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Abstract— The continuous stirred tank reactor (CSTR) is a
typical element of equipment frequently found in the process
industry. The control of a CSTR is very challenging due to its
nonlinear dynamics and the presence of external disturbances.
In this paper, a novel discrete time sliding mode control method
for the CSTR is presented. Then a disturbance observer is
designed to eliminate the effect of external disturbances on
the CSTR system. Stability analysis is presented based on
the Lyapunov method. Finally, the control performance of the
proposed method is validated by using MATLAB simulation
experiments.

Index Terms— discrete time sliding mode control; distur-
bance observer; continuous stirred tank reactor

I. INTRODUCTION

The strongly nonlinear and coupled nature of chemical
processes provide particular challenges for control. Accurate
and robust control of such processes is however essential
to ensure the appropriate quality of chemical products. The
CSTR is representative of a class of typical chemical process
equipment. It is attractive from the point of view of costs
and can ensure stable product quality, which makes it be
widely used in the chemical industry [1]. However, due
to the complexity and non-linearity of the CSTR system,
traditional control methods such as PID [2], robust control
[3], adaptive control [4] may not yield the required high
control performance. Various advanced control methods have
been proposed for the CSTR such as fuzzy control [5],
predictive control [6] and sliding mode control [7].

Sliding mode control (SMC) is a special class of variable
structure control and is known to exhibit excellent robustness
properties. There are many successful applications studies
which use SMC in the CSTR system [8]. However, most
of the existing SMC algorithms applied to the CSTR are
continuous in nature. In terms of implementation in industry
which is likely to be computer based, it is of interest to
explore discrete time SMC [9][10]. Direct discretisation of
a continuous sliding mode control algorithms may induce
large chattering, discretization errors, or even instability. In
order to solve these issues, discrete time sliding mode control
(DSMC) theory has been developed.

A large number of DSMC methods have been proposed
in the literature [11][12]. One of the most commonly used
methods is the reaching law based DSMC proposed by
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Gao et al [13]. The concept of DSMC was proposed in
[14] and employed the reaching law method from [15].
The reaching law method has many advantages, such as
simplifying the design process of DSMC and maintaining
the overall robustness of the control system [16]. However,
the property of total invariance to matched uncertainty which
is exhibited in continuous time is lost, and chattering will
occur due to the discontinuous control term. In practice, the
system state trajectory in DSMC is restricted by the reaching
law but it cannot move along the sliding surface. The area
in which the system state moves near the sliding surface is
called the quasi-sliding mode domain [17]. Therefore, the
system states cannot reach to the equilibrium point and will
perform a zigzag movement around the equilibrium point.
The analysis in [18] shows that the chattering is caused by the
control method, which is closely related to the sampling time
and switching frequency. In theory, to eliminate chattering,
the switching frequency must be infinite, which is impossible
in practice. This motivated the original work by Utkin, who
proposed a DSMC to achieve chatter free motion with a finite
sample time. This early work developed DSMC for linear
systems [18].

Practical systems frequently are subject to disturbances,
and the existence of disturbances may affect the control per-
formance. If the disturbance can be estimated, it is possible to
eliminate or minimise the effects [19][20]. In recent decades,
the notion of a disturbance observer has been extensively
studied and applied within controller design frameworks
[21][22]. In [23], disturbance observers for discrete-time
nonlinear systems are designed, and the gains of the dis-
turbance observers need to be obtained via solution to an
LMI. In [24], an algorithm is developed to exactly decouple
the disturbance estimation dynamics from the sliding mode
dynamics. Such DSMC schemes incorporating a disturbance
observer typically use the reaching law approach which may
lead to chattering [25].

Inspired by the existing literature, this study proposes
a novel discrete sliding mode control law to stabilize the
nominal CSTR system. Then a disturbance observer is de-
signed to eliminate the effects of an external disturbance.
In comparison with the reaching law based DSMC[26], the
proposed approach designs a novel DSMC using Uktin’s
method, which is known to reduce the chattering effec-
tively; in comparison with Utkin’s DSMC approach [18],
the proposed approach is designed for a class of nonlinear
systems and incorporates a disturbance observer. The method
is shown to provide good control of a CSTR.

The remainder of this paper is organized as follows.



Section II presents the CSTR dynamic model as well as
some definitions that will be used in the subsequent sections.
In Section III, a novel DSMC is proposed and applied to
a nominal model of the CSTR. Section IV extends the
DSMC concept to include a disturbance observer. Section V
evaluates the performance of the designed controller using
MATLAB simulations. Finally, section VI concludes this
paper.

II. PROBLEM DESCRIPTION

The diagram of the CSTR is shown in Fig. 1 and a
nondimensional dynamic model from [27] is given by

ẋ1 = −ax1 +Da(1− x1) exp(
γx2

γ + x2
)

ẋ2 = −ax2 − bDa(1− x1) exp(
γx2

γ + x2
)

+ β(u− x2 + d)

y = x2

(1)

wherex1 ∈ R is the concentration,x2 ∈ R is the tempera-
ture,u ∈ R is the control input,y ∈ R is the system output
andd ∈ R is the external disturbance. The parameters of the
dynamic model are given by:a, β, γ, b andDa, which are
all positive constants.

Fig. 1. The model of CSTR

From equation (1), a discrete time model of the nonlinear
CSTR system can be obtained by using the Euler difference
method as follows

x1 (k + 1) =

[

−ax1 (k) +Da (1− x1 (k)) e

(

γx2(k)

γ+x2(k)

)
]

T

+ x1 (k)

x2 (k + 1) =

[

−ax2 (k) + bDa (1− x1 (k)) e

(

γx2(k)

γ+x2(k)

)

+β (u (k)− x2 (k) + d (k))]T + x2 (k)

y(k) = x2(k)
(2)

For the sake of simplicity, this model can be rewritten as

x1 (k + 1) = f1 (x (k))

x2 (k + 1) = f2 (x (k)) + g (u (k) + d (k))
(3)

where

f1 (x (k)) =

[

−ax1 (k) +Da (1− x1 (k)) e

(

γx2(k)

γ+x2(k)

)
]

T

+ x1 (k)

f2 (x (k)) =

[

−ax2 (k) + bDa (1− x1 (k)) e

(

γx2(k)

γ+x2(k)

)

−βx2 (k)]T + x2 (k)

x (k) = [x1 (k) , x2 (k)]
T , g = βT , d(k) is the disturbance

existing in the system.
Define the tracking error of the controlled system:

e (k) = y (k)− r

= x2 (k)− r
(4)

wherer ∈ R is the desired value ofx2 and it is a constant.
The corresponding sliding variable is defined by

s(k) = ce(k) (5)

wherec > 0 is a constant.

III. SLIDING MODE CONTROLLER DESIGN

From equation (3), the nominal model of the CSTR system
can be described as

x1 (k + 1) = f1 (x (k))

x2 (k + 1) = f2 (x (k)) + gu (k)
(6)

s(k + 1) can be obtained from (5):

s(k + 1) = ce(k + 1)

= c (x2 (k + 1)− r)

= c (f2 (x (k)) + gu (k)− r)

(7)

To make the state ofx2 (k + 1) converge to the desired
valuer in a finite number of steps,s (k + 1) should be zero,
and the control input can be derived from (7) as

u (k) = −g−1 (f2 (x (k))− r) (8)

The control input in (8) is the equivalent control which
can be rewritten as the sum of two functions:

ueq (k) = −(cg)
−1

(s(k) + c (f2 (x (k))− x2 (k))) (9)

and

s(k + 1) = s(k) + c (f2 (x (k)) + gu (k)− x2 (k)) (10)

To avoid ueq (k) exceeding actuator limitations, the
bounds of the control must taken into account. Assume the
practical inputu (k) is bounded by‖u (k)‖ ≤ u0. The
corresponding control law is defined by

u (k) =

{

ueq (k) ‖ueq (k)‖ ≤ u0
ueq(k)

‖ueq(k)‖
u0 ‖ueq (k)‖ > u0

(11)

Whenu (k) = ueq (k) for ueq ‖(k)‖ ≤ u0, the system is
already in the sliding modes = 0, therefore only the case
‖ueq (k)‖ > u0 needs to be proved.
Assumption 1: The available control limitsu0 are satisfied
with u0 >

∥

∥

∥
(cg)

−1
∥

∥

∥
‖c (f2 (x (k))− x2 (k))‖.

Theorem 1: If the control law is designed as (9) and (11)



under Assumption 1, then the closed-loop control system will
be asymptotically stable.
Proof:

Select a Lyapunov candidate function as

V (k) = ‖s (k)‖ (12)

According to the form of the control law, there are two cases
to be considered.
(1) For the case‖ueq (k)‖ ≤ u0.

It is obvious that‖s (k + 1)‖ = 0 ≤ ‖s (k)‖ whenu (k) =
ueq (k), hence the system is stable.
(2) For the case‖ueq (k)‖ > u0.

From equation (7) and equation (11), it follows that

s(k + 1) = (s(k) + c (f2 (x (k))

−x2 (k)))

(

1−
u0

‖ueq (k)‖

)

(13)

so

‖s(k + 1)‖ = ‖(s(k) + c (f2 (x (k))

−x2 (k)))‖

(

1−
u0

‖ueq (k)‖

)

≤ ‖s(k)‖+ ‖c (f2 (x (k))− x2 (k))‖

−
u0

∥

∥

∥
(cg)

−1
∥

∥

∥

< ‖s(k)‖

(14)

Appealing to Assumption 1, u0 >
∥

∥

∥
(cg)

−1
∥

∥

∥
‖c (f2 (x (k))− x2 (k))‖. It follows that

‖s(k + 1)‖ < s(k) and the system is asymptotically
stable.

IV. DISTURBANCE OBSERVER BASED SLIDING
MODE CONTROLLER DESIGN

The dynamic model of the CSTR in the presence of
disturbances is given by

x1 (k + 1) = f1 (x (k))

x2 (k + 1) = f2 (x (k)) + g (u (k) + d (k))
(15)

In this case,s(k + 1) can be derived as

s(k + 1) = ce(k + 1)

= c (x2 (k + 1)− r)

= c (f2 (x (k)) + gu (k) + gd (k)− r)

(16)

The control law is defined as

u (k) = u1 (k) + u2 (k) (17)

whereu1 (k) is designed to stabilize the nominal portion of
the dynamic model andu2 (k) is designed to eliminate the
effect of the disturbance on the closed-loop system. As in
the nominal case,u1 (k) (9) is given as

u1 (k) = −(cg)
−1

(s(k) + c (f2 (x (k))− x2 (k))) (18)

To deal with the effect of the disturbance,u2 (k) is designed
as

u2 (k) = −d̂ (k) (19)

where d̂ is the output of a disturbance observer; this repre-
sents an estimate of the disturbanced (k). The disturbance
observer is defined by

d̂ (k) = d̂ (k − 1) + µ(cg)
−1

s (k) (20)

Define the estimation error by

d̃ (k) = d (k)− d̂ (k) (21)

Assumption 2: The rate of change of the external dis-
turbance satisfies|d (k + 1)− d (k)| < m and is assumed
small.

The estimation error dynamics are given by

d̃ (k + 1) = (1− µ) d̃ (k) + d (k + 1)− d (k) (22)

where0 < µ < 1 is constant.
Lemma 1: If |d (k + 1)− d (k)| < m is satisfied, then the
disturbance observer error will be bounded, that is,d̃ (k) will
decrease to a small residual setm/µ [24].

After a finite number of steps, the disturbance observer
tracking errord̃ (k) will satisfy

d̃ (k) < m/µ (23)

and if m is small enough,̃d(k) will converge to zero.
From the definition of the control input (17), substitute

(18) and (19) intos (k + 1) to yield

s (k + 1) = c (f2 (x (k)) + g (u1 (k) + u2 (k))

+gd (k)− r)

= cgd̃ (k)

(24)

Then d̃ (k) is given by

d̃ (k) = (cg)
−1

s (k + 1) (25)

According to (22)

d̂ (k + 1) = d̂ (k) + µ(cg)
−1

s (k + 1) (26)

As in the case of the nominal control law (11), the practical
bounds for the controlu (k) should be taken into account to
avoid exceeding the actuator limitations. Assume the input
u (k) is bounded by‖u (k)‖ ≤ u0. Then the control law can
be defined by

u (k) =

{

u (k) ‖u (k)‖ ≤ u0
u(k)

‖u(k)‖u0 ‖u (k)‖ > u0
(27)

Assumption 3: The available control limitsu0 satisfy
u0 > (‖cf2 (x (k)) + cgd (k)‖)

−1
∥

∥

∥
(g)

−1
f2 (x (k))

+d̂ (k)
∥

∥

∥

(∥

∥

∥
cgd̃ (k)

∥

∥

∥
+ ‖c (f2 (x (k))− x2 (k)) + cgd (k)‖

)

.
Theorem 2 : If the control law is designed as (27) and the
disturbance observer is designed as (20) using Assumptions
2 and 3, then the closed-loop control system will be
asymptotically stable.
Proof:

Select a Lyapunov candidate function as

V (k) = ‖s (k)‖ (28)



According to the control law (27), there are two cases to
consider.
(1) For the case‖u (k)‖ ≤ u0.

‖s (k + 1)‖ = ‖c (f2 (x (k)) + gu (k) + gd (k)− r)‖

=
∥

∥

∥
cgd̃ (k)

∥

∥

∥

(29)

According to Lemma 1 and (23), it can be shown that after
a finite number of stepss(k + 1) satisfies

||s(k + 1)|| =
∥

∥

∥
cgd̃ (k)

∥

∥

∥

≤ cgm/µ
(30)

Whenµ is small enough.

||s(k + 1)|| → 0

(2) For the case‖u (k)‖ > u0.

s (k + 1) = s (k)+c (f2 (x (k)) + gu (k) + gd (k)− x2 (k))
(31)

Then

‖s (k + 1)‖ = ‖s (k) + c (2 (x (k)) + gu (k) + gd (k)

−x2 (k))‖

=

∥

∥

∥

∥

s (k) + c

(

f2 (x (k)) + g

(

u (k)

‖u (k)‖
u0

)

+ gd (k)

−x2 (k))‖

≤ ‖s (k) + c (f2 (x (k))− x2 (k))

+cgd (k)‖

(

1−
u0

‖u (k)‖

)

+
∥

∥

∥
cgd̃ (k)

∥

∥

∥

≤ ‖s (k)‖+ ‖c (f2 (x (k))− x2 (k)) + cgd (k)‖

− ‖cf2 (x (k)) + cgd (k)‖
u0

‖u (k)‖
+
∥

∥

∥
cgd̃ (k)

∥

∥

∥

= ‖s (k)‖+ ‖c (f2 (x (k))− x2 (k)) + cgd (k)‖

− ‖cf2 (x (k)) + cgd (k)‖
u0

∥

∥

∥
(g)

−1
f2 (x (k)) + d̂ (k)

∥

∥

∥

+
∥

∥

∥
cgd̃ (k)

∥

∥

∥

≤ ‖s (k)‖
(32)

According to Assumption 3, the closed loop system will be
asymptotically stable.

V. SIMULATION ANALYSIS

The proposed control approach is now validated using
MATLAB on a nonlinear CSTR model. The parameters of
the dynamic equation of the CSTR are given as:a = 1.0,
β = 0.3, γ = 20.0, b = −8.0, Da = 0.072, T = 0.05,
u0 = 50. The initial values of the states are chosen as
x1 = 0.5, x2 = 3 and the reference output is chosen as
r = 4.
Case 1:DSMC in the absence of disturbance.
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Fig. 2. x1 performance of the DSMC controller for the nominal CSTR
system without disturbance
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Fig. 3. x2 performance of the DSMC controller for the nominal CSTR
system without disturbance
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Fig. 4. The control input of the DSMC controller for the nominal CSTR
system without disturbance

The control performance for the CSTR is shown in Fig. 2,
Fig. 3 and Fig. 4. In the absence of the external disturbance,
the closed-loop system performs very well and the control
input is bounded. It can be seen from Fig. 2 and Fig. 3 that
the proposed control has good convergence speed and there
is no chattering.
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Fig. 5. The output of disturbance observer when disturbanceis rectangular
wave
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Fig. 6. Comparison ofx1 between DSMC with and without disturbance
observer for rectangular wave disturbance
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Fig. 7. Comparison ofx2 between DSMC with and without disturbance
observer for rectangular wave disturbance
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Fig. 8. Comparison ofu between DSMC with and without disturbance
observer for rectangular wave disturbance

0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

time(s)

d

 

 

Practical d
Estimation of d

Fig. 9. The output of disturbance observer when disturbanceis sine wave
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Fig. 10. Comparison ofx1 between DSMC with and without disturbance
observer for sine wave disturbanced = 4sin(0.2πt)

Case 2:Disturbance observer based DSMC in the pres-
ence of a rectangular wave disturbance.

The output of the disturbance observer is shown in Fig.
5 when the disturbance is a rectangular wave. Fig. 6 and
Fig. 7 show the tracking performance when the DSMC is
augmented with and is without the disturbance observer. Fig.
8 shows the control input signals. It can be seen from Fig. 6



and Fig. 7 that the DSMC with disturbance observer exhibits
stronger robustness in the presence of a rectangular wave
disturbance.
Case 3:Disturbance observer based DSMC in the presence
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Fig. 11. Comparison ofx2 between DSMC with and without disturbance
observer for sine wave disturbanced = 4sin(0.2πt)

0 2 4 6 8 10
−10

0

10

20

30

40

50

time(s)

u

 

 

Without Disturbance Observer
With Disturbance Observer

Fig. 12. Comparison of u between DSMC with and without disturbance
observer for sine wave disturbanced = 4sin(0.9πt)

of a sine wave disturbance.
Fig. 9 shows the output of the disturbance observer when

the external disturbance is the sine waved = 4 sin(0.2πt).
Fig. 10 and Fig. 11 show the tracking performance when
the DSMC is implemented with and without the disturbance
observer, respectively. Fig. 12 shows the control inputs.
It can be seen from Fig. 9 that the implementation with
the disturbance observer has better performance when the
disturbance is a sine wave. It can be seen from Fig. 10
and Fig. 11 that the DSMC with disturbance observer has
stronger robustness to the sine wave disturbance. From Fig.
12, the control input in the presence of the sine wave
disturbance is smoother than the control input in Fig. 8 as
may be expected from the characteristics of the disturbance;
no chattering is induced by the proposed scheme.
Case 4: Comparisons of the control performance of the
disturbance observer based DSMC in the presence of high
and low frequency sine wave disturbances.
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Fig. 13. The output of disturbance observer when disturbance is sine wave
d = 4sin(0.9πt)
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Fig. 14. Comparison ofx1 between disturbanced = 4sin(0.9πt) and
disturbanced = 4sin(0.2πt)
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Fig. 15. Comparison ofx2 between disturbanced = 4sin(0.9πt) and
disturbanced = 4sin(0.2πt)

Fig. 13 presents the output of the disturbance observer
when the external disturbance is a higher frequency sine
waved = 4 sin(0.9πt). Fig. 14, Fig. 15 and Fig. 16 show the
performances ofx1, x2 andu in the presence of disturbances
of different frequencies, respectively. It can be seen fromthe
comparisons of Fig. 5, Fig. 9, and Fig. 13 that the observer
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Fig. 16. Comparison ofu between disturbanced = 4sin(0.9πt) and
disturbanced = 4sin(0.2πt)

has better performance with the low frequency disturbance as
would be expected from Assumption 2. It can be seen from
Fig. 14 and Fig. 15 that the controller has higher control
precision for the low frequency sine wave.

VI. CONCLUSIONS

In this paper, a novel DSMC is proposed to achieve stabil-
ity of a nonlinear CSTR. A key design requirement has been
to reduce the chattering exhibited by the system. To eliminate
the effect of external disturbances, a disturbance observer is
combined with DSMC and the method is shown to be very
effective when the external disturbance is slowly varying.
The theoretical analysis and simulation results demonstrate
that the proposed method is effective. Future work will focus
on experiments with a CSTR rig.
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