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Abstract— Close-proximity (10-150 m) formation flying using 

low cost, small satellites is an emerging field. In such missions, 

control of satellite formations is a challenging problem and 

requires robust on-board control systems. This paper describes 

a modified approach to designing Sliding Mode Control (SMC) 

for satellite formation and reconfiguration missions, in deep 

space with external disturbances. Based on this dynamic model, 

a new approach for implementing path planning of satellites 

using Artificial Potential Field (APF) method is presented in 

this paper. This paper discusses stability of the sliding surfaces 

designed using gradient of the potential function for the closed 

loop system. The stability analysis is demonstrated by 

presenting a scenario in which six satellites aggregates to form 

an octahedron formation and subsequently reconfigure to a 

hexagon formation. This paper thus presents further progress 

in the state of-the-art of path planning and control for the 

framework of satellite formation and reconfiguration missions.  

I. INTRODUCTION 

A formation of small satellites, operating in a cluster or 

predefined geometry, can accomplish the task of a single, 

conventional large satellite [1]. The risk of inter-satellite 

collision is significant, when small satellites are required to 

fly in close formations (< 50 m inter-satellite separation). 

Therefore, an intelligent path planning technique is required 

for collision free navigation. An efficient on-board controller 

also plays a vital role in extending the life-time of the 

mission through minimising the fuel consumption. 

Swarming is a widely observed phenomenon in nature [2]. 

In [3-5], the biologists have studied the effect of cohesion for 

a family of attraction/repulsion functions and provide good 

background and review of the swarm modelling concepts.  

The major focus of this paper is on improving the 

performance of the controller for collision free navigation of 

the satellites for aggregation and formation flying. A robust 

control algorithm using state feedback SMC is proposed for 

formation flying and reconfiguration missions. Intelligent 

path planning algorithm is designed using the APF method 

[6]. This paper presents how satellites in a formation can 

aggregate towards a goal position, similar to biological 

swarms and then takes up positions to form a predefined 

formation. Based on the knowledge of current position, the 

APF method will optimise the trajectory to generate the next 
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desired formation that will be achieved using SMC. Since 

SMC guarantees robust performance, the impact of external 

perturbations like solar wind and internal perturbations like 

change in mass due to fuel consumption will have negligible 

impact on the performance of the satellite [7]. 

This paper presents how satellites, whose dynamics are 

governed by the Deep Space Environment, can aggregate 

towards a goal position to form a predefined formation. In 

Section II, the background results on APF and dynamics in 

deep space are presented. Based on the knowledge of current 

position of the satellite, the APF method will create the 

trajectory to generate the desired formation, which will be 

achieved using the sliding mode controller discussed in 

Section III. Further, the stability of the sliding motion along 

the sliding surfaces is discussed in Section IV. Simulation 

results for a formation and reconfiguration scenario with six 

satellites are presented in Section V. Conclusions and future 

scope of this research is presented in Section VI.  

II. BACKGROUND RESULTS 

A. Path Planning Using Artificial Potential Field 

Let the formation consist of   individual satellites, and the 

position of the     satellite is described by   . The motion of 

each satellite in the formation is governed by the equation: 

               

 

       

                      

where      is an artificial potential function [9]. It is an odd 

function which represents the net attraction and repulsion 

between the satellites. It is needed for aggregation that the 

attraction term dominates on large distances and for avoiding 

collisions that the repulsion term dominates on short 

distances. The potential function that is considered in this 

study is: 

                             
        

 

   
          

where    ,    , and     are positive constants such that 

       . The term     represents the attraction that 

dominates for large distances, whereas the term 

               
 

      represents the repulsion and 

dominates for small distances. There is a distance     

                at which the attraction and repulsion balance 

[8]. The main drawback with      is that the maximum 

repulsion is bounded for infinitesimally small distances. In 

practice, unbounded repulsion may be needed to avoid 

collisions below a threshold distance. Another drawback is 

that it has an infinite range, which is inconsistent with 

biological systems. 
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B. Dynamics of Formation Flying Satellites in Deep 

Space Enviornment   

The ability to accurately model the dynamic behaviour of 

separated spacecraft formations is critical to the success of 

the mission. It is assumed that the satellite is not affected by 

any significant gravitational forces when it is in Deep Space 

Environment. Hence a simple double integrator model is 

used to represent the dynamics of the swarm agents. 

    
     

  

         

where    is the actuator forces and     are the disturbance 

forces acting on the     satellites.  

III. DESIGN OF SLIDING MODE CONTROLLER 

In this section, the APF based path planning and SMC 

based control algorithms are implemented for a satellite 

formation in Deep Space Environment. When the satellite is 

in orbit, it experiences disturbances due to the oblateness of 

Earth, aerodynamic drag, solar drag, etc which is accounted 

using the disturbance term. The open loop dynamic equation 

for the     satellite in the orbit frame is given by equation (3). 

The APF equation (1) gives the switching hyperplane 

      for the     satellite and is given by: 

                 

 

       

                      

Substituting (2) into (4) gives: 

                            
        

 

   
  

 

       

 

                      
where    ,    , and     are the tuning parameters for APF. If 

    is the final distance to be maintained between the     and 

    satellites, then                
      .  

In SMC, the sliding mode should start in finite time. The 

reaching condition          , where   is some positive 

number; will ensure the sliding mode is reached in finite 

time. This is ensured by the reaching law. Applying the 

constant plus proportional rate reaching law given in [10], for 

the     satellite in Deep Space Environment gives: 

           

      

      

      

                      

                        
   
 

     
   

 
     

   
 

   

where   ,     ,     , and      are the tuning parameters and 

  is the boundary layer around the sliding surface, within 

which a proportional based and not a switching based 

controller is used. Also,                 for        . 

Differentiating (5) and equating it to (6) gives: 

_____________________________________________________________________________________________________________________ 

       

      

      

      

                                                                                                                                                              

                              
        

 

   
   

   

   
             

        
 

   
    

 

  
       

 
  

 

       

  

Substituting for     from (3) into (7), gives the control input: 

  

  

  
  

  

       

      

      

      

                                                                                                                                        

                          
        

 

   
    

   

   
              

        
 

   
    

 

  
       

 
  

 

       

 

The switching function will negate the influence of the external disturbance, and hence the closed loop system is robust. The 

closed loop dynamics is obtained by substituting the control input from (8) into the original system (3) as given below: 

           

      

      

      

                                                                                                                                                     

                          
        

 

   
    

   

   
             

        
 

   
    

 

  
       

 
  

 

       

 

_____________________________________________________________________________________________________________________

In ideal condition when     , the closed loop dynamics 

equation is independent of the original system parameters 

and the system will be robust when it is sliding on the sliding 

surface. SMC rejects the matched uncertainty or external 

disturbance and the sliding motion is governed by the sliding 

surface parameters. For good performance, it is observed that 

    is of the same order as    
 . Moreover, the value of     

should be chosen to avoid actuator saturation.  

IV. STABILITY OF THE FORMATION 

The stability of the formation can be ensured by following 

a similar approach as given for satellite formation flying 

missions in Planetary Orbital Environments [11]. Assuming 

     in (5), and             is the distance between 

the     and     satellite; the velocity of the     satellite is: 

                         
    

 

   
   

 

       

              



 

 

 

Now expressing (10) in state space form by substituting, 

              
 , gives: 

                           
 

                                       

where          and the terms in   will include all the 

constant terms                 
       . The states should 

not asymptotically tend to zero; but converge towards the 

desired formation distance    . Hence the following 

conditions must be satisfied: 

(i) If                                    then the 

real part of all the eigenvalues of   will be negative, as all 

states should converge towards the origin of the state space. 

(ii) If                                   then the 

real part of some of the eigenvalues of   will be positive, as 

all states will diverge from the origin of the state space. 

The variables    ,    , and     should be so designed that 

the   matrix will obey the above rules. When the sliding 

surface is plotted, it is seen that the motion along the sliding 

surface is not stable for some regions. This property of the 

sliding surface is captured while designing the APF 

parameters, using this stability analysis. The equilibrium is 

reached when the sliding surface is stable and the inter-

satellite distance is as commanded. Plotting the intersection 

of the sliding surface shows the path that the satellites will 

take along the sliding surface to reach the stable equilibrium 

point.  

The stability analysis for the simplified case of only two 

satellites can be proved using Lyapunov’s Direct Method. 

Let us assume the position vectors of the two satellites are    

and   . The final desired inter-satellite separation is    . Let 

            be the present inter-satellite separation 

between them. The velocity vectors for the two satellites are: 

                 where                 
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    and     are so designed that                     ,  

                    and                    . Let 

the Lyapunov function      
 , which is positive definite. 

Differentiating with   respecting to time gives:  

   
 

  
    

   
 

  
        

                                

                        
           

In equation (12), for     , either       or      
 21=0. But if  12 is small (< 12), then  12+ 21<0, 

therefore     , hence system is unstable at this equilibrium 

point. For        ,            , hence     . 

Moreover,      
 , hence     is bounded for all time and 

stable. Hence system will tend to     , i.e.             

and        . Hence the system tends to the stable 

equilibrium position. 

V. SIMULATION RESULTS 

In this section, simulation results are presented for two 

scenarios, where six satellites, each weighing 10 kg, are 

brought from a large initial distance to form an octahedron 

formation with inter-satellite separation of 50 meters and 

then the formation will be reconfigured to a hexagon 

formation with side of 50 meters. 

A. Scenario 1: Octahedron Formation 

First the APF parameters are found such that they satisfy 

the stability criterion. The corresponding   and   matrices 

used in this simulation are: 

  

 
 
 
 
 
 

         

         

         

            

            

            

            

            

            

         

         

          
 
 
 
 
 

 

  

 
 
 
 
 
 

       
        
        

         
         
         

           
           
           

       
       
        

 
 
 
 
 

 

The terms in the   matrix are found using     

           
      , where     is 50 meters between all     and 

    satellites. Fig. 1 shows the plot of the maximum 

eigenvalue of   matrix for these APF variables when the 

inter-satellite distance is varied from 1 to 2000 meters for the 

tetrahedron formation. As expected, for all inter-satellite 

distances less than 50 meters, the maximum eigenvalue of   

is positive and for all inter-satellite distances more than 50 

meters, the maximum eigenvalue of   is negative. 

 

Figure 1: Octahedron Formation: Maximum Eigenvalue of the 

  Matrix 

The six satellites that form the octahedron formation start 

from an initial separation distance of approximately 500m - 

1km. The initial coordinates for the location of the satellites 

are randomly selected as follows: Sat1 (300, 0, 0), Sat2 (0, 

50, 300), Sat3 (10, 300, 0), Sat4 (-10, -30, 0), Sat5 (0, 0, -

100) and Sat6 (-300, -320, -200). It is assumed that each of 

the satellites has three thrusters which produce thrust 

independently along the three axis. The maximum thrust that 

can be produced by each thruster is limited to 7.7 mN per kg, 

as given in [12]. The random external disturbance acting on 

the formation has a maximum bound of ±10
−4

 N. Some of the 

other parameters used for the simulation are             



 

 

 

          and        . The simulation was executed for 

4x10
5
 seconds, which is about 4.5 days. 

 

Figure 2: Octahedron Formation: Aggregation of Satellites 

Table 1. Octahedron Formation: Final Inter-Satellite 

Separation  

 Sat 1 Sat 2 Sat 3 Sat 4 Sat 5 Sat 6 

Sat 1 0.0 47.6 52.0 52.4 54.9 72.3 

Sat 2 47.6 0.0 51.0 69.9 55.0 52.7 

Sat 3 52.0 51.0 0.0 50.5 78.7 53.8 

Sat 4 52.4 69.9 50.5 0.0 54.1 48.3 

Sat 5 54.9 55.0 78.7 54.1 0.0 53.0 

Sat 6 72.3 52.7 53.8 48.3 53.0 0.0 

 

Figure 3: Octahedron Formation: Final Formation with the 

Centre of Mass 

Fig. 2 shows the trajectory of the six satellites as they 

head towards the formation and then slowly drift in a 

particular direction. Fig. 3 shows the final position of the 

satellites in the octahedron formation. The final inter-satellite 

separations are shown in Table 1, which proves that the final 

inter-satellite distances are well within tolerable limits. 

The formation is successfully achieved in 2x10
5
 seconds 

as can be inferred from the inter-satellite distances plotted in 

Fig. 4(a). The simulation results show that the position of the 

Centre of Mass of the formation changes very little while the 

satellites are aggregating towards the formation. The relative 

velocity                between the satellites is shown in 

Fig. 4(b). Once the formation is achieved, the relative 

velocities are very low, i.e. in the range of 8 − 1.5x10
−5

 m/s. 

 

Figure 4: Octahedron Formation: (a) Distance between the 

satellites (b) Relative Velocities between satellites 

 

Figure 5: Octahedron Formation: (a) Norm of the sliding 

surface    (b) Norm of the Force applied by each satellite 

In Fig. 5(a), the norm of sliding surface is plotted, where 

         
     

     
 . The reaching phase is visible and 

the system states hits the sliding surface within 

approximately 2000 seconds. Thereafter the system continues 

in the sliding surface towards the formation. The thickness of 

the boundary layer is less than     . Fig. 5(b) shows the plot 

of the total magnitude of the force required by the individual 

satellites for the formation to be achieved, where      

    
     

     
 . The forces expended by the individual 

satellites are close to the minimum thrust requirements in 

[12]. 

 

 



 

 

 

B. Scenario 2: Reconfiguration from Octahedron to 

Hexagonal Formation 

Next, the above formation was reconfigured to form a 

hexagon with side of 50 meters. The initial conditions are the 

final positions from the previous octahedron formation, 

which are as follows: Sat1 (4.9, 7.7, -28.8), Sat2 (-22.9, -

18.2, -0.1), Sat3 (-35.0, 31.0, -5.1), Sat4 (-38.1, 22.5, -54.8), 

Sat5 (-26.0, -30.2, -53.7) and Sat6 (-66.0, -6.5, -28.1). The 

same   matrix is used. The new   matrix is: 

  

 
 
 
 
 
 

       
       
        

         
         
          

           
           
         

        
        
        

 
 
 
 
 

 

Fig. 6 shows the plot of the maximum eigenvalue of   

matrix for these APF variables when the inter-satellite 

distance is varied from 1 to 2000 meters. The random 

external disturbance acting on the formation has a maximum 

bound of ±10
−4

 N. The simulation was executed for 4x10
5
 

seconds.  

 

Figure 6: Reconfiguration: Maximum Eigenvalue of the   

Matrix 

 

Figure 7: Reconfiguration: Aggregation of Satellites 

Fig. 7 shows the trajectory of the reconfiguration from 

octahedron to hexagonal formation and Fig. 8 shows the final 

position of the square formation. Fig. 9(a) shows the inter-

satellite distances and Fig. 9(b) shows the relative velocity 

between the satellites. The six satellites and the CM are seen 

to drift while the formation is being formed. Fig. 10(a) shows 

the norm of the sliding surface and Fig. 10(b) shows the plot 

of the total magnitude of the force required by the individual 

satellites for the formation to be achieved. The final inter-

satellite separation based on the simulations is shown in 

Table 2. The simulation results presented in this paper clearly 

proves the efficacy of the proposed path planning and robust 

control strategies for small satellite formation flying 

missions. 

 

Figure 8: Reconfiguration: Final Formation with the Centre of 

Mass 

 

Figure 9: Reconfiguration (a) Distance between the satellites (b) 

Relative Velocities between satellites 

Table 2. Reconfiguration: Final Inter-Satellite Separation  

 Sat 1 Sat 2 Sat 3 Sat 4 Sat 5 Sat 6 

Sat 1 0.0 50.4 77.4 94.9 89.2 52.3 

Sat 2 50.4 0.0 50.0 91.2 108.0 82.4 

Sat 3 77.4 50.0 0.0 49.1 82.0 79.3 

Sat 4 94.9 91.2 49.1 0.0 46.2 72.4 



 

 

 

Sat 5 89.2 108.0 82.0 46.2 0.0 47.4 

Sat 6 52.3 82.4 79.3 72.4 47.4 0.0 

 

 

Figure 10: Reconfiguration: (a) Norm of the sliding surface    

(b) Norm of the Force applied by each satellite   

VI. CONCLUSIONS 

This paper presents a new method for stability analysis of 

satellite formations and reconfigurations in Deep Space 

Environment. The results presented in the paper prove the 

stability of the formation once the system trajectories hit the 

respective sliding surface and converge to form the desired 

geometry. The stability analysis presented in this paper is 

different from the conventional definition of stability in 

which, the origin of the state space is the stable point. 

However, this analysis shows that the stable configuration is 

represented by the desired final geometry. Moreover, it is 

shown that the artificial potential field based sliding mode 

controller results in robust performance in the presence of 

external disturbance in Deep Space. Simulation results prove 

the efficacy of the proposed approach for formation and 

reconfiguration missions using six satellites for forming an 

octahedron and then reconfiguring to a hexagonal formation. 

This method of path planning and controller design is 

computationally less expensive and various formation 

scenarios using any number of satellites can be achieved by 

appropriate tuning of the APF and controller parameters. It is 

envisaged that this concept can be extended to small satellite 

swarms in future. In this study, continuous-time model has 

been used, hence further research is needed for developing 

new control algorithms using discrete-time model for 

practical applications. 
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