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Abstract
A new method of designing high-performance, low-memory,
interleaver banks for Turbo-codes is presented. The new
interleavers are called dithered relative prime (DRP)
interleavers. Only a small number of parameters are required
to both store and implement each interleaver in the bank. The
error rate performance is similar to that achieved by other
good interleaver designs that typically require the storage of
all K indexes for each interleaver of length K.

1 Introduction
Turbo-codes [1,2] have received considerable attention since
their introduction in 1993. This is due to their powerful error
correcting capability, reasonable complexity, and flexibility
in terms of accommodating different block lengths and code
rates. The Turbo-code (TC) encoder considered here consists
of two 8-state, rate 1/2 recursive systematic convolutional
(RSC) encoders operating in parallel with the data bits, di,
interleaved between the two RSC encoders, as shown in
Figure 1. The (feedback, feedforward) polynomials are
(13,15) octal, as specified by the 3GPP standard [3]. Without
puncturing, the overall code rate is 1/3. Other code rates are
obtained by puncturing the coded bits. Standard practice has
been to only puncture the parity bits, pi. However, it will be
shown that a significant increase in (Hamming) distance can
be achieved by also puncturing a small number of data bits.
A high minimum distance is desirable for both lowering the
so-called “error floor” or flare and for making the asymptotic
flare performance as steep as possible.

Interleaving is a key component of Turbo-codes, as shown in
Figure 1. Two interleaver types that have been commonly
investigated are the “random” interleaver and the so-called
“S-random” or “spread” interleaver [4,5,6]. It was recognized
early on that good spreading properties are desirable for both
fast convergence and good distance properties. More recent
high-spread interleavers include the dithered golden
interleavers introduced in [7], and the low extrinsic
correlation interleavers described in [8]. An efficient method
of generating high-spread random (HSR) interleavers was
described in [9]. This method also uses a more natural and
effective definition of spread that is closely related to the
distance properties of Turbo-codes. The same spread
definition is used here. The HSR method, along with distance
spectrum testing and index shuffling to eliminate low-weight
codewords (post-processing), has provided some of the best

performance results to date. The HSR method is used herein
as one performance benchmark.

The above interleaver design methods typically require that
all Kb indexes be stored to implement a single interleaver of
length Kb. This is not a major concern when only one
interleaver is required, as the other memory requirements for
the corresponding TC encoder and decoder are also order Kb.
However, when a bank of B interleavers is required to
accommodate B different block lengths, and B is on the order
of the longest interleaver length, KB, then the interleaver

bank memory requirements become order2
BK . This can be

prohibitive, especially if KB is many thousands of bits. This
is the interleaver bank problem.
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Fig. 1: TC encoder with two rate 1/2 RSC encoders.

In general, there are several criteria that a good interleaver
bank should satisfy. The bank should provide a wide range of
interleaver lengths, for example from a few tens of bits to
many thousands of bits, depending on the application. The
bank should have good resolution with convenient
interleaver lengths. For example, the lengths could increase
by 1 or 2 bits for short lengths (tens of bits), by a single byte
(8 bits) for medium lengths (hundreds of bits), or by a few
bytes for long lengths (thousands of bits). The amount of
memory required to define and store each interleaver should
be low. Ideally, there should only be a few parameters per
interleaver length. The algorithm used to generate the
interleaver indexes should also be simple. If the algorithm is
simple enough, the indexes for a selected interleaver can be
generated “on-the-fly”, as needed by the encoder and
decoder, saving even more memory. On-the-fly index
generation is considered a bonus feature since the overall
memory requirements remain order KB, with or without this
feature. However, this feature can still reduce the amount of
memory required and simplify the initialization process when
changing block lengths. Finally, the interleaver bank should
provide good error rate performance for all block lengths.



It is easy to design highly structured interleaver banks that
satisfy all of the above criteria, except for the last one. The
challenge is to get good performance too. For example, given
a block length, K, a simple relative prime (RP) interleaver
can be defined by just one other parameter, p, the modulo-K
index increment [7]. These interleavers can easily achieve
high spreads and thus can eliminate the worst-case low-
weight codewords. In fact, these interleavers do provide
excellent performance for short block lengths. However, the
performance for medium and long block lengths is poor
because of the large number of compound low-weight
codewords generated by the repetitive structure. Another
example of a low-memory interleaver bank is that specified
in the 3GPP standard [3]. The 3GPP standard is used herein
as one performance benchmark. The dithered-diagonal
interleavers described in [9] are also candidates. In particular,
excellent performance results have been obtained for the
special block lengths of K=2n2, where n is an integer, but not
a multiple of 7 (the period of the feedback polynomial in the
RSC encoders). These special interleavers can be stored and
implemented using just n index increment values. This
represents a significant reduction in the memory
requirements. However, the bank resolution is rather coarse
and the block lengths are not the most convenient (e.g. they
are generally not multiples of bytes). Even so, it was the
good error rate performance, and the low-memory
requirements, of these special dithered diagonal interleavers
that partly motivated the new approach presented here.

This paper describes a new family of interleavers, called
dithered relative prime (DRP) interleavers, that provides a
good solution to the interleaver bank problem for Turbo-
codes. Section 2 reviews the interleaver and spread
definitions. Section 3 describes the new DRP approach.
Section 4 addresses distance testing and presents some
example distance results. Section 5 presents example
simulation results. Section 6 contains the conclusions.

2 Interleaver and Spread Definitions
Interleavers can be defined and implemented in a number of
different ways. Figure 2 shows the definition used here. The
interleaver reads from a vector of input symbols or samples,
vin, and writes to a vector of interleaved or permuted output
samples, vout. The output samples are written using the write
indexes i=0…K-1, where K is the interleaver length. Vector I
defines the order that the samples are read from the input
vector. That is, the i-th output, written to location i in the
output vector, is read from location I(i) in the input vector.
The interleaver is completely defined by read vector I.

For example, letting [ ]mx  denote x modulo-m arithmetic, a

simple RP interleaver of length K is defined by
[ ]KipsiI +=)( ,   i=0…K-1 (1)

where p and K are relative primes and s is the starting index.
Note that I can also be computed recursively using

[ ]KpiIiI +−= )1()( ,   i=1…K-1 (2)

where I(0)=s. Thus, an RP interleaver can be implemented
using a single modulo-K index increment, p.

The new spread measure associated with two write indexes i
and j, for any interleaver I, is defined as [9]

jijIiIjiSnew −+−=′′ )()(),( (3)

The (minimum) spread associated with index i is then
[ ]),(min)(

,
jiSiS new

ijj
new ′′=′

≠
(4)

The overall (minimum) spread is defined as
[ ])(min iSS new

i
new ′= (5)

Proper termination of the TC’s RSC constituent codes is very
important for good performance at low error rates [7]. Some
form of dual termination or dual tail-biting is recommended,
as defined in [10,11] for example. With dual tail-biting, the
absolute differences in (3) should be computed in a tail-
biting sense. For these spread definitions, it can be shown
that the theoretical maximum spread (with dual tail-biting) is

)2floor( K . As an example, for a block length of K=512,

the theoretical maximum spread is 32 (i.e. Snew≤32).
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Fig. 2: Illustration of interleaver definition.

3 Dithered Relative Prime Interleavers
Figure 3 shows the approach used to design dithered relative
prime (DRP) interleavers. The approach is well suited to dual
tail-biting, which is the most difficult TC termination option
to accommodate. The approach consists of three stages. First,
the input vector, vin, is dithered (permuted locally) using a
small read dither vector, r, of length R. Vector r is a
permutation of indexes 0 through R-1. Next, the resulting
vector, va, is permuted using an RP interleaver to obtain good
spread. Finally, the resulting vector, vb, is dithered using a
small write dither vector, w, of length W, to generate the
output vector vout. Vector w is a permutation of indexes 0
through W-1. The interleaver length, K, must be a multiple of
both R and W. Note that short read and write dither vectors
will not destroy the good spreading properties of an RP
interleaver, but will tend to lower the spread somewhat.
While a DRP interleaver could be implemented using the 3-
stage process shown in Figure 3, this is not the recommended
approach. The equivalent overall interleaver vector, I, as
illustrated in Figure 2, is determined next.

Let  x  denote the floor(x) function and again let [ ]mx

denote x modulo-m arithmetic. With these definitions, the



equations for the various DRP interleaver vectors shown in
Figure 3 can be expressed as follows:

)),(()()),(()( iIviviIviv babaina ==
))(()( iIviv cbout = , i=0…K-1 (6)

where

  [ ]( )Ra irRiRiI +=)( , i=0…K-1 (7)

[ ]Kb ipsiI +=)( , i=0…K-1 (8)

  [ ]( )Wc iwWiWiI +=)( , i=0…K-1 (9)
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Fig. 3: Dithered relative prime (DRP) interleavers.

Thus, the input vector can be interleaved using
))(()( iIviv inout = ,     i=0…K-1 (10)

where the interleaver is completely defined by
)))((()( iIIIiI cba= ,   i=0…K-1 (11)

All the indexes of I can be computed using equations (7), (8),
(9), and (11).

A DRP interleaver can be stored by just storing r, w, s and p.
This represents a significant reduction in storage, as
compared to storing all K indexes, but further simplifications
and reductions are possible. Let M be the least common
multiple (LCM) of R and W. It can be shown that

[ ]( ) [ ]KK MpiIMiI +=+ )( ,   i=0…K-1 (12)

It follows that the interleaver indexes can be computed
recursively by cycling through M index increments. That is,

[ ]( )[ ]KMiPiIiI +−= )1()( ,   i=1…K-1 (13)

where I(0) and the M index increments in vector P are
defined by (11) and

[ ]KiIiIiP )1()()( −−= ,   i=0…M-1 (14)

Thus, all the indexes of I can be computed using the simple
recursion in (13), and the interleaver can be stored by just
storing P. (I(0) is arbitrary.) Further, equation (13) is simple
enough to accommodate “on-the-fly” index generation,
saving even more memory. In particular, this method works
well with the circular buffer feature provided by most
modern digital signal processors.

A few important properties are now explained further. Dual
tail-biting is assumed for convenience. A rotational (modulo-
K) shift in vin or vout does not affect the spread or distance

properties of the TC. However, a rotational shift in va or vb

can affect the spread and distance properties. It can be shown
that any shift in va or vb is equivalent to shifting vin and/or vout

and using a different value for s in the RP interleaver. Thus,
the s parameter is sufficient for testing different shifts when
searching for good interleavers. Consider the special case
where R and W are relative primes. In this case we have
M=R×W. Thus, a small amount of dither (small values for R
and W) can still force a large number of index increments, M.
This is undesirable since M is also the resolution of the
interleaver bank (i.e. K must be a multiple of M). There is
also no benefit derived from trying different s values since all
relative shifts between dither vectors r and w will occur for
every value of s. At the other extreme we have the special
case where M=R=W. This case offers the largest amount of
dither for the smallest number of index increments, M, and
the finest interleaver bank resolution. In this case, different
results can be achieved for all shifts s=0…M-1, and thus all
of the different shift values are worth considering. This
second case is more convenient and has generally been found
to give better distance results. This is the only case
considered further below. As an example, with M=R=W=8,
only 8 index increments are required to both store and
implement each interleaver, and the interleaver bank
resolution is conveniently in bytes.

4 Example Distance Results
The lowest weight TC codewords are constructed from
combinations of low input-weight (IW) patterns that lead to
low-weight RSC codewords in both RSC constituent codes.
It is important to determine which combinations of low IW
patterns need to be considered. For example, certain
combinations do not need to be considered because of high
spread. A number of distance lower bounds were derived.
The presentation of these bounds is beyond the scope of this
paper. From these bounds it was concluded that the most
important cases to test, and to try and improve, are:
“IW2:2,2”, “IW3:3,3”, “IW4:22,22”, “IW6:33,222”,
“IW6:222,33”, and “IW6:222,222”. The meaning of these
case labels is as follows. Each case label contains 3 numbers.
The first number is the total IW. The second and third
numbers indicate the base pattern combinations before and
after interleaving, where each digit is the IW of a base
pattern. By definition, all base patterns correspond to valid
RSC codewords and a base pattern cannot be decomposed
into a number of smaller base patterns.

Distance measurement routines have been developed for all
of these cases. For completeness, and because it was feasible,
routines were also developed to handle the other IW4 cases,
namely “IW4:4,4”, “IW4:4,22”, and “IW4:22,4”. With these
extra IW4 cases included the minimum measured distances
are guaranteed to be the true minimum distances for all
possible IW2, IW3, and IW4 cases. While the minimum
distances for IW5 and IW6 cannot be guaranteed in general,
the minimum measured distance for IW6 is sure to be the
true minimum distance (over IW5 and IW6) for long blocks



with large spread. This is because all the other IW5 and IW6
cases improve as the spread increases.

Table 1 shows some example unpunctured (rate 1/3) distance
results obtained for different block lengths, K, and number of
index increments, M=R=W. The measured distances, D(IW),
are a function of IW. Results are shown for input weights of
2, 3, 4, and 6. The spread, Snew, is also shown. As an
example, consider the distance results with K=512. The M=8
interleaver is expected to perform the best for a code rate of
1/3, but the M=4 interleaver should also perform well when
puncturing is used to achieve higher code rates.

Table 1: Example unpunctured (rate 1/3) distances for
different block lengths, K, and number of increments, M.

K M Snew D(2) D(3) D(4) D(6) min(D)
512 1 32 134 65 28 30 27*
512 2 32 134 61 36 38 36
512 4 29 66 65 52 38 38
512 8 24 58 57 44 46 44
1024 8 31 86 61 56 50 50
2048 8 57 90 93 60 54 54
4096 16 62 110 97 60 54 54
8192 16 107 >150 >100 72 58 58
* Upper bound for case “IW9:333,333” with M=1.

5 Simulation Results
Simulation results are presented for binary antipodal
signaling (e.g. BPSK or QPSK) and a block length of K=512.
Dual termination was used, as described in [10,11]. The TC
used 8-state constituent codes, and the decoder used an
enhanced maximum-log-a-posteriori-probability (max-log-
APP) approach, with scaled extrinsic information, as
described in [12,13,14]. It has been found that this decoding
approach typically provides performance within 0.1 dB of
true log-APP processing for 8-state codes. The maximum
number of decoding iterations was set to 16. Early stopping
was also used where the decisions before and after each half-
iteration must agree 3 times in a row before stopping [14].

Figure 4 shows the packet error rate (PER) results for a block
length of K=512 and a code rate of 1/3. (The nominal code
rate is used for convenience. The exact code rate is slightly
less due to the 6 termination bits included in the interleaver
length, K.) Results are shown for the 4 DRP interleavers
indicated in Table 1, with K=512 and M=1, 2, 4, and 8. For
comparison, results are also shown for a random interleaver,
the 3GPP interleaver, and a good HSR interleaver with post-
processing to improve the distance spectrum. As expected,
the random interleaver performs poorly, the 3GPP interleaver
performs better, and the HSR interleaver performs the best.
Not surprisingly, the DRP interleaver with M=1 (actually a
simple RP interleaver) performs worse than the random
interleaver (although it is expected to cross over at higher
SNRs). There is a significant improvement with M=2, but
performance is still a little worse than that for the 3GPP

interleaver. Performance continues to improve with M=4 and
M=8. Note that the performance with M=8 is essentially the
same as that for the HSR interleaver. Figure 4 also shows
Shannon’s continuous-input sphere-packing bound for a rate
1/3 code [15]. Note that the HSR and DRP (M=8)
interleavers both provide performance within 1 dB of this
bound down to a PER of about 10-6.
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Fig. 4: PER results for K=512 and a code rate of 1/3.

Figure 5 shows the PER results for the same interleavers but
with a code rate of 2/3. Most of the results were obtained
without any data puncturing using the puncture masks (data,
par1, par2) = (1, 0100, 0010), where a “0” indicates a
punctured bit. The DRP (M=1) interleaver is as good as the
3GPP interleaver. The DRP (M=2) interleaver is better than
the HSR interleaver, and performance continues to improve
with M=4. Note that the M=4 result is slightly better than the
M=8 result. This is not surprising given the unpunctured
distance results shown in Table 1. The low IW cases (IW2,
IW3, and IW4) are clearly dominating the performance. It
should be noted that the HSR interleaver was not designed
with puncturing in mind, but the DRP interleavers were.

A small amount of data puncturing, in exchange for more
parity bits, can significantly improve the flare performance.
This works because most of the distance, especially for the
low IW cases, tends to come from the parity bits. It follows
that the better the interleaver the better data puncturing
works. There is a practical trade-off, however, as too much
data puncturing can significantly degrade the convergence
performance up top. Figure 5 shows results with 1/6 data
puncturing for the two DRP interleavers with M=4 and M=8.
The puncture masks were (data, par1, par2) = (111110, 001,
001). As can be seen, the flare performance is improved with
only a small degradation up top. Note that the M=8 result is
now slightly better than the M=4 result, reversing the trend



without data puncturing. This is expected because a decrease
in the amount of parity puncturing tends to shift the emphasis
away from the lowest IW cases. Even so, there is very little
to choose from between these two DRP interleavers.
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Fig. 5: PER results for K=512 and a code rate of 2/3.

6 Conclusions
Dithered relative prime (DRP) interleavers were introduced.
These interleavers provide a good solution to the interleaver
bank problem for Turbo-codes. The design is based on using
a small read dither vector, r, of length R, a high-spread RP
interleaver with starting index s and index increment p, and a
small write dither vector, w, of length W. Distance testing is
used to help select the dither parameters. A DRP interleaver
can be stored by just storing r, w, s and p.

A DRP interleaver can also be stored using a vector, P,
containing M index increments, where M is the least common
multiple of R and W. The interleaver is generated by
repeatedly cycling through these M index increments. This
method is simple enough to accommodate “on-the-fly” index
generation, and works well with the circular buffer feature
provided by most modern digital signal processors. The
special case of M=R=W offers the largest amount of dither
for the smallest number of index increments. This is
important because M is also the resolution of the interleaver
bank. As an example, with M=8, only 8 index increments are
required to both store and implement each interleaver, and
the interleaver bank resolution is conveniently in bytes.

The memory can be reduced further by selecting a small
number of “good” dither combinations (r, w, and s) and then
just optimizing over p for each interleaver length. Good
distance results have been obtained with as few as 8 dither
combinations. With this approach, each interleaver in the
bank can be stored by just storing 2 integers, the number of

the best dither combination and the corresponding best p
value found. In this case, the memory that is required to store
a large bank of B interleavers is only about 2B integers.
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