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Abstract— This paper considers the problem of placing all
the poles arbitrarily for a linear time-invariant plant with (the
linear part of) sliding mode control. We solve this problem
in two ways. In the first approach, we design a sliding mode
control by specifying the desired pole locations. The closed-
loop system under this control law has all eigenvalues at the
desired places. In the second approach, the sliding mode control
is designed from a given state feedback gain so that all the
poles of the closed-loop system are placed at the same location
as that of the state feedback controller. Here, we provide a
necessary and sufficient condition for the existence of a linear
gain using the sliding mode control to achieve the desired pole
assignment. This condition is always fulfilled for the single
input case whereas it is only applicable for certain multi-input
scenarios that meet the conditions stated in the paper. In both
the approaches, one can place the closed-loop poles with the
proposed sliding mode control at any arbitrary location in the
left half of the complex plane, unlike with traditional design,
where m poles are at the origin with m being the number of
control inputs. A numerical example illustrates the proposed
design methodology for sliding mode control.

I. INTRODUCTION

A typical sliding mode based controller consists of two
essential steps: design of a sliding manifold followed by the
design of a control law to ensure the system trajectories move
to lie on the chosen manifold. The motion of the system
trajectories restricted to this manifold is called the sliding
mode, and the control law which maintains this motion is
termed as the sliding mode control. By selecting a stable
sliding surface, the motion on the sliding manifold can be
made stable. The key outcome of this design is that the
plant response becomes insensitive to a class of disturbance
signals that are implicit in the input channels [1]. This feature
has been explored in many classic works on sliding mode
control; it can be found in [2], [3] and references cited
therein.

Stability of the sliding mode dynamics is guaranteed by
placing all the poles at appropriate locations. As the order
of this dynamics is n—m, only n—m poles can be placed at
any desired places, where n and m are the number of state
and input variables, respectively. To achieve this, traditionally
the full-order plant is transformed into a canonical structure,
the so-called regular form, and the design is completed by
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extracting a reduced-order dynamics. This provides a trans-
parent structure for selecting the sliding surface parameters
at the cost of placing only n—m poles. On the contrary, our
goal in this paper is to propose a method for designing the
sliding mode control to place all the closed-loop poles at any
arbitrary location.

Although the problem considered in this paper is quite
different, it has some connection with a few works appearing
in the literature. In [1] and later in [4], the sliding hyperplane
is chosen as the left eigenvector of the closed-loop system
by assuming all the poles are in the left half of the com-
plex plane. This method again guarantees only placement
of reduced-order system poles. But, the advantage is that
it avoids transformation of the system into regular form.
The same motivation was adopted in the late nineties by
proposing a full-order based design of a sliding hyperplane
(see [5], [6], [7]). Here, Lyapunov based construction of
a sliding hyperplane is presented to analyze the stability
directly with the full-order plant. The readers can refer to [8],
[9], [10], [11] and references cited therein. However, in all
these techniques, the eigenvalues of the reduced-order system
are placed at any desired locations. An exception is found
in [12], where the controller stabilizes the plant robustly
by placing all the poles at any desired place. However,
the controller does not have an equivalent control structure
so it may induce sliding motion only for sufficiently large
switching gain. In [13], the controller can place all the
poles in the left-half of complex plane by adding a linear
proportional term. But, the design of this additional term for
a given state-feedback gain is not presented.

In this paper, we propose a new method of designing the
sliding hyperplane such that the linear part of sliding mode
control places the closed-loop poles at the same location
as that of a given state-feedback controller. We solve this
problem in two ways. In the first case, the pole locations are
specified whereas in the second case a given state-feedback
gain is used as the basis for design. In both cases, the
controller consists of a linear term that is designed to place
the remaining poles. A necessary and sufficient condition
is given for the existence of this linear term in the control
law. It is observed that the solution to the problem always
exists for a single input system. On the other hand, this may
not be true in the case of multi-input systems because of
the nonuniqueness of state-feedback gain. Our result gives
a verifiable condition to determine whether arbitrary pole
placement is possible with sliding mode control. Finally, we
construct a common Lyapunov function for the full order
plant to analyze the stability during both reaching and sliding
phases. This proposed approach can offer some benefits over



traditional sliding mode control design. When the sliding
motion takes place, the switching function rejects the dis-
turbance completely with its equivalent value being equal to
zero. As a result, the closed-loop system behaves like the
nominal system, i.e., without disturbance, and therefore, the
performance can be compared with that of a linear state-
feedback controller.

The paper is organized as follows: Section II gives the
problem statement. We state the main results of this paper
in Section III. The stability of the closed-loop system is dis-
cussed in Section IV. We elaborate the design methodology
with a numerical example in Section V, which is followed
by some concluding remarks in Section VI.

II. PROBLEM STATEMENT

Consider a linear time-invariant system
X=Ax+B(u+d), (1)

where x € R", u € R™ and d € R™ are the state, control input,
and disturbance input vectors, respectively. The class of
disturbances satisfying the above criteria are called matched
uncertainty An appropriately designed sliding mode control
will reject matched disturbances when the system is in the
sliding mode. The following assumptions are made.

Assumption 1: The system (1) is controllable.

Assumption 2: The disturbance input is bounded by a
known constant dy > 0, i.e., ||d(¢)|| < dp for all £ > 0.

Sliding mode control is a very popular method for control-
ling the plant (1) as the closed-loop system renders the equi-
librium point (the origin) of the system asymptotic stable.
The design steps involve first synthesis of a stable manifold,
known as the sliding surface, followed by the choice of a
discontinuous control law that brings the trajectory to this
manifold in finite-time. Denote C € R™*" as the sliding
surface parameter and then s: R" — R™ with

s=s(x)=Cx

as the sliding variable. One can construct the sliding manifold
as the set of all points meeting the condition s = Cx = 0,
which is given by

L ={xeR":5=Cx=0}. (2)

The sliding manifold is said to be stable if the system
trajectory restricted to the set . converges to zero asymp-
totically. Thus, the proper design of C is paid significant
attention in the sliding mode literature. The control law to
enforce the sliding motion on the system is given by Utkin
([14]) as

u=—(CB) ! (CAx+ Ksign(s)) (3)

where K > ||CB||dy is called the switching gain. Here, the
invertibility of CB is always guaranteed by the inherent
structure of C. Indeed, this is also an essential criterion for
the existence of sliding mode control.

Note that the equality Cx = 0 establishes an algebraic
relation between the state components revealing the state-
feedback structure of a reduced-order (or sliding mode)

dynamics. In the reduced-order design with the control law
(3), only n—m poles are placed at any arbitrary location,
whereas m poles are at zero, see [2] (the order of the reduced-
order system is n — m).

In this paper, we address the problem of how to place all
the poles at any arbitrary location (hence, in the left half
of the complex plane) by proper choice of sliding surface
parameter and the control law. We state this more formally
below.

Problem 1: Design a sliding mode control such that all the
poles of the closed-loop system are arbitrarily placed and a
sliding mode is enforced on the closed-loop system.

ITII. DESIGN OF SLIDING MODE CONTROL

This section develops the sliding mode control by speci-
fying the pole locations. Unlike the traditional method, we
specify here all n eigenvalues for the closed-loop system.
The control law will be designed to place the eigenvalues at
these specified places.

A. Design of Sliding Hyperplane

Without loss of generality, the system (1) is assumed to
be in the regular form as

(4a)
(4b)

X1 =Apnx1 +Ax
Xp =Ag1x1 +Axnxy +u+d

where x; € R and x; € R™ are the first n —m and the last
m components of the transformed state vector, respectively.
The system block matrices are of appropriate dimensions.
With the state components, the sliding hyperplane can be
expressed as

xy = —Cixy,

which can be viewed as a virtual feedback law for the
subsystem (4a). If the matrix C; is chosen to ensure that
A11 —A2Cy is Hurwitz, the stability of the sliding mode
dynamics can be guaranteed. Thus, we select C; using any
standard methods to place n —m poles of the closed-loop
system at the desired location. Denote C = [C}  I,]. Then,
the corresponding sliding manifold can be given by (2).

B. Pole Location Based Design

The sliding mode control law consists of a linear term
and a switching term. Traditionally, the linear part of the
controller places the poles of the closed-loop system whereas
the switching part is responsible for rejecting the matched
disturbance. However, it is important to note that the equiv-
alent control (linear part) can place n —m poles arbitrarily
anywhere and m poles are located at the origin. We will
modify the linear term by including an additional element
so that all the poles can be placed arbitrarily. Note that
this design methodology has been used in [9] to place the
remaining m poles of the closed-loop system. Here, we use
the same trick to design the sliding mode control law.



Let M € R™" be the matrix whose eigenvalues are
located at the desired m eigenvalues of the closed-loop
system. Then, we propose the following control law

u = —CAx+ MCx — Ksign(Pss), ®)

where K > 0 is the switching gain to be designed later, and
P = Pz—r > 0 as a solution to the following equation

M'PB+PM=—-0, (6)

for a given O, = Q2T > 0. One of the important observations
is that the proposed control law reduces to

u = —CAx — Ksign(P,s)

on .. This shows that equivalent control is only applied to
the plant on the sliding manifold.

Remark 1: The control law (5) has appeared in the liter-
ature in the context of the proportional reaching law [13].
When the control law is designed based on this reaching
law, an additional linear term appears in the controller
that enhances the convergence rate to the sliding manifold.
However, the only difference is that the eigenvalues of M in
our case are restricted to desired locations whereas the term is
chosen arbitrarily in the proportional reaching law. Although
this does not give any significant difference in the structure,
the analysis shows that this term contributes m eigenvalues
of the closed-loop system.

The closed-loop system can be written with the proposed
control law (5) as

X =A.x— BKsign(Pys) + Bd, @)

where A, = A — B(CA—MC). We can transform the system
(7) into new coordinates that show the closed-loop system
has all poles at the desired locations. A change of coordinates
x— Tx is given where

In—m O
T= ,
|: Cl ]m
and the system (7) can be written as

X1 = (A1 —ACi)x1 +As
§ = Ms — Ksign(P»s) +d.

(8a)
(8b)

It is evident from the above that 6(A;) = 6(A;; —A12C1)U
o(M), where o(-) denotes the spectrum of the matrix.
Moreover, these are placed at the desired locations. From
now onwards, we will consider the system (8) to analyze the
stability.

C. State-Feedback Gain Based Design

The additional linear term in the sliding mode control can
also be designed from a given state-feedback control gain.
For the single input case, the solution to this problem always
exists because the feedback gain is unique. However, for the
multi-input case, the state-feedback gain is non-unique and
thus the problem of existence of sliding mode control gain
may not be solvable always. We provide the necessary and
sufficient conditions for solving the Problem 1.

Proposition 1: Consider the system (4) and the control
(5). Let F € R™*" be a given stabilizing state-feedback gain
for the pair (A,B). Then, the gain M € R™™ exists if and
only if there is an L € R"™*"™ such that

CA-F=ILC. ©)]

Proof: The sliding mode control gain exists if and only

if the matrices M and F satisfy CA —MC = F. We consider

two cases separately. In the first case, none of the closed-

loop eigenvalues are at zero and the second case considers

at least one eigenvalue is at zero.

In the first case, the matrix M is invertible. So, the

existence of a linear control gain is equivalent to

C=M"CA—F) < CA-F=MC

which gives L = M. To consider the second case, we assume
without loss of generality that M is diagonal. So, we have

B M 0
=

where My € R™7" is an invertible matrix for some r > 0.
Note that My, = 0 because all nonzero eigenvalues are
contained in M. Then, the equality CA — MC = F can be
written as

My, 0 61 . ElA —F
0 My G CGA-—F
where 61 and 52 are the first r and last m — r rows of C,

respectively, and similarly F; and F; are the r and m — r rows
of F. Clearly, C; = M;'(ClA— Fi) <= CiA—F = M;C}.

By taking
o M11 0
=[]

we prove our result. ]

Remark 2: The restrictive condition in Proposition 1
stems from the fact that the state-feedback gain is non-
unique for the multi-input case. The existence of M can
be guaranteed if and only if F satisfies (9). Otherwise, M
cannot be designed for the given linear state-feedback gain.
However, the equality (9) always holds for any F in single
input case, i.e., m = 1. This is because the state-feedback
gain is unique for the single-input system.

Remark 3: The above design methodology based on the
state-feedback gain can have additional advantages over
the existing techniques. As the gains of the linear part
of the sliding mode controller (5) and the state-feedback
controller (u = —Fx) are equal, the controller (5) can achieve
a comparable performance with that of a state-feedback
controller when the sliding mode takes place. For instance,
if F is obtained by the LQR method and a sliding mode
is enforced, the closed-loop system with the sliding mode
control becomes

Xx=Ax=(A—BF)x

because Ksign(P>s)|cq = d, where Ksign(P»s)|eq denotes the
equivalent value of the switching term. Then, the system will



have the same performance as that of the LQR controller
during the sliding phase. Note that the similar observation is
also found in the integral sliding mode at additional cost of
adding the nominal dynamics [15].

IV. STABILITY ANALYSIS

This section presents the stability analysis of the closed-
loop system with the proposed design methodology. We
construct here a Lyapunov function for the full-order closed-
loop system and analyze its behavior from the initial point.
Our analysis shows that the energy function decreases along
the solutions of (7).

A. System Stability

The main result is as follows.

Theorem 1: Consider the system (1) and the control law
(5). Then, the system trajectories converge to zero asymp-
totically if the switching gain

K > dp. (10)
Proof: Since Ay} —A12C; is a Hurwitz matrix, there

always exists a symmetric and positive definite matrix P €
R (n=m)x(n=m) gych that

(A1 —A1C) P+ P (A —AC)) = -0

for any Q) = Q[ > 0. Let O, € R™*™ be any symmetric and
positive definite matrix. Then, the matrix

02 =0, +ALPQ; 'PAR

is also symmetric and positive definite. Then, using the value
of O, we solve (6) for the matrix P, > 0.

Now, we study the behavior of closed-loop system (8) un-
der the control law (5). To analyze its stability, we construct
the Lyapunov function V(x;,s) = xlTPlxl + 5" Pys and study
its convergence. The time derivative of V is

V(x1,5) = x| (A1 —A12C1) Py + Py (A1 — ACh))x
+xTP1A12s + STAszPlxl +s' (MTPz +PM)s
— 25" PyKsign(Pys) — 25 Pyd

-
= —xTlel +x P1A12s+sTAI2P1x1 fsTst

—2K||Pys||; — 25" Pod
PiAyp X
-0 s

-0
<[ xf T
= [ 1 ] |: AITZ P
— 2K || P2s]| +2do|| Pas||.

Our goal now is to show the symmetric matrix in the first
term is negative definite. Simple matrix manipulation reveals
that the matrix in the above inequality can be factorized as
follows

{ —01 PAp } _ { In—m 0 }
ALP —O ~ALPOT I,

-2 0 [ hew —07'PAR
0 _QZ 0 Im ’

indicating it is a negative definite matrix. Applying this
identity together with the condition (11), the above inequality

can be reduced to
T O 0 x|
SIS o ] ] e

2
—2n||Pys||

V(xy,s) < — [ ?clT

< —min{Amin(Q1), Amin(02)} H [ xsl ]

<0

where x| = x| — QflPlAlzs, K > dy+n for some n >0
and Apin(+) is the minimum eigenvalue of the given matrix.
This shows that the Lyapunov function V(Tx) converges
monotonically to zero provided 7x # 0. In other words, the
equilibrium point x = 0 is asymptotically stable. [ ]

Remark 4: Robust stabilization against matched uncer-
tainties is considered in [12]. The control law consists of
a Lyapunov function based discontinuous term to reject
the disturbance while the linear component stabilizes the
nominal part of the dynamics. Like in our case, the linear
control also places all poles in the left half of the complex
plane. But, the main difference from our present work is
that the control law does not reduce to Utkin’s equivalent
control when the gain does not satisfy (9). Despite that,
the sliding motion can be enforced if the switching gain
of the controller is sufficiently large. Many contributions in
sliding mode literature, e.g., [6] have explored this design
methodology for the design of a sliding mode based control
law.

B. Existence of Sliding Mode

The sliding motion can be shown to exist with our pro-
posed control law following standard arguments.

Proposition 2: Consider the system (1) and the control
law (5). The controller enforces the sliding motion on the
manifold .¥ if the switching gain satisfies

K > dy. (11

Proof: Recall that the closed-loop sliding variable

dynamics is given by (8b). Consider the Lyapunov function

Vy(s) = s Pys. Then, the directional directive of V;(s) along
the solutions of (8b) is given by

Vi(s) =s' Ps+s' Pos
=5 (M"P,+PM)s —2K||Pss||; +2s' P,d
< —5' Qa5 —2K||P>s|| + 2do|| Pss||,

where we used |s]|; > ||s]|. Using (11), we see from the
above inequality that

Vs(s) < =2n]|Pas]| < =201/ Amin(P2) v/ Vi(s)

for some 1 > 0. Solving the above differential inequality
using the Comparison Lemma ([12]), one can show that
Vi(s(t)) = 0 for all + > 7 := [\/Vy(s(0))/(N\/Amin(P2))]. In
other words, s(t) =0 for all r > 1. Therefore, the sliding
mode is established in the system, and the proof is com-
pleted. [ ]




The proposed control law has an inherent property of
exhibiting a sliding motion. The system trajectories during
this mode become insensitive to the matched perturbations.
This property is used to show the asymptotic convergence of
the plant state despite the presence of disturbance signals.

V. ANUMERICAL EXAMPLE

We illustrate the proposed design methodology with the
following system parameters

010 0
A=10 0 1 and B=| 0
0 0 0 1
The bounded disturbance input is taken as d = sin(10r).
Since all eigenvalues are at the origin, the open-loop system
is unstable. But, observing that the system is controllable,
there always exists a state-feedback control gain F such that
A — BF is Hurwitz. By following the standard pole placement
method, we construct an F to place the eigenvalues of A —
BF at —1,—-2,-3,ie., 6(A—BF)={—1,-2,-3}, and it is
given by

F=[6 11 6].

Our goal here is to design a sliding mode control law
that also places the poles at the same location as that of the
above state-feedback gain. We follow the steps suggested in
Subsection III-B for the synthesis of the control gain. The
sliding hyperplane can be designed by considering the pole
placement problem for the reduced order system

0 1 0
A]lz[o 0:| and A12=|:1:|.

As (A11,A12) is controllable, a vector CI'— € R? can be
obtained for which the matrix Aj; —A12C; is Hurwitz. We
choose Cj to place the poles at —1 and —2 and it is given
by C; = [2 3]. Thus, we have

c=[C 1]=[2 3 1].

Let us choose the design parameters as follows. For
Q) = b, the Lyapunov equation (A1; —A12Cy) " Py + P (A1 —
ApCy) = -1 gives

p_ [ 125 025
=1 025 025 |°

Then, we choose QZ = 2, and subsequently, we obtain
0, =2.125.

A. Design via Pole Placement

We choose M = —3. Then, we solve equation (6) with
the above O, that gives P» = (0.3542. It can be verified that
CA —MC = F. Then, the sliding mode control law becomes

u=—[6 11 6 |x—Ksign(Ps)

where K = 2.
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Fig. 1. The response of the closed-loop system.

B. Design via State-Feedback Gain

Since the state-feedback gain is unique, the control param-
eter M exists if and only if CA —F = MC by Proposition 1.
In this case, it can be observed that

CA-F=[ -6 -9 -3]=-3[2 3 1].

Thus, the control law can be designed using the value of
M in a similar manner.

With the above design parameters, we now simulate the
closed-loop system. Take xp = [l 5 —1]. Fig. 1 plots the
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Fig. 2. The plot of Lyapunov function.

response of the system. The state trajectories converge to the
equilibrium point asymptotically as it is shown in Theorem
1. This is achieved by making the sliding variable zero in a
finite-time, which is depicted in Fig. 1. Moreover, the control
input also becomes discontinuous during the sliding phase.
Unlike the classical approach, we construct here a common
Lyapunov function to analyze the convergence of the state
trajectories. The Lyapunov function given in Theorem 1
converges monotonically towards zero. Fig. 2 shows the plot
of the Lyapunov function with time, verifying our claim.
This analysis may be useful in analyzing the performance of
sliding mode control particularly in the constrained scenario.
For example, it is often required to obtain the region of at-
traction under bounded control. Here, the proposed Lyapunov
function can be useful in estimating these domains.

VI. CONCLUSION

We presented a design methodology for sliding mode
control, which can place the poles of the closed-loop sys-
tem arbitrarily. Two approaches were adopted to solve this
problem. First, the poles are directly placed by specifying the
pole locations. In the latter, we design a sliding mode control
from a given a state-feedback gain. Moreover, the stability
of the closed-loop system is analyzed by constructing a
common Lyapunov function for the reaching and sliding
phase dynamics. Finally, a numerical problem is considered
to illustrate the design technique.
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