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Abstract—This paper presents a new adaptive methodology 
for sliding mode control of a nonlinear dynamical system in the 
presence of unknown, but bounded uncertainties. A continuous 
control law is first developed to compensate for the uncertainties 
and this Lyapunov-based approach eliminates chattering by 
replacing a discontinuous signum function with a continuous 
function. By investigating the relation between the estimated gain 
with respect to the real unknown uncertainties and the resultant 
sliding variable, a new adaptive tuning law is obtained to ensure 
that the gain update is performed in real time and the resulting 
error is bounded within a user-specified value. The proposed 
adaptive algorithm is simple and easy to implement, and an 
inverted pendulum problem serves to demonstrate the accuracy 
and effectiveness of the control methodology proposed herein.  

Keywords—adaptive sliding mode control; chattering; 
nonlinear uncertain systems; Lyapunov stability 

I. INTRODUCTION 
The control methodology applied to a real-life situation 

must be robust in that it should still satisfy desired control 
requirements in the presence of uncertain parameters and 
disturbances. Sliding mode control (SMC) is widely adopted 
for controlling nonlinear uncertain systems in various fields of 
study [1-4]. The use of a discontinuous function and high 
control gain characterizes conventional sliding mode control, 
which guarantees good robustness and the finite-time 
convergence. However, it inevitably leads to the well-known 
“chattering” phenomenon, which may damage actuators, 
degrade the control performance, and sometimes make the 
system unstable. 

The most common way to reduce chattering is the use of a 
boundary layer [5,6]. However, as noted by in [7] this approach 
sometimes does not completely remove chattering so a 
proportional, integral, derivative (PID) control of sliding 
surface function is proposed [7]. Some problems can be 
handled using this approach, but the existence of the PID 
control gains satisfying the reachability condition is not always 
guaranteed. Another method to suppress the chattering 
phenomenon is to use higher order sliding mode control 
(HOSMC) [8-9] or the super twisting algorithm [10]. Although 
HOSMC indeed reduces chattering, its algorithm is generally 
complicated to realize in real, actual systems. In [11,12] simple 
continuous SMCs are derived that completely avoid chattering. 

Since a continuous function is employed, robustness is 
compromised (i.e., the sliding variable does not exactly 
converge to zero) but the errors can be made as arbitrarily 
small as desired. One drawback of this continuous SMC is that 
it requires prior knowledge about uncertainties bound. In fact, 
the other approaches (boundary layer approach, PID-type 
SMC, HOSMC) also have the same problem. Adaptive sliding 
mode control [13,14] is proposed to ensure an adaptation of the 
control gain without the knowledge of the uncertainty bounds. 
The main focus lies in the adaptation of the gain to the smallest 
possible value while still sufficiently counteracting the 
uncertainties. Nonetheless, since a discontinuous function is 
used in the controller, chattering is still present although it can 
be mitigated. 

The objective of this paper is to propose a simple adaptive 
law for robust control of a nonlinear uncertain system whose 
uncertainty bounds are not known. After deriving a continuous 
SMC, a relation between the estimated gain and the resultant 
sliding variable is investigated to develop a new adaptive 
tuning algorithm that still guarantees the bounded error within 
a user-specified value. Since only a continuous function is used 
in the controller, chattering completely vanishes. Effectiveness 
of the proposed controller is verified by simulating a numerical 
example in which an inverted pendulum is to be controlled 
within a pre-defined error bound under uncertain system 
parameters and disturbances. 

II. PROBLEM STATEMENT  
Let us first consider the nonlinear uncertain system 


       

   
, ( ) , ( ) ,

( ) ,

t t t t t u t

y t h t

 



x f x g x

x


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where   nt Rx  is the state vector,  u t R  is the control 
input,  y t R  is the system output, and  h x  is the output 
function. Functions  ,tf x  and  , 0t g x  are smooth and 
uncertain, and they are assumed to be bounded for x . 
Denoting the error vector  e t  as 
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       ,de t y t y t    

where  dy t  is the desired output, then the sliding variable 

 s t  is defined as follows: 

          ( 1) ( 2)
1 2 1: ,n n

ns t e t e t e t e t   
       

where the constant coefficients 1 2 1,  , ,  n     comprise a 
Hurwitz polynomial. In (3), the superscript ( 1)n   denotes the 
( 1)n  th time derivative. Assuming that the sliding variable 
 s t  admits a relative degree equal to 1 with respect to  u t  

and one can represent  ( )ny t  in the form of 

        ( ) , , ,ny t t b t u t x x   

where  ,t x  and  , 0b t x  are unknown, then the system 
(1) does not have internal dynamics because the relative degree 
of the system (1) is equal to the system’s order. From here on 
for brevity, the arguments of the various quantities will be 
suppressed unless required for clarity. Differentiating (3) with 
respect to time yields 
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  

where    ( ) ( 1)
1 2 1, : n n

d nz t y e e e   
     x    is defined. 

The functions  ,z t x  and  ,b t x  are supposed to be such 
that 

  , ,  0 .m Mz t b b b    x   

It is noted that the positive constants  , mb , and Mb  exist, but 
are not known. The aim is then to propose a new sliding mode 
controller  u t  that does not suffer from chattering “without” 
any information on uncertainties. 

III. CHATTERING-FREE SLIDING MODE CONTROL 
First, the bounds  , mb , and Mb  in (6) are assumed to be 

known in this section. An adaptive tuning law will be given in 
the next section. Let us define a Lyapunov function L  as 

 21 .
2

L s   

Its time derivative is given by 

  ,L ss s z bu      

where (5) is used. Consider the following control law: 

 ,
m

u s
b


    

where   is a (small) positive constant which will be shortly 
explained in detail. Then, the following theorem holds. 

Theorem 1 Given the nonlinear uncertain system (1) 
controlled by (9), the state trajectories of (1) are forced to move 
from initial conditions to the region  s t   in a finite time 
and remain in the region.                                                           ■ 

Proof. Substituting (9) into (8), one gets 


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   
  
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  

where 2 1
m

b s
b




 
   

 
 is positive in the region  s t   

holds. Hence, the state trajectories of (1) controlled by (9) 
converge to the region  s t   in a finite time and remain in 
the region thereafter, which completes the proof.              ■ 

Corollary 1 Let us consider a second-order  2n   system. If 
the sliding variable s  given by 1s e e   is bounded by 
s  , then as time progresses, the actual error e  and its time 

derivative e  are eventually bounded by 1/e    and 
2e  , respectively.                                                                ■ 

Proof. From the definition of s , one has 

 1e e        

and let us first consider the following condition: 

 1 .e e     

Then, from Grönwall’s inequality [15], one has 

281



 

  0 1 0
1 1

exp ,e e t t 
 

 
        
 

  

where  0 0:e e t  is defined. Next, consider the following 
condition: 

 1 ,e e      

then, following the same procedure one can obtain a similar 
result. 

  0 1 0
1 1

exp .e e t t 
 

 
        
 

  

Combining the two, the error is bounded by 

    0 1 0 0 1 0
1 1 1 1

exp exp .e t t e e t t   
 

   
   

                  
   

 

Since 1  is positive, the exponential term decays rapidly and 


1 1

.e 
 

     

Next, using the above inequality and the definition of s , it 
is straightforward to show that 

 2 2 ,e      

and this completes the proof.                                                     ■ 

IV. NEW ADAPTIVE RULES FOR CHATTERING-FREE SLIDING 
MODE CONTROL 

In the previous section, it is shown that the use of the 
control law (9) makes the sliding variable bounded by s  . 
Although it does not guarantee that the sliding variable will be 
effectively equal to zero, one can always choose a small 
number   to guarantee a pre-defined upper bound.  

One drawback of the control law (9) (and the conventional 
sliding mode controller) is the requirement on the knowledge 
of the uncertainty bounds. In practice, it is generally very 
difficult to accurately estimate these bounds. However, one can 
observe from (9) that increasing the value of   or decreasing 
the value of  mb  is mathematically equivalent to decreasing the 
value of  , resulting in smaller s , and accordingly, smaller 
errors. For example, assume that one could obtain exact values 
for the bounds   and mb , then one has s  . Since one does 
not know the exact values for the bounds in practice, however, 
suppose that the estimates 0  and ,0mb  are tried. If   is the 

(unknown) number that equates the two terms 0 ,0/ mb  and 
/ mb  by 0 ,0/ /m mb b   , then the sliding variable will be 

bounded by /s   . More generally, let us assume that 1s  is 
the sliding variable when the first estimates 1  and ,1mb  are 
used and 2s  is the one when the second estimates 2  and ,2mb  
are employed, while the same   is assumed in both cases. 
Then, the following equality holds: 

    1 2
1 2

,1 ,2

sup sup .
m m

s s
b b
 

   

One can also deduce from (9) and (19) that the maximum value 
of the magnitude of the control input (i.e.,  max u ) is 
unchanged by the choices for the bounds of   and mb , which 
will be used to derive an adaptive law. This observation 
provides us with one method to estimate the quantity / mb . 
Assume that rough estimates for the bounds   and mb  are 
applied and the resultant measured sliding variable s  is 
bounded by   so that s   . Then, the real (unknown) gain 
value * */ mb  can be calculated by 


*

* ,
m mb b




 

 
   

where   is the desired bound for s . Although (20) can serve 
as a new method for the estimation of the bounds, the 
following adaptive rule provides us with a succinct solution for 
“real-time” tuning.  

Adaptive Rule Let 0  and ,0mb  be the initial estimates. The 
real-time adaptive law for the gain / b  for the control law (9) 
is given by the following rules: 

  (i) At each instant of time,  s t  is compared with  . When 

 s t  , / mb  maintains its current value (with 0  and ,0mb  
as the initial conditions). In discrete time implementation, it 
can be expressed as 


( 1) ( )

( ),  if .
k k

k

m m

s
b b




    
    

   
  

where the superscript “k” denotes the quantity at the kth scan 
time. 

(ii) If  s t   at time t , then / mb  should be updated to be 
multiplied by   /s t   and added by a small positive constant 

mK . In discrete time implementation, it can be expressed as  
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( 1) ( ) ( )

( ),  if .
k k k

k
m

m m

s
K s

b b





    

      
   

  

Finally, / mb  determined by (21) and (22) should maintain its 
maximum of all past values.                                                      ■                                             

Proof. Roughly speaking, when  s t   holds, it means that 

the current gain / mb  is not enough to suppress  s t  less 
than  . Then, the adaptive law (22) increases the gain / mb  
until the condition  s t   is achieved, which is guaranteed 
by (20). It is noted that if the initial gain 0 ,0/ mb  is greater 
than or equal to the real unknown gain * */ mb , then (21) holds 
and the gain / mb  remains constant. On the other hand, if the 
selected 0 ,0/ mb  is smaller than * */ mb , the gain / mb  
increases by following (22) until * */ /m mb b    is attained. 

For brevity, the notation / mK b   is used for the current 
gain value. Likewise, the initial gain is denoted by 

0 0 ,0/ mK b   and the real gain is written as * * */ mK b  . 
Now, let us define the following Lyapunov candidate function: 

  22 *1 1 ,
2 2

V s K K


     

where   is a positive constant. It should be noted that the 
condition *

0K K K   is always satisfied because the time 
derivative of K  is always zero or positive by (21) and (22). 

The time derivative of the Lyapunov function (23) yields 



 

   

 

 

*

*

*

*

1

1

1

1 ,

V ss K K K

s z bu K K K

bKs z s K K K

bKs s K K K





 

 

  

   

     
 
      
 

 







  

where z    is used. 

First, the case when s   is considered. Then, (24) 
satisfies 



   

   

*

* * *

*

1

1

1 ,s

V s bK K K K

s bK K K K s bK s bK

s K K b s K








    

      

 
      

 

 





  

where  * / 1 0s m mb K b b     is defined and 
* *K K K K     is used because *K K . Now, a 

parameter 0K   is introduced in (25) as 


* * *

*

1

,

s K K

s K

V s K K b s K K K K K

s K K

  


  

 
          

 

    

 
 

where  * / KK K b s K        is defined. Finally, 
(26) leads to 

  

*

*

1/2

2 2
2 2

min 2, 2
2 2

,

s K

s K

K Ks
V

K Ks

V

   


   


 


     

 
    
 
 

   



  

where  2 min , 0.s K       

It is noted that it is always possible to make 0   by a 
proper selection of   that is not included in a design 
parameter of control. The condition 0   yields 


1 0  .K

K

Kb s K
b s

 
 

     


   

Using (22), K  can be approximately written as 


1

,
m

s
K K

K
t


 

  
 


    

where t  is the step size. With (29), (28) becomes 


 

1
.

m

K

s
K K

t b s





 
  

 
 

  

Now, with the condition s  ,   can be selected so that it is 
smaller than the right hand side of (30), or 


 max

,m

M K

K
t b


 


 

  

where t  is the maximum step size and Mb  is the upper bound 
for b  as noted in (6). 

283



 

Finally, from (27), one has 1/2 1/2V V V         , 
and hence, finite time convergence to the region s   is 

guaranteed from the time when s  starts to exceed  . 

Next, let us consider the case when s   holds. In this 
case, the gain K  maintains its previous value by (21) and   
may not be positive so that V  is sign-indefinite and s  may 
exceed  . However, as soon as it becomes larger than  , 

1/2V V    holds and s  will be again bounded by s   in 
a finite time, as shown earlier. 

In brief, the adaptive rule (21) and (22) guarantees that 
the sliding variable will be bounded within the region s   
in a finite time from any initial condition and will remain in 
the region thereafter, which completes the proof.                    ■             

The adaptive rule (21) and (22) is alternatively represented 
in a more compact form like the following: 

  (i) At each instant of time, / mb  is compared with  u t . 
When  / mb u t  , / mb  maintains its current value. (with 

0  and ,0mb  as the initial conditions) In discrete time 
implementation, it can be expressed as 


( 1) ( ) ( )

( ),   if .
k k k

k

m m m

u
b b b


       

      
     

  

  (ii) If  / mb u t   at time t , then / mb  should be updated 

to   mu t K  with mK  being a positive constant. In discrete 
time implementation, it can be expressed as  


( 1) ( )

( ) ( ),   if .
k k

k k
m

m m

u K u
b b


    

     
   

  

It is not difficult to show that (32) and (33) are identical 
with the adaptive rule (21) and (22) using the definition of the 
control law (9).      

V. NUMERICAL EXAMPLE 
The new adaptive SMC proposed in this paper is applied to 

an inverted pendulum problem with uncertain parameters and 
disturbances. Numerical integration in this example is carried 
out in the Matlab/Simulink environment, using a fixed time 
step of 0.001 second and the ode4 Runge-Kutta integrator. 

Let us consider an inverted pendulum system whose 
equation of motion is described by 

      cos .x c t x a x bu d t       

The (unknown) parameters of the actual system are 3.2a  , 
   0.5 0.2sinc t t  , 1.1b  , and the disturbance is 

   2sin 0.1d t t . Suppose that the output y  is y x  and 
the desired trajectory is  sin 0.2dy t . Since (34) is a 
second-order system, the sliding variable is given by 

      1 ,s t e t e t    

where 1 2   is assumed. Also, the control law (9) with 
0.01   is used for the simulation so that the resultant error is 

bounded by 1/ 0.005e    by Corollary 1. The initial 
conditions are  0 0x   and  0 0.2x  , and  0 0e   and 

 0 0e   are assumed. 

Case 1. Since one cannot exactly measure the uncertainty and 
the disturbance, let us first try ˆ 7   and ˆ 2mb  . Figure 1 
shows the time history of the sliding variable  s t , the error 

 e t , and the required control input  u t . It is observed that 

s  is not bounded by  , and  sup 0.01326s   which is 
greater than  . With this observation, the real uncertainty can 
be calculated using (20): 

 4.6423.
m mb b




 
 
 
   

Case 2. Now one can choose 4.6423   and 1mb   obtained 
in (36). In Fig. 2,  s t ,  e t , and  u t  are depicted. As 
desired, s  is precisely bounded by   and e  is bounded by 

1/  . Also, the magnitude of the control input u  remains 
almost the same, when compared with Case 1. 

Case 3. In this case, the adaptive law given by (32) and (33) 
with 0.001mK   is verified. It is noted that mK  should be 
small enough not to produce any sudden rise in the control 
gain, the sliding variable, or the control input. The result is 
shown in Fig. 3. As in Case 1, 7   and 2mb   is chosen, 
hence, / 3.5mb   at the initial time. At 42.1755t  , u  

starts to exceed this value. / mb   is accordingly updated by 
following mu K , and has the final value of / 4.6433mb   

which is also equal to  max mu K . Although it is initially 

under-estimated, the uncertainty / mb   is successfully tuned 
in real time. As a result, s  is bounded by   and e  is also 
always maintained less than 1/   as desired. In addition, the 
adaptive controller does not suffer from chattering. 
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Fig. 1  s t ,  e t , and  u t  when 7   and 2mb   

 
Fig. 2  s t ,  e t , and  u t  when 4.6423   and 1mb   

 
Fig. 3  s t ,  e t ,  u t , and / mb  when the adaptive rule (32) and (33) is 

applied 

VI. CONCLUSIONS 
A new adaptive tuning method for continuous sliding mode 

control is proposed for an uncertain nonlinear system whose 
system parameters and disturbances are not known. The 
developed algorithm successfully guarantees that the error 
remains within a user-specified bound without knowing 
uncertainty bounds. The methodology exploits the fact that the 
maximum of the magnitude of the control input is independent 
of the choice of the estimates for the uncertainty bounds. The 
information on the magnitude of the control input is employed 
for on-line tuning so that the gain update is readily 
implemented in real time, which eases the application of the 
suggested algorithm to real-world systems. The inverted 
pendulum system validates the efficacy of the new adaptive 
sliding mode controller. 
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