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Abstract—The continuous stirred tank reactor (CSTR) is a Gao et al [13]. The concept of DSMC was proposed in
typical element of equipment frequently found in the process [14] and employed the reaching law method from [15].
industry. The control of a CSTR is very challenging due t0 its  The reaching law method has many advantages, such as
nonlinear dynamics and the presence of external disturbances. . lifving the desi f DSMC and ',t -

In this paper, a novel discrete time sliding mode control method simplifying the design process o and maintaining
for the CSTR is presented. Then a disturbance observer is the overall robustness of the control system [16]. However,
designed to eliminate the effect of external disturbances on the property of total invariance to matched uncertaintyolhi

the CSTR system. Stability analysis is presented based on js exhibited in continuous time is lost, and chattering will
the Lyapunov method. Finally, the control performance of the  4ccyr que to the discontinuous control term. In practice, th
proposed method is validated by using MATLAB simulation . . . . -

experiments. system state trajectory in DSMC is restricted by the reaghin

bance observer; continuous stirred tank reactor in which the system state moves near the sliding surface is
called the quasi-sliding mode domain [17]. Therefore, the
. INTRODUCTION system states cannot reach to the equilibrium point and will

The strongly nonlinear and coupled nature of chemiczﬂerform a ;igzag movement around the.eqyilibrium point,
processes provide particular challenges for control. Aateu The analysis in [18]_Sh9WS that the chattering is caus:_adé)y th
and robust control of such processes is however essent‘fé’lntrOI _met_hod, which is closely related to_ the sampllngpt_lm
to ensure the appropriate quality of chemical products. T : svyltchmg frequency. In theqry., to ellm.mat_e .chatt@,r!n
CSTR is representative of a class of typical chemical pce € swnphmg frequer_lcy must be mf_mne, which is |mposs|bl
equipment. It is attractive from the point of view of costg Practice. This motivated the original work by Utkin, who

and can ensure stable product quality, which makes it dgoposedaDSMCto achieve chatter free motion with a finite

widely used in the chemical industry [1]. However, duesample time. This early work developed DSMC for linear

to the complexity and non-linearity of the CSTR system,SyStems’ [18]. . .
traditional control methods such as PID [2], robust control Practlcal_ systems fr-equently are subject to disturbances,
[3], adaptive control [4] may not yield the required highand the existence of disturbances may affect the contrel per

control performance. Various advanced control methods ha{,ormance. Ifthe disturbance can be estimated, it is possibl

been proposed for the CSTR such as fuzzy control [5 P:iminat'ge orrpinirg_iste tge effect;: [19][2031' n {)ecent d?ea,d |
predictive control [6] and sliding mode control [7]. € notion of a cisturbance observer has been extensively

Sliding mode control (SMC) is a special class of variabl tudied and applied within controller design frameworks

structure control and is known to exhibit excellent robass 21][22]. In [23], disturbance observers for discretedim

properties. There are many successful applications Hudigonlmear systems are designed, an(_d the gains OT the dis-
eEurbance observers need to be obtained via solution to an

which use SMC in the CSTR system [8]. However, mos M. In 124 laorithm is developed t v d |
of the existing SMC algorithms applied to the CSTR ar N [24], an algorithm 1S developed 1o exactly gecouple
the disturbance estimation dynamics from the sliding mode

continuous in nature. In terms of implementation in indystr ) . ; .
which is likely to be computer based, it is of interest todynam|cs. Such DSMC schemes incorporating a disturbance

explore discrete time SMC [9][10]. Direct discretisatioh o obsde;ver;y[;)tlca}lly u;g the reaching law approach which may
a continuous sliding mode control algorithms may inducéea 0 chattering [ ].' . . .

large chattering, discretization errors, or even insigbiln Insplred_ by the _e>_<|st|ng literature, this study Proposes

order to solve these issues, discrete time sliding modealont? nqvel discrete sliding mode co_ntrol law to stablhze_ the

(DSMC) theory has been developed nominal CSTR system. Then a disturbance observer is de-

A large number of DSMC methods have been propose%igned to eliminate the effects of an external disturbance.
in the literature [11][12]. One of the most commonly usecJrlocsorzggnzggrg\'::hﬂ:jee;%icsh'ggnlg\\;\élb%sse& CD Su'\s/:(r?g[gzﬂk;:z
methods is the reaching law based DSMC proposed ethod, which is known to reduce the chattering effec-

ILuning Ma and Dongya Zhao are with College of Chemical En-tively; in comparison WiFh Utkﬁn’s DSMC approach [15_3],
gineering, China University of Petroleum, Qingdao 26655%ina&. the proposed approach is designed for a class of nonlinear

dyzhao@ipc. edu. ¢n; dongyazhao@39. com systems and incorporates a disturbance observer. The ehetho
2Sarah K. Spurgeon is with Department of Electronic and Bledtr . h id d | of a CSTR
Engineering, University College London, Torrington PIAYE€1E 7JE, UK IS shown to provide good control of a :

s. spurgeon@icl . ac. uk The remainder of this paper is organized as follows.



Section Il presents the CSTR dynamic model as well ashere

some definitions that will be used in the subsequent SeCtIOHﬁ
In Section lll, a novel DSMC is proposed and applied to
a nominal model of the CSTR. Section IV extends the
DSMC concept to include a disturbance observer. Section
evaluates the performance of the designed controller usi
MATLAB simulations. Finally, section VI concludes this

paper.

Il. PROBLEM DESCRIPTION

The diagram of the CSTR is shown in Fig. 1 and a

nondimensional dynamic model from [27] is given by

. Y2
T1 = —ax1 + Dy(1 —x1)ex
1 1 ( 1) P(7 +x2)
. Y2
= — —bD, (1 —
T2 axrz ( 331)'3XP(7 T w2) (1)

+ B(u — x2 +d)

Yy = x2

wherex; € R is the concentrationys € R is the tempera-

yz2 (k)

{—aml (k) 4+ Da (1 — zq (k)) e<7”2“‘)) T

(z (k) =
+ z1 (k)

g (k) =

x (k) = [v1 (k) , 22 (K)])", g = BT, d(k) is the disturbance
existing in the system.
Define the tracking error of the controlled system:

(k) =y (k) -
=uxq9 (k) —r

wherer € R is the desired value of,; and it is a constant.
The corresponding sliding variable is defined by

s(k) = ce(k)

{_a$2(k)-Fbl)a(1——xl(k))e(ﬁﬂqu)

(4)

)
wherec > 0 is a constant.

Il1. SLIDING MODE CONTROLLER DESIGN
From equation (3), the nominal model of the CSTR system

ture,u € R is the control inputy € R is the system output can be described as

andd € R is the external disturbance. The parameters of the

dynamic model are given byi, 3, v, b and D,, which are
all positive constants.
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Fig. 1. The model of CSTR

vy (k1) = fr (« (k) ©
x2 (k+1) = fa (2 (k) + gu (k)
s(k + 1) can be obtained from (5):
s(k+1)=ce(k+1)
= (a2 (k+1) —7) )

=c(fa (@ (k) +gu(k)—r)

To make the state of, (k4 1) converge to the desired
valuer in a finite number of steps; (k + 1) should be zero,
and the control input can be derived from (7) as

u(k) =g~ (f2 (x (k) — ) (8)

The control input in (8) is the equivalent control which
can be rewritten as the sum of two functions:

teq (k) = —(cg) ™" (s(k) + ¢ (fo (x (k) — 22 (K)))  (9)

From equation (1), a discrete time model of the nonlineafianI

CSTR system can be obtained by using the Euler difference 51 + 1) = s(k) + ¢ (f2 (z (k) + gu (k) — 22 (k))

method as follows

yzo (k)

ry (k+1) = {—axl (k) + Da (1 —x1 (k) e(’Y+fE2(k)) T

+ x1 (k)
2o (k+1) = {—amz (k) + bDa (1 — 21 (k) e (FHH)

+5 (u (k) — 2 (k) + d (k)] T + x5 (k)

y(k) = w2(k)
)
For the sake of simplicity, this model can be rewritten adtieq (k
w1 (k1) = fi (2 (1) -
za (k+1) = fa (2 (k) + g (u (k) + d (k)

(10)

To avoid u, (k) exceeding actuator limitations, the
bounds of the control must taken into account. Assume the
practical inputw (k) is bounded by|ju (k)| < wg. The
corresponding control law is defined by

= Ueg () [[treq (K)|| < uo
= { ||Z:ZE£§HUO |teq (B)|| > uo (11)

Whenu (k) = ueq (k) fOr ueq [|(k)|| < wo, the system is
already in the sliding mode = 0, therefore only the case
)|| > uo needs to be proved.

Assumption 1: The available control limits., are satisfied
wmw>W 9) ™" || lle (/2 (& (k) = 2 ()]l

Theorem 1: If the control law is designed as (9) and (11)



under Assumption 1, then the closed-loop control systern wivhered is the output of a disturbance observer; this repre-

be asymptotically stable. sents an estimate of the disturbantg:). The disturbance
Proof: observer is defined by
Select a Lyapunov candidate function as 5 5 _
yap A (k) = d (k= 1) + pu(cg) s (k) (20)
V() = s (k)] (12)

Define the estimation error by
According to the form of the control law, there are two cases

to be considered. d(k) =d(k)—d(k) (21)
(1) For the caséfu, (k)| < uo.

It is obvious that|s (k + 1)|| = 0 < ||s (k)| whenu (k) =
ueq (k), hence the system is stable.
(2) For the caséfu.q (k)| > uo.

From equation (7) and equation (11), it follows that

Assumption 2: The rate of change of the external dis-
turbance satisfie§d (k + 1) — d (k)] < m and is assumed
small.

The estimation error dynamics are given by

dk+1)=1—p)d(k)+d(k+1)—d(k 22
s(k+1) = (s(k) + ¢ (fa (z (k) (k+1)=0—-p)dk)+dk+1)—d(k)  (22)
Ug (13) where0 < p < 1 is constant.
—x2 (k) <1 [tteq (k) |> Lemma 1: If |d(k+1) —d (k)| < m is satisfied, then the
so disturbance observer error will be bounded, thatlig;) will
decrease to a small residual sef . [24].
IsCk + DIl = [I(s(k) + e (f2 (= (k) After a finite number of steps, the disturbance observer
22 ()] ( - u( )”> tracking errord (k) will satisfy
“ d(k)y <m 23
< [l + fle (2 (2 (K)) — 22 ()] 2) ) < mi #9
. uwo and if m is small enoughd (k) will converge to zero.
H(cg)le From the definition of the control input (17), substitute
s (18) and (19) intas (k + 1) to yield
< ||s
. : s(k+1) =c(fa(x (k) +g(ur (k) +uz (k)

Appealing to Assumption 1, wup gd (k) — 1) 24
(cg)*l‘ e (fa (z (k) — 22 (K)|. It follows that gaNE) = r (24)
s(k+1)| < s(k) and the system is asymptotically = cgd (k)

stable. Thend (k) is given by
IV. DISTURBANCE OBSERVER BASED SLIDING ci(k) _ (cg)fls (k+1) (25)

MODE CONTROLLER DESIGN

The dynamic model of the CSTR in the presence of According to (22)
disturbances is given by d(k 1) = g(k) + u(cg)’ls (k+1) (26)
z1(k+1) = fi(z(k))

(15) As in the case of the nominal control law (11), the practical
za (k+1) = fa (z (k) + g (u (k) + d (k)) bounds for the controk (k) should be taken into account to
In this cases(k + 1) can be derived as avoid exceeding the actuator limitations. Assume the input
u (k) is bounded byj|u (k)|| < ug. Then the control law can
s(k+1) =ce(k+1) be defined by
=c(@2(k+1) =) (16)
— c(fa (o (k) + gu (k) + gd (k) — 1) TSI Y A Al e @7
. ) T (k)] Yo llw (k)| > uo
The control law is defined as
Assumption 3: The avallable control Ilmltmo satlsfy
u (k) = uy (k) + us (k) a7)

wo > (lefz (@ (k) + egd (W)~ |(9)
wherew; (k) is designed to stabilize the nominal portion of Lk dlk R d(k
the dynamic model and, (k) is designed to eliminate the The(or)e‘m ’ cgd () ‘ N ”C(f2( (k) xQ( )) +egd (R)]).
effect of the disturbance on the closed-loop system. As in
the nominal casey; (k) (9) is given as

. If the control law is designed as (27) and the
disturbance observer is designed as (20) using Assumptions
2 and 3, then the closed-loop control system will be
uy (k) = —(cg) " (s(k) + ¢ (fa (x (k) — 2 (k))) (18) asymptotically stable.
Proof:

Select a Lyapunov candidate function as

ug (k) = —d (k) (19) Vi(k) = s (®)l (28)

To deal with the effect of the disturbancs, (k) is designed
as



According to the control law (27), there are two cases to 068

consider. 066}
(1) For the casélu (k)| < up. osal
lls (k + Dl = [l (f2 (x (k) + gu (k) + gd (k) = )| Nl
. (29) o8y
= loico]
0.56
According to Lemma 1 and (23), it can be shown that after 054l
a finite number of steps(k + 1) satisfies asal
~ 0.5
stk + 1)l = [legd (1) (30) T T T
< cgm/u time(s)
Whenu is small enough Fig. 2. x; performance of the DSMC controller for the nominal CSTR
' system without disturbance
[|s(k+1)|| =0
4.2
(2) For the casélu (k)| > uo.
s(k+1)=s(k)+c(fo(x (k) + gu (k) + gd (k) —xs (k)) : —— Ideal x, signal
(31) =0 - - - Tracking signal | |
Then o
=N 36]
s (k4 DIl = [l (k) + ¢ (2 (& (k) + gu () + g (k)
—2 (k)] ;
u (k) 324
s (k) + k +g<u>+gdk '
)+ (o) 4 () + 91 |
—ZT2 (k))” ’ ’ ) time(s) ° ’ *
< |ls (k) +c(fz2 (= ( )) — 23 (k))
Fig. 3. x2 performance of the DSMC controller for the nominal CSTR
—l—cgd(k)H ( T ( ) + Hcgd H system without disturbance
< s () +[le (f2 (= (k) = o (k)) + cgd (k)|
= lefa (e (9) + egd (W] sy + esd () °
= lls ()]l +lle (f2 (= (k ))—wz(k))+cgd( )l ©
(x =
30

— llefa (z (k) + cgd (k)| H(g)_1f2 ( (k))+(f(k)‘.

~ S 20
o 0]
< |ls (k) *
(32)
According to Assumption 3, the closed loop system will be | Vel
asymptotically stable. 1 ‘ ‘ ‘ ‘
0 2 4 6 8 10
time(s)

V. SIMULATION ANALYSIS
Fig. 4. The control input of the DSMC controller for the nomi@STR

The proposed control approach is now validated usingyStem Wwithout disturbance
MATLAB on a nonlinear CSTR model. The parameters of
the dynamic equation of the CSTR are given as= 1.0, The control performance for the CSTR is shown in Fig. 2,
6 = 0.3, v =200 b= -80, D, = 0.072, T = 0.05, Fig.3 and Fig. 4. In the absence of the external disturbance,
up = 50. The initial values of the states are chosen athe closed-loop system performs very well and the control
r1 = 0.5, x5 = 3 and the reference output is chosen a#put is bounded. It can be seen from Fig. 2 and Fig. 3 that
r=4. the proposed control has good convergence speed and there
Case 1:DSMC in the absence of disturbance. is no chattering.
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Fig. 10. Comparison of; between DSMC with and without disturbance
observer for sine wave disturbande= 4sin(0.27t)

Case 2:Disturbance observer based DSMC in the pres-
ence of a rectangular wave disturbance.

The output of the disturbance observer is shown in Fig.
5 when the disturbance is a rectangular wave. Fig. 6 and
Fig. 7 show the tracking performance when the DSMC is
augmented with and is without the disturbance observer. Fig
8 shows the control input signals. It can be seen from Fig. 6



and Fig. 7 that the DSMC with disturbance observer exhibits 0 ‘ ‘ ‘ ‘
stronger robustness in the presence of a rectangular wave — Practical d
disturbance. 8 - - -Estimation of d ||
Case 3:Disturbance observer based DSMC in the presence

4.2

\

38 ——deal X, signal
— Without Disturbance Observer ||

SN 36 . .
- = = With Disturbance Observer

time(s)
3.4

Fig. 13. The output of disturbance observer when disturbamsine wave
32 1 d = 4sin(0.97t)
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Fig. 11. Comparison oty between DSMC with and without disturbance
observer for sine wave disturbande= 4sin(0.27t)
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Fig. 14. Comparison oft; between disturbancé = 4sin(0.97t) and

/_\_/\ disturbanced = 4sin(0.27t)
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Fig. 12. Comparison of u between DSMC with and without dishnde 4 == = = 3
observer for sine wave disturbande= 4sin(0.97t)

—— Ideal x,, signal
3.8 2519

of a sine wave disturbance. —— X, With d=4sin(0.2m)
Fig. 9 shows the output of the disturbance observer when <" 36 - - =X, With d=4sin(0.97t)

the external disturbance is the sine wake= 4sin(0.27t).

Fig. 10 and Fig. 11 show the tracking performance when

the DSMC is implemented with and without the disturbance

observer, respectively. Fig. 12 shows the control inputs.

It can be seen from Fig. 9 that the implementation with 5! . - - : -

the disturbance observer has better performance when the time(s)

disturbance is a sine wave. It can be seen from Fig. 10

and Fig. 11 that the DSMC with disturbance observer ha8g. 15. Comparison of2 between disturbancé = 4sin(0.97t) and

stronger robustness to the sine wave disturbance. From Fifjturbancel = 4sin(0.2xt)

12, the control input in the presence of the sine wave

disturbance is smoother than the control input in Fig. 8 as Fig. 13 presents the output of the disturbance observer

may be expected from the characteristics of the disturhanoghen the external disturbance is a higher frequency sine

no chattering is induced by the proposed scheme. waved = 4sin(0.97t). Fig. 14, Fig. 15 and Fig. 16 show the

Case 4: Comparisons of the control performance of theperformances afy, x5 andu in the presence of disturbances

disturbance observer based DSMC in the presence of highdifferent frequencies, respectively. It can be seen fthen

and low frequency sine wave disturbances. comparisons of Fig. 5, Fig. 9, and Fig. 13 that the observer

3.4

3.2




(7]

50

—— u with d=4sin(0.2t)
20 = = =u with d=4sin(0.911) ||
(8]
30
s 2 El
10 B [10]
[11]
time(s)
[12]
Fig. 16. Comparison of, between disturbancd = 4sin(0.97t) and
disturbanced = 4sin(0.2mt) [13]

has better performance with the low frequency disturbasce 84|
would be expected from Assumption 2. It can be seen from
Fig. 14 and Fig. 15 that the controller has higher contrghs

precision for the low frequency sine wave. 18]

VI. CONCLUSIONS

In this paper, a novel DSMC is proposed to achieve stabilt’]
ity of a nonlinear CSTR. A key design requirement has been
to reduce the chattering exhibited by the system. To eliteina[18]
the effect of external disturbances, a disturbance obsésve [19]
combined with DSMC and the method is shown to be very
effective when the external disturbance is slowly varying.
The theoretical analysis and simulation results dematestrd2®!
that the proposed method is effective. Future work will focu

on experiments with a CSTR rig. [21]
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