minimal bounding box is attained which in turn is saved in the sample history.
After n samples, the history is evaluated in context of the bounding box sizes. If the
object is consistently available (as the user presents their hand) and is within the
dynamic ‘accepted’ parameters, the object if followed.

To the left in Figure 3.10 the initial depth slice has been processed and the ob-

ject’s minimal bounding box found. Boundary analysis is performed with the intent

of discarding object’s that do not fall in between specified parameters (minimum and

maximum external (Ew, Eh) and internal (Iw, Ih) boundary). These parameters

were based on assumptions gathered from observation; a typical hand can range sig-

nificantly in size and shape, also its orientation is (normally) naturally upright if the

subject is asked to hold their palm outward. These limitations aided in determining

how data was treated in that the minimum bounding box of a hand would be rect-

angular. This resulted in increased consistency over what was tracked. To further

increase robustness of recognition, an object’s bounding box was stored so its history

could be considered over time (to the right in Figure 3.10).
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The summed difference is divided by the total number of stored bounding boxes

and evaluated in terms of average deviation in size and position, thus creating a means

in which to check for an object’s movement and size over time. Motivations behind

periodic bounding box analysis were to enable position relative input (explained in

Section 3.3.4). Therefore, the user was able to present their main hand for tracking in

a natural and comfy position opposed to instantaneous tracking which caused issues,

catching the user unaware.

3.3.3 Hand Tracking

There were two tracking techniques that held preference, both having advantages and

disadvantages over one another. The first was using pre-existing data as the founda-

tion for positional tracking information. Data accumulated at this phase in the pro-

cessing pipeline consisted of the object’s position relative to the original depth/RGB

image and the minimal bounding box. Hypothetically, this information was adequate

for rudimentary object tracking as it is consistently updated every new frame. How-

ever, limitations arose during initial experimentation. A resistance to environmental

unknowns is paramount when dealing with varied surroundings. A common situation

such as a large number of individuals in view could degrade tracking consistency; when

users are engaged in interaction there will inevitably be distractions or obstructions.

Therefore the proposed tracking method would be severely hindered and susceptible

to interference, such as unidentified objects breaking the line of sight between device

and tracked object.

For want of a more robust technique, the second method utilised the OpenCV

implementation of the mean-shift algorithm (first proposed by K. Fukunaga and F.
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Hostetler [23]) in conjunction with various systematic responses to interference en-

abling a large number of obstructions to be ignored, which meant when tracking was

lost it could continue (within a set search period) if the object returned to the same

approximate position. This was accomplished by timing the period in which the

tracked object was ‘lost’, when a certain period of time had passed the system would

reset and look for a new object to track. If the object returned into the approximate

area it was last tracked, tracking continued as normal.

3.3.4 Movement Interpretation

Perhaps one of the most important factors in the user’s experience is the way in which

their movements are interpreted from hand to screen. Unpredictable movement in

two dimensional space can be detrimental to the user’s understanding, thus a robust

technique was introduced to enable consistent control. First inspection showed that

the movement produced by the OpenCV implementation of the mean-shift algorithm

required buffering in some form to aid accuracy. Direct movement produced by the

algorithm was sporadic, giving a very raw interpretation of pixel movement.

From the beginning it was intended that the tracking system could be used by

both left and right handed individuals as excluding one or the other would be imprac-

tical. It was also apparent that a hand could vary in shape and size dramatically or

even in extreme cases the user could be impaired, with limited extremity movement

or irregularly shaped hands. Therefore the ergonomics of system interaction needed

to be natural, adjusting itself depending on the user’s hand size. In this case, an

assumption was made that was relatively consistent; user hand size often correlated

to their height and thus to their arm length (although this is not a given). Arm length

and handedness directly effects mobility and control therefore, counter-measures were
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taken to enable person independent operation. The pivotal extents (PE) in Figure

3.11 are an example of the approximate maximum movement attainable by an in-

dividual, its shape is dictated by the ball and socket composition of the arm and

shoulder.

Figure 3.11: This figure depicts all width and height information used to generate
accurate movement coordinates according to the hand position. Where Sw,h is the
screen width and height, Tw,h is the image size produced by the device and E/Iw,h

are the external and internal bounding boxes used for relative positional calculations,
determined by the user’s hand size. The blue area (PE) indices the approximate area
of movement produced by an individual (note the oblong shape).

The combination of development, experimentation and testing showed a clear need

for interpreted movement. To elucidate, using mapping between the total image size

(defined in Section 3.3.2) and bounding box presented issues when attempting to

reach the farthest areas of the screen (PE). This was confirmed via testing with a
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few individuals who all showed signs of strain when attempting to reach the opposed

sides of their handedness (e.g. a right handed individual reaching to the extreme left

and vice-versa). These notions lead to the incorporation of limitations that made it

easier to move the cursor within the natural limitations of each user. Figure 3.11

describes the method in which movement was translated. Where S(w, h) is the arbi-

trary screen size (not to scale), T (w, h) is the image size from the device and E(w, h),

I(w, h) are the external and internal bounding boxes, respectively. Each positional

anchor is found at the top left corner (E(x, y), I(x, y)).

Using the object’s bounding box, an external volume is created which represents

screen coordinates. This scaled volume is elongated in width and height, multiplied

by a percentage of the original with an increased width which is also multiplied by the

difference in aspect ratios between screen (S) and image size (T ). Movement is then

calculated according to screen size, image size and external and internal bounding

boxes with Equation 3.3.1.

N(x,y) =
(I(x,y) − E(x,y))S(x,y)

E(x,y) − I(x,y)
(3.3.1)

Furthermore, adapting the external volume according to the internal bounding

box position enabled the user to relax their posture while being tracked without los-

ing mobility to the screen extents. This was accomplished with a simple box check.

Significant improvements were found when transferring all movement to vector

based calculations. To further smooth control, two vectors were used to increment

positional data P
′

= Px,y + (Tx,y − Px,y)S. Where P is the current position and T

is the target position. Furthermore it aided in removing erroneous samples from the

original movement data.
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3.4 Error Checking

When handling streaming data there are usually inconsistencies due to the imprecise

nature of image data. Error checking and inevitably error correction are an important

part of image processing as they aid in rectifying errors that may slow or even stop

application functionality. Errors encountered illustrated these facts and dealing with

them was a common occurrence. Furthermore, experimentation with image process-

ing techniques showed that certain variables (such as threshold parameters) could not

be clearly defined; fine tuning proved invaluable. To elucidate, as stated previously

there are inconsistencies within image data which often required a trial-and-error ap-

proach to attain the desired result.

More prominent errors needed attention. These errors consisted of: tracking of

incorrect object (or areas), drifting onto undesired areas of the body and inclusion

of the wrist during finger detection. Experimentation with the latter is explained in

Section 3.5.2.

Error handling algorithm

Require: ProcessedImage, HandRect, MinDepthValues
Ensure: CheckRectWithScreen(HandRect, ProcessedImage)
1: HandTemp ← HandTemp(HandRect)
2: ImageFill ← 0
3: Width ← HandRect Width
4: Height ← HandRect Height
5: ImageSize ← Width*Height
6: for y = 0 to Width do
7: for x = 0 to Height do
8: PixelIndex ← y + x ∗Width
9: Pixel ← ProcessedImage[PixelIndex]
10: if Pixel 6= 0 then
11: ImageFill=ImageFill+1
12: end if
13: end for
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14: end for
15: if ImageFill ≥ImageSize-(ImageSize/5) then
16: return 1
17: else if Image Fill ≤ImageSize/5 then
18: return 1
19: else if MinDepthValues[0] ≤ 0 then
20: return 1
21: else
22: return 0
23: end if

As a concise silhouette of the object had been produced, error checking was made

efficient by concentrating on the presence of volume specific to the object’s bounding

box. As the previous algorithm indicates, dynamic error analysis was based on the

positive values found in the cropped image (which is produced by extracting parts of

the image that fall inside the bounding box). Each positive value (anything above 0)

indicates physical presence, this is then tallied. This final tallied value is a clear indi-

cation of the image volume. Simple checks can be performed and the result returned,

in order to continue or nullify tracking.

CheckRectWithScreen processes the object’s bounding rectangle, rectifying its

position if its extent exceeds the total size of the image. Also, HandTemp temporarily

stores the cropped image to be processed.

3.5 Hand Analysis

Now that a foundation had been created and direct access to both depth and RGB

pixels were available, deeper image processing techniques could be designed and ex-

perimented with to further increase robustness in hand and object tracking. In this

section an overview of hand extraction and segmentation is given with details on the

methods behind hand volume calculations, wrist removal and finger analysis. As this



77

process was important the aims were clear;

• To calculate the structure of the hand using point detection,

• To calculate the hand volume based on circumference and,

• To extract finger tips

There are important reasons as to why particular processing decisions were made.

To successfully extract information for hand gesture recognition it is of vital impor-

tance that the hand is clearly defined. Therefore, processing has been split into stages

to maximise efficiency.

3.5.1 Hand Volume

Upon examination of the structure of a hand, it became clear that to interpret simple

gestures, measures had to be taken to understand the movements and actions from

a large spectrum of hand shapes and postures. This meant that using a hard coded

approach towards hand analysis (such as pre-recorded gesture definitions) would pro-

duce inconsistent results from one user to another. Therefore the first step towards

hand analysis involved gathering basic information that could serve towards gesture

responses.

Calculating the hand volume provided an overview of the hand’s current posture.

As the final product was to recognise gestures this information became invaluable.

There were a few methods in which the hand volume could be calculated one of which

had already been used previously during error checking (calculating the number of

positive values in the image) but this method was not tailored for more complicated

strategies involving positional and distance variables. Therefore an alternate ap-

proach was required.
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To produce anything meaningful the outline structure of the filtered image (usu-

ally a hand) was required. This provided a basis in which to work; using OpenCV’s

bounding polygon functionality which approximates image contours, returning an ar-

ray of points according to the largest contour found (seen in Figure 3.13 P0 to Pn).

Figure 3.12: These results are from the ini-
tial attempts at finger analysis, where each
fingertip is circled if found.

Initial experimentations using the

bounding polygon points were based on

the angles of each point relative to the

next and previous points (seen in Fig-

ure 3.12). The resulting angles were then

evaluated using on-left calculations indi-

cating line placement (left or right of)

relative to the surrounding points. In

practice there were too many erroneous

values produced due to the analysis of

all points; which created problems fur-

ther on.

Moving towards a more practical method, analysing the circumference of the hand

yielded satisfactory results. Keeping the principle that the volume represented a rel-

atively robust indication of the hand’s posture the circumference of the hand enabled

measurements to be made against all points in the contour array. Figure 3.13 is an

example of the approximated contour (represented by the blue lines connecting each

point in the array) and both inner and outer radii (R1 and R2, respectively) which

are used for later processing. The radius is measured from the centre of mass to

the farthest point in the contour array (in this case the thumb produces the largest

distance). Examination into the possibilities offered with the current data revealed
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techniques by which to categorise hand postures.

Figure 3.13: This figure depicts the method in which extended fingertips are detected.
The circumference of the hand is found from the array of points generated from
image analysis. Where P0 to Pn are the bounding volume coordinates and R1 and R2

represent the inner and outer radius which are used for initial point evaluation.

3.5.2 Finger Analysis

To accomplish gesture recognition, finger processing was required to further segment

the hand. To successfully interpret hand postures finger movement did not necessarily

need to be tracked on an individual basis but an indication as to the finger state (ex-

tended or recoiled) was required (explained in detail in Section 3.5.5). Furthermore

there are constants in the characteristics of a hand that can be taken advantage of;

the use of fingertips is commonplace, touch and dexterity is attained from the end of

the finger thus making it an important area.

With the combination of both hand circumference and the approximated (and

simplified) hand outline the finger extents can be located, revealing the potential for
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gesture recognition.Figure 3.14 shows five accepted points which lie outside of the

inner circumference. These points represent the finger tips (F0 to F3), the thumb

(T ), the wrist (W ) and the centre of the hand (C). This was an important discovery

as it clearly produced the layout of the hand and more importantly, extracted finger-

tip positions. The following algorithm snippet describes the process taken to detect

fingertips;

Fingertip algorithm

1: InnerCircumference ← Radius− (Radius/4.5)
2: for i = 0 to NumberofPoints do
3: DistX ← CentreX - Point[i]X
4: DistY ← CentreY - Point[i]Y
5: Distance ←

√
(DistX ∗DistX) + (DistY ∗DistY )

6: if Distance > InnerCircumference then
7: FingerCount ← FingerCount+ 1
8: end if
9: end for

The function analyses each point in the array, calculating the distance between

the centre (Center(X, Y )) and current point (Point(i)). This is compared against

the new circumference (InnerCircumference) which is a percentage of the original

(just under half (4.5)). If a finger is found the tally is increased (FingerCount), after

all points have been processed the resulting tally indicates fingertips found.

Using multiple circumferences gave advantages while processing different hand

types. As the size and shape of the potential hand is unknown, processing the hand

against circumferences attained from initial recognition meant a balance between sys-

tem adaptation and processing ease.
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Figure 3.14: After evaluation of each point in the contour array, the furthest most
points are considered to be ‘fingertips’. Where F0 through F3 represent the four
fingers and T , C and W represent the thumb, hand centre and wrist. Although
robust, results did vary; on occasions it was found that not all fingers were detected,
as well as the wrist not being defined.

3.5.3 Adaptive Volume Response

Upon initial implementation measurements were taken to identify fingertips from the

moving image. As previously described this was enabled by calculating the outer cir-

cumferences followed by the inner circumference. Different factors influenced how the

inner circumference was treated, predominantly the finger arch positions and finger

length. To elucidate, the length of an individual’s fingers can vary dramatically, so

to detect all fingers successfully a balance was found between inner and outer cir-

cumference, the former being a percentage of the later. Figure 3.15 is an example

of a typical hand with a combination of extended (thumb, index and middle) and

semi-recoiled (little and ring) fingers, resulting in large discrepancies between outer

circumference and shortest finger.
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Figure 3.15: This diagram gives examples of likely hand postures. From left to right;
a hand with partially retracted fingers, this could be in any combination from the
index finger to the thumb. The centre shows the arm extending out towards the depth
device, resulting in a larger physical presence. To the right is the opposed situation
where the arm is retracting towards the user. Each situation requires adaptive volume
response to accommodate the changes.

The initial method implemented was based on static readings taken after the hand

was found; all gesture response was based on these readings. While tracking a hand

movement in all axes is possible thus there was the potential to retract or extend the

arm from the body. This created a physically smaller or larger hand (respectively)

according to the perspective and distance of the camera. For example Figure 3.15

shows conditions that break the static circumference; the middle extending past the

circumference and the second being contained within, in both cases fingertips cannot

be extracted. Therefore there was a need to continually update the hand circumfer-

ence. Figures 3.15 also shows dynamic volume response represented by the dotted

circles; each of which are a better basis in which to analyse fingertips. A definitive

decision was made to use adaptive volume analysis which is explained in the next

section. Figure 3.16 shows a real-world implementation example taken in real-time,

where A, B and C are examples of different scenarios.
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Figure 3.16: These figures were taken from the real-time output. Where (A) shows
all fingers extended, the middle (B) shows the index finger retracted and the right
(C) shows the middle and ring finger retracted.

3.5.4 Wrist Removal

Throughout the hand segmentation process the desired result was to attain a clearly

defined binary interpretation of the hand (or object) to be processed. Furthermore,

areas of the extremity that are unwanted such as the forearm and wrist need to be

removed if still present before the final stages of segmentation (finger and area anal-

ysis), therefore steps need to be taken to threshold the area of interest.

Figure 3.17 shows the final thresholding applied to the depth map that attempts

to remove the wrist area (W ) to leave the rest of the hand clear for processing (H).

The area in front of the hand (E) is considered to be viable space for fingers to move

into if the hand was in a more relaxed position; this area is still processed as part of

the hand but is ideally the ‘excess’ area.

3.5.5 Gesture Recognition

The next logical stage in autonomous gesture recognition is correctly interpreting the

posture of the tracked hand. The relationship between the individual’s intentions and
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h

Figure 3.17: This figure shows the dissection of the hand to the wrist where E is
empty space for parts of the hand to move in to, H is the hand and W is the wrist.

system response need to be intertwined, as it is paramount that the user’s intentions

are correctly responded to.

It became clear that correctly intercepting complicated hand postures (gestures)

was a difficult task due to the wide variation in hand types and system understanding.

For example, if a user were asked to follow instructions that described various control-

ling gestures (such as click, drag, scroll and zoom) their understanding and physical

action is likely to differ to the next person. This was taken into consideration; as a

result it was decided to limit interaction functionality to favour ease-of-use although

potential functionality could be (and for experimental purposes, was) extended.

As a result of continuous testing and adaptation, various gestures based on the

techniques implemented showed that clicking (simulating the left and right mouse

button), scrolling and zooming were possible.
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Figure 3.18: In reference to the Figure (3.17) which shows the detection of all fin-
gertips, gesture recognition is accomplished by accepting or rejecting points that are
inside or outside a pre-calculated circumference. In this case, all fingertips are re-
tracted - representing a ’grasp’ like action.

Click gesture; the physical action required to click or select an item changed

through experimentation. Like all gestures, many iterations were created using a

combination of variables, such as the number of recoiled fingers and timing controls.

Figure 3.18 is a sample of the system interpretation when all fingers are recoiled

and the hand is clenched. All fingers and the thumb are contained within the inner

circumference and the wrist removed (W ) with the technique proposed previously,

indicating a grasp which can be translated as a click.

Zoom gesture; as the distance between the device and the centre of the hand is

consistently updated there is opportunity to use this information for zooming in and
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out. Two thresholds are all that is required to register zoom commands, if the thresh-

old is passed zooming occurs.

Scroll gesture; as the hand is tracked gestures can be intercepted while the object

is in motion, if a gesture is recognised (such as clicking) it could be translated differ-

ently if movement occurs. Therefore scrolling up down, left and right is attainable;

while the hand is clenched movement is directly translated into the equivalent of a

scrolling action (simulating a two-directional scroll wheel or ball). The amount of

movement was governed by the distance between the initial grasp and new position;

two approaches were feasible using this technique. The first uses the movement val-

ues to directly manipulate selected objects; the second uniformly scrolls the screen

according to the vector direction between the two positions.

3.5.6 Alternative Selection Techniques

During development, experimentation and public testing it was decided to test an al-

ternate method of selection. This decision was made to help improve system flexibil-

ity and provide more comparable methods for testing. The first technique introduced

was termed the ‘physical’ selection technique, this involved the user performing a grab

which was then interpreted as a click. The second and new technique introduced was

termed the ‘hover’ selection technique.

To elucidate, the user controls the movement of the cursor by direct interaction,

as they move over interactive user interface elements (buttons) they are presented

with a timer. A blue circle slowly completes as the selection is made, when the circle

is complete a selection is made. Figure 3.19 shows a selection being made on the
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information button.

Figure 3.19: The Figure shows a user interacting with a button on the user interface.
The blue circle indicates the time passed while on the item. When the circle is
complete, a selection is made.

This chapter presents the process which was used to find, track and interpret

simple gestures from a hand. It also presents the algorithms used to remove errors

that occur. In addition, evidence is presented reinforcing the reasons why certain

approaches were taken, such as radii being used instead of angles for finger detection.

The next chapter details the visible side of the gesture system. This includes all

rendering, efficiency and GUI (Graphical User Interface) aspects, all of which are

extremely important to the user’s experience.



Chapter 4

Rendering

From the beginning the final product was always intended to be presented in real-

time. Alternative methods were available that could have reduced implementation

complexity but would have been more restricted in terms of functionality compared

to a real-time 3D environment. One possible alternative could be to present infor-

mation without real-time data, keeping all interaction within a 2D environment. All

information divulged would be in media form, such as extensive pre-rendered videos,

images and text (even original documents etc.) produced to illustrate the structures

and their heritage. Although presentation methods such as these would be quicker to

produce there would be close similarities to that of a web-based interface, ultimately

becoming detrimental to the interactive experience.

There are advantages and disadvantages to handling visual data at runtime; unlike

a purely two dimensional interface an extra degree of fidelity is attained, providing a

more immersive experience. Furthermore handling visual data in real-time enables a

highly tailored interactive environment, objects can be manipulated to suit the cur-

rent context, buildings can be hidden entirely and objects can be changed or swapped

according to the user’s actions. On the other hand, there are underlying issues that

88



89

can become problematic if disregarded. Usually real-time rendering requires a signif-

icantly larger amount of processing over other techniques. As visual information is

consistently updated performance can become an issue if rendering is coupled with

other intensive tasks, such as image processing. Also, there can be issues with model

compatibility; there are distinct differences between real-time and offline rendering,

the first requiring less complicated 3D models (a smaller number of polygons) to

enable efficient rendering of high frame rates (frames per second). Whereas offline

rendering can be produced with extremely complex models and textures as the final

product usually consists of static images or pre-rendered video.

4.1 Model Handling

An intrinsic element of creating an adaptive model loader was choosing a commonly

used 3D file format that could be used to export all required model details, such

as position information and multitextured surfaces. Thus exploration into different

file types was required as restrictions were present; all models required exportation

into a common format, even from different 3D modelling packages which in this

context consisted of Autodesk 3Ds Max and Maya. These requirements narrowed the

selection to Autodesk Interchange File (.fbx), 3D Object File (.obj) and Legacy 3D

Studio (.3ds), all of which satisfyed model storage requirements. Analysis of these

three file types made evident that both .fbx and .3ds formats were not appropriate

for the project. As all model data was to be read manually into the application it was

chosen to use the .obj format as some content was already in this format. Therefore

the first step was to understand how information was stored.

It was decided that a contemporary graphics library was to be used for screen

rasterisation, OpenGL 4.0+ was a choice that offered most flexibility but had partic-

ular specifications in terms of model structure. It was required that all models were
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exported in terms of triangles as previous versions utilised quads.

Upon the project outset there were clear ideas of what would be displayed in

terms of 3D data, it was intended to render (or have the ability to render) many

buildings simultaneously with the option to concentrate on a particular item. This

presented challenges; one of the largest influential hurdles was 3D content. Content

had been generated from numerous sources, ranging from simplified mock-ups to finely

modelled architecture with extensive interiors, often in different states of completion.

Therefore a need was created for an efficient but robust rendering engine able to read

and display model data from a variety of sources.

4.1.1 Model Structure

With clearly defined goals it was possible to start analysing the data structure found

in models, this was important as a greater understanding of the model format later

aided in better model representation, which in turn enabled greater efficiency in the

rendering of highly detailed models. The general overview of a 3D model consists

of three sets of variables that make up a single triangle; its vertex positions, texture

coordinates and face normals. Figure 4.1 denotes the construction of an object, on the

left is the cube in its entirety, in the middle is a detailed view of the defining elements

of a single triangle face. A triangle is constructed with the following components; three

vertex positions (P0, P1, P2) which form the geometry and physical characteristics

such as scale (usually relative to the environment), position and orientation. The

second holds a texture coordinate (Tc) for each position (seen on the right), relating

to a point on an image. Finally, each vertex uses a normal vector (N), which is used

in lighting calculations, collision detection and culling.

There is a clearly defined structure in which the model data is formed that can be
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Figure 4.1: To the left the entire 3D object can be seen, the highlighted red area
draws attention to a single triangle in the mesh. The individual triangle (centre) is
constructed of three vertex positions (P0 to P2) complete with vertex normal, a face
normal (N) and texture coordinates (Tc). To the right the texture map in which Tc
directly maps onto the model’s surface.

interpreted in multiple ways. Models are split into three levels of detail, the first and

highest level describing the model or models as separate or joined entities (which is

closely tied to performance, explained in Section 4.1.3), the second defines the geom-

etry with faces or indices, a term commonly used in 3D model data handling. The

third and final level details all required variables for each triangle, in this context

a face consists of a single triangle. A model can contain a small number of unique

values that are shared by multiple faces, vertex sharing is an efficient means in which

to save on space and avoid duplicated values, a technique that proved to be invalu-

able when handling large models, which is explained in more detail in the next section.

In Figure 4.2 each case shows how single and multiple meshes are constructed in

one model file. From left to right each mesh contains a different number of individ-

ual meshes and objects. Objects can be joined into the same mesh or be separate,

therefore when reproducing model data in real-time storing each mesh in reference
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to its textures was found to be advantageous. This was due to the smaller number

of texture calls, essentially equalling the number of unique textures rather than the

number of unique meshes (of which could be many more).

Figure 4.2: A diagram depicting three combinations of mesh possibilities. From left
to right, the single mesh defined with a single object, multiple meshes contained as
part of the same object (the individual meshes can also be considered by their applied
material) and separate multiple meshes contained in separate objects.

4.1.2 Vertex Organisation

As previously stated there is a particular and clear layout that the .obj format follows.

Each mesh in the model has a set of unique vertex positions, texture coordinates and

vertex normals (v, vn and vt, respectively). These values are usually at floating point

accuracy as double precision is usually unnecessary, for example v -10.000000 0.000000

10.000000 (x, y, z). Each face defines a combination of these values, often re-using

entries if vertices, normals or texture coordinates are shared. For example (f 1/1/1

2/2/1 3/3/1) creates the first face in a cube, where the order is defined as 1st vertex

position, 1st texture coordinate, 1st vertex normal, 2nd vertex position, 2nd texture

coordinate, 2nd vertex normal etc., the number is the index to the corresponding value

at that line. Note that both faces share the same vertex normal; a simple object like
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a cube is a good example of how face information can be interpreted at a low level.

Figure 4.3: Face data is organised into vertices, vertex normals and texture coordi-
nates. Geometry is constructed from an arbitrary number of values where values are
shared between triangles. Here 1 to 7 represent the vertices shared that form triangles
a to f

.

To elucidate, issues can arise when dealing with models that contain a large num-

ber of vertices. Each face in a model is unique but usually shares combinations of

vertex positions, normals and texture coordinates. If this is not accounted for model

data can become bloated. Figure 4.3 exemplifies a simple cube where a to f indi-

cate each individual triangle that makes the geometry, 1 to 7 represent the vertices

that the triangles share. In this example there are a further six triangles obscured

from view and another vertex situated diagonally down from the fourth that con-

structed the rest of the cube. During implementation model loading methods evolved

considerably, two notable techniques were tested which directly affected real-time

performance. Both used similar principles but one suffered from slower loading times

whereas the other demonstrated slower real-time performance. The two techniques

were essentially identical, core processing algorithms were shared but a small but

profound difference in face-to-vertex interpretation meant great differences were seen
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in the total amount of memory used. Due to the nature of the file format it was noted

that geometry could be constructed directly in a small number of steps;

• Raw data is stored temporarily in that of the same order found in the file.

• Face data is then constructed using the previously read position, normal and

texture data according to the faces defined.

• Data is then stored on the graphics card and removed from memory.

This first technique tended to produce accurate results in comparison to the origi-

nal model in context of smoothing groups, vertex positions and textures, furthermore

models were loaded quickly as no further processing was required. The high level

algorithm below describes the processing techniques used; model loading was broken

into three distinct sections which run in order of the physical layout found in the

files, material loading, vertex data acquisition and face construction. The following

algorithm uses the various model loading algorithms (including material and vertex

loading) to load model data.

Model loading algorithm

1: Create new ModelData
2: if Model file exists then
3: CurrentMaterialID ← 0
4: CurrentMeshID ← 0
5: while End of file not reached do
6: if Character = ‘m’ then
7: Load materials
8: for i = 0 to NumberofMaterials do
9: Create new Mesh Data
10: ModelData Mesh[i] MeshID ← CurrentMeshID
11: ModelData Mesh[i] MatID ← CurrentMaterialID
12: Increase CurrentMeshID
13: end for
14: end if
15: if Character = ‘v’ then
16: if Second character = ‘n’ then
17: Create temporary normal
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18: Read and store normal values
19: end if
20: if Second character = ‘t’ then
21: Create temporary texture coordinate
22: Read and store texture coordinate values
23: else
24: Create temporary vertex
25: Read and store vertex values
26: end if
27: end if
28: if Character = ‘u’ then
29: if Second character = ‘s’ then
30: Search existing materials
31: if Material already exists then
32: Assign mesh ID to found MaterialID
33: else
34: Assign mesh ID to CurrentMaterialID
35: end if
36: end if
37: end if
38: if Character = ‘f’ then
39: Increase face count
40: Read face
41: end if
42: end while
43: Store model in array
44: end if

An important note is that all model data is created dynamically on the system

heap, meaning pointers to information can be passed between functions without the

need of copying complete segments of data; this proved advantageous due to the large

number of model’s and their size in memory. Material loading is the first process to

occur, mesh data is then formed according to the number of materials. As each ma-

terial is unique, geometry is organised according to material, thus multiple meshes in

the model can be assigned with the same material ID, reducing the number of texture

calls to the graphics card. Details as follows;

Material loading algorithm
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Require: ModelLocation, ModelPointer
1: Separate file name from file path
2: Search for material file
3: if Material file exists then
4: Create new material pointer
5: while End of file not reached do
6: if Characters = ‘new’ then
7: Scan material name
8: Create new material
9: end if
10: if Characters = ‘K’ then
11: if Second character = ‘a’ then
12: Read and store ambient values
13: end if
14: ...
15: Repeat for ‘d’ diffuse and ‘s’ specular values
16: ...
17: end if
18: if Characters ← ‘m’ then
19: if Second character = ‘d’ then
20: Load diffuse texture
21: end if
22: ...
23: Repeat for ‘s’ specular and ‘u’ normal map textures
24: ...
25: end if
26: end while
27: Store the new material in array
28: end if

This reduced algorithm shows the steps taken to load all relevant material data,

lighting properties (ambient, diffuse and specular) and associated textures (diffuse,

specular and normal maps). If any of the three textures are not found the correspond-

ing texture is not flagged meaning it is not used in the rendering process. The final

stage is constructing face data with information previously acquired. As previously

stated there are two techniques that significantly affect real-time performance. This

first algorithm describes face data construction using direct interpretation, creating

new geometry for each new triangle, even if data is shared.
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Vertex/Face loading algorithm

1: FaceCount ← 0
2: PointCount ← 0
3: for i = 0 to number of meshes do
4: for i = 0 to facecount ∗ 3 do
5: Current index ← total face count + i
6: end for
7: Total face count + = current facecount*3
8: end for
9: for i = 0 to facecount do
10: for j = 0 to 3 do
11: Data[Point count] = Vertices[Face[i] Vertex[j]-1] x
12: Data[Point count+1] = Vertices[Face[i] Vertex[j]-1] y
13: Data[Point count+2] = Vertices[Face[i] Vertex[j]-1] z
14: PointCount + 3
15: Data[Point count] = TextureCoords[Face[i]Texture[j]-1] x
16: Data[Point count+1] = TextureCoords[Face[i]Texture[j]-1] y
17: Data[Point count+2] = TextureCoords[Face[i]Texture[j]-1] z
18: PointCount + 3
19: Data[Point count] = Normals[Face[i] Normal[j]-1] x
20: Data[Point count+1] = Normals[Face[i] Normal[j]-1] y
21: Data[Point count+2] = Normals[Face[i] Normal[j]-1] z
22: PointCount + 3
23: end for
24: end for

The resulting data is stored in an interleaved array which contains all geometry,

texture and normal information side by side. It is generally considered that storing

data on the graphics hardware in different formats results in discrepancies in perfor-

mance. This example shows data alignment as; V V V TT (T )NNN , which describes

a single face or one triangle (the encapsulated texture coordinate (T ) was always as-

signed to null as all textures were 2D, the option of 3D textures was not used but it is

possible). This decision was justified by experimentation; another method attempted

was containing all vertex, texture and normal information in individual arrays stored

separately on the graphics hardware, it was found that more calls to swap data were

required to render geometry, thus combining these arrays only required a single call to
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graphics memory. Assessing performance while using unorganised and duplicate data

showed that performance decreased significantly when larger models were loaded, this

was due to geometry bloating. As many large models were expected to be rendered

simultaneously a more efficient method of vertex organisation was developed.

Face organisation algorithm

1: FaceVTN0, FaceVTN1, FaceVTN2 ← NULL
2: FaceStructure ← NULL
3: for i = 0 to 3 do
4: Search for lack of texture coordinates ‘//’ in i
5: if Texture coordinate not found then
6: Insert single texture coordinate
7: end if
8: end for
9: Read face values into temporary faces
10: Search previous indices for duplicate value
11: if Current face index 0 is unique then
12: Store new Vertex (Vertices[FaceVTN0 Vert -1])
13: if No texture coordinates exist then
14: Store Empty Texture Coordinate
15: else
16: Store new Texture Coordinate (TextureCoords[FaceVTN0 Tex -1])
17: end if
18: Store new Normal (Normals[FaceVTN0 Norm -1])
19: FaceStructure 0 ← Model TriCount
20: Increase Model TriCount
21: Mesh Index ← Face 0
22: else
23: Face vertex index ← found index
24: end if
25: if Current face index 1 is unique then
26: ...
27: else
28: ...
29: end if
30: if Current face index 2 is unique then
31: ...
32: else
33: ...
34: end if
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35: Save new face

This simple but noticeably effective sorting algorithm increases real-time perfor-

mance as all duplicated values are removed; indexing becomes streamlined as values

are cross referenced if found to already exist. Each index is saved using a map, when

a new face is found in the model file its indices are checked against previously pro-

cessed values, if the value is found it is re-used, otherwise the index is new. A brief

comparison between the two techniques clearly showed the differences between one

another. Table 4.1 shows the results between various models including their final float

count, load time and average running speed (frames per second). Models ranged in

complexity, thus ranged greatly in the number of vertices they contained.

without Index Sorting with Index Sorting
Float Count Load Time (s) FPS Float Count Load Time (s) FPS

658,457 0.57496 558 298,153 1.36578 598
1,087,047 0.89519 289 447,372 2.78557 372
1,122,903 0.57496 350 574,029 1.36578 410
3,564,297 1.62563 255 1,233,000 4.54779 345
8,547,725 2.95487 186 5,487,563 8.14458 302

Table 4.1: Load time and performance comparison with and without index sorting.

Examination of the resulting data shows that there is a clear increase in per-

formance after indices have been recycled, although greater performance resulted in

longer loading times; in this context increased performance was favourable. Static

models could be loaded once at the beginning of the system life-cycle, entities were

not required on demand thus no loading was performed during run-time.

4.1.3 Rendering Efficiency

Challenges were presented when intentions for visual fidelity increased; as discussed

in Section 4.1.1, there are many aspects to model loading and vertex organisation

that affect visual performance. For example, there are processes that take longer to
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complete under OpenGL than others, these include vertex buffer object (VBO) and

texture switching (the process of switching the currently used objects). Although,

these processes are required to correctly render 3D data. Therefore keeping these

calls to OpenGL to a minimum was essential.

Furthermore as a large number of complex model’s were to be loaded and rendered

simultaneously, other techniques could be employed to further aid performance. As

previously discussed in Section 4.1.1 there are efficient methods in which to store

and reference model data. As each model could hypothetically contain thousands of

meshes but only a few textures, model data was stored in context of texture count,

which meant that the number of texture calls (texture switching) is reduced dramat-

ically (refer to Figure 4.2).

Another commonly used technique that has shown to drastically improve perfor-

mance when dealing with a large number of renderable geometry is view culling. To

elucidate, in the context of real-time rendering of large urban scenes, during interac-

tion the user is viewing a narrow portion of the scene, meaning a large percentage

of objects not currently in view could be excluded from the rendering pipeline. This

process is called frustum culling.

There are two types of frustum check that were required to successfully remove

items from the rendering pipeline. These included a point check - requiring a single

point (x, y, z) and a bounding box check, requiring two points, the maximum and

minimum bounding box extents. During application load all items that were to be

considered for rendering were provided with a bounding box which could be used for

the frustum check. The following algorithms are the simple calculations needed, both
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are based on matrices as the frustum is calculated into a 6x4 matrix (representing

the six sides of the frustum) for efficiency. Before any calculations can be performed

against the view frustum it needs to be updated in case of user interaction. View

culling algorithm were as follows;

Single point culling algorithm

1: Frustum, CullPoint CullBoxMax, CullBoxMin
2: for p = 0 to 6 do
3: if (Frustum[p][0] * CullPoint-x) + (Frustum[p][1] * CullPoint-y)

+ (Frustum[p][2] * CullPoint-z) + Frustum[p][3] ≤ 0) then
4: return false
5: end if
6: end for
7: return true

Where the point (CullPoint) is compared against all sides of the view frustum

(Frustum). The next algorithm checks a bounding box against the frustum;

Bounding box culling algorithm

1: Frustum, CullBoxMax, CullBoxMin
2: for p = 0 to 6 do
3: if Frustum[p][0] * (CullBoxMin-x) + Frustum[p][1] * (CullBoxMin-y)

+ Frustum[p][2] * (CullBoxMin-z) + Frustum[p][3] > 0 then
4: Continue
5: end if
6: if Frustum[p][0] * (CullBoxMax-x) + Frustum[p][1] * (CullBoxMin-y)

+ Frustum[p][2] * (CullBoxMin-z) + Frustum[p][3] > 0 then
7: Continue
8: end if
9: ...
10: Process all combinations, returning true if any are satisfied.
11: ...
12: return true
13: end for
14: return false

When calculating the bounding box of an object, the maximum and minimum

extents are calculated against each side of the frustum. Generally the computational
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intensity required to check an item is less than actually rendering it, therefore CPU

time can be saved, resulting in better performance and no visual discrepancies.

4.1.4 Building Description Language

Scene management became a necessity as the amount of associated information grew

with each 3D building representation. This meant information had to be linked by a

single entity, which held all relevant information. To create the rich user experience

that contained both media and information a custom building description file was

created (BD) or Building Description. Other than providing convenience, items could

be easily updated and edited externally without the need for internal code exchange.

The BD format was designed to cater for the custom requirements of HistOracle.

As each building contained rich media, three URLs define the local access points for

images, video and information. The structure is as follows:

n Building Name (used as the model identifier)

m Model data location relative to the application directory

n Video link

p Picture link

i Information link

h Header image for GUI

d Short description for the initial window

c Camera path

o Starting opacity of building (for dynamic building swaps), between 0 and 1

+ Indicates the end of a description

The following is an example used to define Norwich Cathedral. If multiple 3D

model locations are defined, they are treated separately but are grouped together



103

under the current building name. Also the opacity of each building can be set as not

all buildings were present in context of the map they are on, therefore these buildings

are available to view but only fade into view when selected. An example of this is

the Forum.

n Norwich Cathedral

m Resources/Buildings/Cathedral.obj

m Resources/Buildings/Cathedralbase.obj

i http://historacle.webapp3.uea.ac.uk/cathedral/profile.php

p http://historacle.webapp3.uea.ac.uk/cathedral/imageGallery.php

v http://historacle.webapp3.uea.ac.uk/cathedral/videoGallery.php

h Resources/Header Images/cathedral.png

c Resources/Camera Paths/cathedral.ASE

o 1.0

d Norwich Cathedral was founded by the first Bishop of Norwich, Herbert

de Losinga. He acquired and cleared land in the centre of the city for

the new Cathedral and adjacent Priory complex. Norwich Cathedral

is the most complete Norman Cathedral in the UK and boasts a wealth

of Romanesque features with later Gothic additions to create one of

the most atmospheric sacred spaces in Europe.

+

The next section describes the design and implementation of the GUI (Graphical

User Interface) used for the project, including the choices made to present rich media.
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4.2 Graphical User Interface (GUI)

The following details the ideas and beliefs behind the graphical user interface designed

for the case study, the details of which are found in Section 1.1. The graphical user

interface is an integral point of contact between user and application, there are many

aspects of user interaction which can profoundly affect the way in which each user

understands what he or she is doing and what is expected of them. Certain questions

were needed to be answered before and during implementation to enable a balance

between application compatibility and ease of use. Therefore, the first steps towards

interface design involved a clear definition of targets and what was to be expected in

terms of complexity and depth of information.

From the beginning of the project (informally known as HistOracle) it was clear

that not all requirements were going to be known from the outset; although there

were general targets that were expected to evolve. These targets consisted of;

• Produce a legible interface that could be understood no matter the individuals

native language.

• Attain a visually pleasing layout in keeping with the context of the project.

• Clearly show where the user is in navigation, offering the ability to return to

previous windows.

• Always be able to return or ’reset’ the system back to a home screen.

• Enable a ‘quick-in-quick-out’ approach to all users.

• Uncomplicated selection options.

• Keep buttons and interface elements easily selectable (in reference to size and

shape).
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4.2.1 Design

Various design decisions were made throughout development but from the outset

there were targets which were considered to be important. These included; a consis-

tent theme that would run throughout all user interface elements including graphics

and button shape, also it was decided that keeping the design and structure simple

would improve legibility; offering clear, informative buttons and interactive items.

Furthermore, it was agreed that all information presented would be overlaid on the

real-time environment (such as the building models themselves), which was also a

technique by which to inform the user as to their currently focused object. This

separation between overview and detailed view was made by presenting the user the

specific object they selected in close proximity.

Clear control flow is integral to a smooth transition between various windows of

information. In the context of HistOracle, simple functionality produced the most

concise results, building four interface levels which resulted in an uncomplicated vi-

sual experience. These layers (or windows) consisted of;

1. Introduction screen, containing instructions on how to use the system. The user

cannot continue onto the next stage without initialising tracking and clicking

start.

2. Building selection screen, all buildings are separated between the left and the

right of the screen with an overview of all buildings.

3. Building media selection, after a building has been selected the user is presented

with further options (information, pictures and video).
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4. Information window, depending on user interaction a specific window containing

information, pictures or video is the last layer in the user interface.

At any point the user can return to the previous window (except the building

selection, as a timer automatically returns the system to the first layer) or exit back

to the building selection. Figure 4.4 is the control flow seen when interacting with

the system, important processes to note are the interface loop found at stage 6 and

7; this is formed due to the rotary nature created when exploring all information

on a particular building. Also, the database at stage 4 that provides all building

information and media which is structured around an SQL database. Furthermore

in terms of future expandability there are many possibilities due to the web based

presentation used. As all major information uses a nested web browser and an SQL

database back-end, content could be seamlessly added and/or edited without the need

for major changes to internal program code.

4.2.2 Construction Context

Like the media requirements there were choices made as to how the GUI was created.

Due to time restrictions it was apparent that creating a UI from scratch was imprac-

tical; although feasible there were third party options that provided a satisfactory

means by which to construct what was required. Libraries such as wxWidgets, FLTK

(Fast Light Tool Kit), GLGooey, Crazy Eddie’s GUI System and Qt, the latter two

offering the capabilities of creating completely custom GUI layouts. Qt also contained

media and web modules making it the obvious choice.



107

Figure 4.4: User interface control flow. This diagram is a high level overview of the
user interface logic. The application is designed to continually run until closed, thus
there is no internal end to the flow logic.
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4.2.3 Layout

The graphic user interface was created with certain considerations in mind, including

ease of access, element positions and handedness. The layout was intentionally de-

signed for both left and right handed user’s although a preference had to be taken to

one side when designing specific windows. Button and user interface element place-

ment greatly affects the way in which the user experiences and uses each part of the

interactive system. Poor placement can lead to confusion, for example an interactive

user interface element situated at the top of the environment (relative to the screen

size) is harder to select in the context of physical control and gesturing. To eluci-

date, the relationship between element position and a gesture controlled interface is

closely intertwined. Gesture control is greatly aided by an interface that works along

side the advantages and disadvantages of the control system. For example, physical

navigation (such as using a hand) does not usually attain the accuracy found by tradi-

tional hardware devices such as a mouse; generally there is no requirement for greater

accuracy as navigational tasks often only require button selection. Therefore when

creating the interface it was tailored towards these philosophies, easy navigation in a

gesture environment.

Initial designs showed that a simple approach to overall user interface design

yielded the clearest results. As their is an overview of all interactive buildings, each

had to be easily accessible. This proved a difficult task due to clustered buildings

which were physically close together. Figure 4.5 shows the first attempt, presenting

all buildings at once to the user. As previously stated, the close proximity of buildings

and their physical size meant they were difficult to interact with, and when indicating

their whereabouts with a dialogue showed that interactive items became messy and
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Figure 4.5: In this design each building available for inspection has a floating se-
lectable dialogue, titled with the name of the building. After a user selects a dialogue,
the next layer (videos, images and information) of options can be shown.

Figure 4.6: A radial menu would be presented to the user after interaction. All
available options are displayed in each segment of the menu, providing buttons in
close proximity to the user’s cursor.
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Figure 4.7: Interface elements were repositioned and placed on both the left and right
of the screen, which meant items were more easily accessible when considering gesture
control.

Figure 4.8: A more simple design approach provided a clearer and cleaner interface
in which text was not rotated or unreadable. Unlike that found in Figure 4.6.
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disorganised. For clarity, interface elements were redesigned, into more consistent po-

sitions on both the left and right of the screen as seen in Figure 4.7. When a building

is selected it was thought that creating radial menus would provide ease of access to

all available data in close proximity. Figure 4.6 is an early attempt at designing a

feasible layout in which the user would be presented with the radial menu after click-

ing on a building. In keeping with the design found in Figure 4.7, when a building

is selected instead of a radial menu a more simplified interface was chosen to keep

consistency in the user experience. Figure 4.8 were the initial ideas in how to keep

a standardised layout throughout, this being displayed when a user selects a building.

In reference to list 4.2.1, Figure 4.9 shows the second layer of the user interface.

Highlighted areas 1 and 2 show all interactive buttons which are connected to their

associated buildings. In the background the real-time environment shows both the

18th century map and appropriate surroundings (such as candle sticks, chairs and

barrels of the period) and all twelve available buildings. Areas A through L show the

concentration of all the available buildings; in keeping with the time period, buildings

that were not present during the 18th century are initially hidden from view but are

still selectable from the building menu. When the building is selected it is brought

into view in its correct position. Not only does this keep the map context correct, it

creates space between buildings that are otherwise closely situated.

After interacting with a building button the user is flown down towards the build-

ing selected and presented with the 3D real-time model. The layout consists of two

separate areas, Figure 4.10 shows interface layer three (from list 4.2.1). It was decided

that all information displayed (including videos and pictures) were to be oriented to
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Figure 4.9: This image was taken from the final design of the user interface. The white
areas represent the different regions of the initial UI, where 1 contains the university
and charity logos. Areas 2 and 3 contain the buttons representing all buildings. Also,
the areas circled A to L highlight all the buildings and their physical placement on
the 19th Century map of Norwich city.

Figure 4.10: This image shows the window design found for each building where
1 contains all real-time rendered images (in this case a cathedral) and 2 to 4 brief
information about the buildings and buttons to extra content.
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the right as the real-time background was positioned to the left. This ran through-

out all extended information windows (layers 3 and 4). Also, the diagram shows the

format in which information and interactive items were formed, favouring buttons to

the bottom of the window due to the limitations found with gesture based interac-

tion. More specifically, areas 2 and 3 display general information about the currently

selected building, the building name and related background image and blurb. Area

4 contains all available buttons to each media window.

4.2.4 Media Playback

Opposed to the ergonomic requirements there were very prominent problems that

needed to be addressed. As the application was intended to present real-time graph-

ics and media content such as extra information, images and video, a distinct need for

the ability to display all media types was present. This factor had a large bearing on

how the GUI was developed and what was used to attain an integrated environment

that satisfied all requirements.

Various libraries were available that could handle different media types (such as

.jpg, .png, .avi, .wmv, .mp4 etc), as the media data base grew it was not necessarily

known what format each item would be, therefore the libraries available were con-

sidered in terms of their compatibility. There were four options available that filled

criteria, GStreamer and FFmpeg are open source libraries which both boast the ca-

pability to render multiple video file types. Qt also plays the native media types

supported by the operating system, furthermore it provides a platform in which to

construct complete interfaces. The final option was QuickTime, which did not sup-

port all media types and was also closely intertwined with Apple.
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After experimentation it was found that the obvious choice for media playback

was Qt due to the extra functionality which was appropriate for the project; after the

initial development stages it was considered that media handling would take place

entirely inside a web based environment. This choice proved vital and is explained in

detail in Section 4.2.1.

The next and final phase was to amalgamate both projects (gesture recognition

via depth image processing and real-time rendering) in to a practical application that

could be used as an informative tool to the public. As the targets for both image

processing and rendering were similar, project aims were consistent, providing a sig-

nificant bearing and leading both towards compatibility with one another, hence the

choices made when designing the GUI (which was tailored towards the case study).

Given the type of 3D data that was provided, an efficient and cohesive method of

loading and rendering large virtual models has been discussed, including the optimisa-

tion of such models for contemporary graphics hardware. Vitally, these optimisations

aid in freeing the computer to perform other time consuming tasks such as image

processing. As the GUI is important, being the entity that the user interacts with,

different types and layouts have been discussed. Important factors have been con-

sidered, such as visibility of GUI elements, their position on the screen and their

appearance. Most importantly, their ease of access has been taken as paramount in

context of the gesture based system it will be used with.

The next chapter concentrates on the results collected during public testing, and

reflects on the public’s impressions.
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Results

To evaluate the performance of the techniques presented we asked members of the

public to try the interactive system described in the previous section. The system

was set up in the Forum building in Norwich, which is a public building housing a

number of business and services including the library. Due to the significant amount

of reflective surfaces in the forum only the Microsoft Kinect could be used as the

reflections caused problems for the Panasonic D-Imager (seen in Figure 3.5, Section

3.1.1). Public testing consisted of two private presentations of the system, as well as

a public display which lasted for a week. Both periods included a set up consisting of

a single computer, a large screen (42 inch), a Microsoft Kinect and importantly, feed-

back sheets. The participants were asked to fill out a questionnaire which reflected

their experience, these results can be seen in Tables 5.1 and 5.2. The first included

both selection methods, the latter only exhibited the grasping technique. The user’s

were asked to rate the quality of interaction on a scale from V. Poor (very poor) to

V. Good (very good). Table 5.1 shows the results from initial public testing where

only the grasping selection technique was available.

After this, both selection strategies were tested, the results are shown in Table

5.1. The table illustrates the user’s opinions of the two systems. Rows 1-4 detail
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general opinion of the system whilst the two types of selection methods are compared

in rows 6-10.

Questions V. Poor Poor Fair Good V. Good
1 The Clarity of the instructions. 1 13 19
2 Ease of starting the system with your hand. 11 13 9
3 Movement and control of the cursor 3 7 14 9
4 Ability to select buttons 1 3 6 12 11
5 Ease of accessing the information 2 2 17 12
6 Quality of information 4 10 19
7 The layout of the information 14 19

Table 5.1: This table shows the results gained from a week of consistent testing
by the public. Individuals were asked to answer general questions that covered the
experience as a whole. These results focus purely on the tactile grasping technique.

Questions V. Poor Poor Fair Good V. Good

1 Ease of starting the system with your hand. 3 15 3

2 Speed of navigation 7 11 3

3 Accuracy of navigation 2 3 12 4

4 Layout of information 1 6 14

A Ease of use 1 3 14 1

B Ease of button selection 1 2 9 7

C Button selection time 6 12 1

D Ease of use 1 2 4 8 8

E Ease of button selection 1 7 9 2

F Button selection response time 2 5 9 3

Table 5.2: This table were the results gained from testing both techniques simultane-
ously on the same individual. It also includes more specific questions aimed at both
types of selection techniques (hover selection, A - C and grasp selection, D - F).

During user exposure it became clear that opinions were divided, some individu-

als favoured the physical selection process (grasp selection) over the hover approach

simply because they were under full control as to when they wanted to select an

item. On the other hand, some user’s found the hover selection technique favourable

due to the consistency of the automated approach. It can be seen that the hover
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selection method produced fewer errors than the grasping selection method but was

not necessarily the more intuitive option. Figure 5.1 show the initial grasp selection

impressions.

Figure 5.1: This chart gives an idea of how the initial testing was judged by the
general public. This initial testing concentrated on the grasping selection technique.

It is worth noting that this initial set of results reflects the opinions of individ-

uals that had not been exposed to any other selection technique, such as the hover

selection. Moreover, if these individuals had been exposed to other methods, their

opinions may have differed.

Figure 5.2 clearly shows the divided opinions of the general public, where the

grasp technique votes are spread more evenly between fair and very good. These

results help to indicate possible areas of improvement, for example the hover technique

indicated that individuals with a lesser understanding of the system (usually but not

restricted to older individuals) would prefer a semi-automatic navigational process
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Figure 5.2: This graph shows the direct comparisons between both the hover and
grasp technique (blue and red, respectively).

in which control is taken from them, to favour basic selection methods. Results also

highlighted that users who persisted and took time to learn the grasping technique

gained more satisfaction from having complete control over what and when items

were selected.

5.1 Target Summary

Although the project targets were ambitious, they certainly were not impossible as

most were satisfied. Certain targets were prioritised over others, there were original

intentions to provide complete (or near to) freedom of movement around the virtual

environment which was deemed unnecessary after development had started. Target

1 and 3 stated that the subject area (Norwich) was to be rendered entirely. Detailed

information was available in the form of LIDAR data (Light Detection And Ranging)

discussed in section 2.5, was being used to efficiently re-produce Norwich city in its
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entirety. When considering the scope of the project, the overhead involved in repro-

ducing Norwich completely and providing the user complete freedom was too large.

Preliminary testing showed that even though rendering large sections of the city was

possible, drastic countermeasures would have had to be taken to efficiently render all

data and keep an interactive frame rate. Furthermore there were concerns over full

interactivity. Giving the user complete access to roam either in the proximity of the

building or entire city would give a more interactive experience but on the other hand

would cause situations in which the user cannot return (such as getting lost or stuck).

Another overbearing factor would be the complexity of control required to navigate

using devices other than a traditional mouse or keyboard or a controller, especially

when tailoring human-computer interaction to gesture based devices.

There was also secondary information such as the contextual data for each build-

ing (6th item) which proved to be invaluable and was able to provide temporal details

for each structure (videos showing the physical changes over time, 5th item). Ren-

dering each building (and potentially the surrounding area) from all possible time

periods meant loading and processing very large quantities of data, thus containing

all contextual information in other forms removed the need for real-time temporal

data for each building, this resulted in more realistic requirements, which were more

attainable in the projects duration. Also, this meant that data requirements were

smaller due to the large volume of models that represented each historical record.



Chapter 6

Conclusion

It is important to stress that the area of gesture recognition and HCI (Human Com-

puter Interaction) that does not require physical interaction is in its infancy in regards

to the current capabilities of commercial and academic achievement. One of the most

important aims driving this thesis was to create a proof of concept in that an entirely

encapsulated gesture driven system could be produced with; currently available hard-

ware (2010) and multiple depth devices, potentially any depth device that provides

access to raw data.

We have presented multiple image processing techniques that take advantage of

depth information acquired from depth devices such as the Panasonic D-Imager and

the Microsoft Kinect, irrespective of the device. These image processing techniques

involve the analysis of the entire scene, focusing on areas that are closest to the devices

physically and discarding objects that do not fit a particular profile. A combination

of dynamic depth and bounding box analysis resulted in an intuitive system. The

success of the system has been measured with public testing. The virtual exhibit

highlighted rich information on the listed 12 buildings of Norwich, where the gesture

driven interaction provided an intuitive method of accessing these archives.
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Also, we have presented two techniques that use the image processing library

designed and that are compatible with multiple depth devices which are capable of

interpreting gesture based commands. We have tested the system at public events

and the results have been presented. Two types of selection methods were developed,

one more active grasping action and the second involving hovering over click-able

menu items. It was observed that there was a clear divide between both techniques,

although not all participants understood and mastered the physical selection tech-

nique, meaning some individuals favoured the alternative method.

Given the scope of the project, some intended functionality was deemed too large

to successfully implement. This was due to ambitious longer term targets, such as

providing full navigational control via gestures and supporting multiple hardware

devices. On the other hand, those targets that were met have been tested with

members of the public and proven to be satisfactory.

6.1 Future Work

Searching for and tracking a single hand was made relatively efficient and robust with

the techniques presented in this thesis. As a hand could be discovered within a short

period of time, the system could be extended to accurately track more than one hand

which would open up a multitude of more advanced gestures. Furthermore, tracking

multiple hands would create the possibility to grant multiple users access to content

simultaneously. Alternatively, it could give a single individual advanced control of

the content presented, including direct manipulation in three axes. As a result of the

research presented in this thesis, the techniques and methods used have been detailed

and published [3] at the VSMM (Virtual Systems and Multimedia 2012) conference

with the intention of further forwarding the area.
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