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Abstract—In this work, we consider the downlink of an
unmanned aerial vehicle (UAV) assisted cellular network con-
sisting of multiple cooperative UAVs, whose operations are
coordinated by a central ground controller using the fronthaul
communications, to serve multiple ground users. A problem
of jointly designing UAV’s locations, transmit beamforming,
as well as UAV-user association is formulated in the form of
mixed integer nonlinear programming (MINLP) to maximize the
sum user achievable rate while considering the constraints of
limited fronthaul capacity. Solving the formulated problem is
computationally hard owing to the its non-convex nature and
the unavailability of channel state information (CSI) due to
the undetermined and flexible movement of UAVs. To tackle
these effects, we propose a novel algorithm exploiting the deep
Q-learning approach to take the hassles of unavailable CSI
for determining UAV’s location and invoking the difference of
convex (DC) based optimization method to efficiently solve for
the UAV’s transmit beamforming and UAV-user association given
the determined UAV’s location. The algorithm recursively solves
the formulated problem until convergence. Numerical results
show that our design outperforms the existing work in terms of
algorithmic convergence and network performance and achieve
a gain of up to 70% compared to the existing algorithms.

Index Terms—Beamforming, user association, UAV placement,
limited fronthaul, optimization, reinforcement learning.

I. INTRODUCTION

Wireless communications over the last decade has continu-
ously witnessed tremendous efforts to standardize and imple-
ment 5G and its beyond to support many wireless applications
and use-cases. The proliferation of Internet-of-Thing (IoT)
incites new wireless network infrastructure to lean towards
a highly agile network platform such as Unmanned Aerial
Vehicle (UAV) assisted network [1]. In fact, this network can
flexibly form, destruct, and reform any on-demand access
network by dispatching flying-capable small base stations
away from the fixed and grid-connected wireless access in-
frastructure to communicate with end-user, while backhauling
data are handled via the backhaul or fronthaul link to the core
network. The latest development of UAV wireless communi-
cation technology not only provides ubiquitous coverage and
received signal strength due to the agility of its 3D movement,
but also embraces beyond Line-of-Sight (LoS) transmissions
and allows coordinated communication between UAVs in order
to better manage interference, achieve cooperative gain, and
improve network latency [2]. Thanks to the above prominent
capabilities, UAV network (UAN) offers more effective way
to adapt the dynamic traffic demands with stringent quality-
of-service (QoS) requirement and thus is suitable for a myriad
of application such as video streaming, surveillance, etc.

Harnessing the aforementioned benefits of UANs is no
simple task since it must encounter many unsolved technical
challenges in terms of resource allocation design. There have
been several works that study a joint design of UAV location,
transmit power and UE association in the UANs. The work
in [3] aimed at optimizing the decoding order of the NOMA
process and the positions of the UAVs in space to maximize the
sum achievable rate of all users. In addition, [4] proposed the
CoMP in the sky for the uplink communication of multi-UAV
enabled multi-user system to maximize the network through-
put via the design of UAV placement. However, they applied
the ZF technique to approximate the worst-case achievable
rate as well as neglected the fronthaul capacity limitation.
However, these work assumed predetermined CSI as input to
the optimization problem to solve for the UAVs position and
resource allocation, which is not practical.

On the other hand, the deep reinforcement learning (DRL)
approach has recently been exploited and applied to the
problem of UAV position and resource allocation in the UANs.
[5] proposed the DRL algorithm based on echo state network
(ESN) cells for optimizing the UAV path, transmit power level
and cell association to minimize the intercell-interference level
and transmission delay. The deployment of UAVs was studied
to minimize the UAV transmission power in [6]. Again, ESN
algorithm using multi-agent Q-learning was used to predict the
future position of UEs and determine the position of UAVs in
[7]. However, no UAV cooperation and capacity limitation of
fronthaul links between UAV and base stations were taken into
account in these works.

Unlike [5]–[7] where there is no cooperation among UAVs,
in this paper, we study the downlink of an UAN whose
multiple UAVs can cooperatively serve their UEs using CoMP
techniques. A central UAV controller located at the MBS is
responsible for processing all baseband signal, coordinating
resource computation, as well as transporting data to the UAVs
via wireless fronthaul links [4]. By observing that UAV’s
cooperation and transmit beamforming correlate with UAV-UE
association and each UAV’s location, we propose a novel deep
Q-learning based design in combination with optimization to
jointly determine the UAVs’ locations, UAV-UE association,
and transmit beamforming at the UAVs. The objective is
to maximize the overall system throughput, including the
limited fronthaul capacity between the MBS and UAVs. The
problem is formulated as a MINLP. The formulated problem
is computationally hard to solve because of its non-convexity
and the CSI related dilemma in which the methods in [5], [7]
are no longer applicable. To tackle these issues, we propose
the deep Q-learning based RL method (DQL) to develop an
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Fig. 1. Cooperative UAVs assisted wireless system

algorithm which allows UAVs to jointly learn the overall
network current state and take their movements to adapt their
position according to the action transmitted from MBS. Based
on the UAV’s solution, we employ the DC method based
on Lipschitz continuity to handle the remaining non-convex
problem of solving for UAV-UE association and beamforming.
The outcome of this DC algorithm is then used to construct
the decision policy of DQL algorithm to recompute the UAV
position and this process is iterated until convergence. To the
best of our knowledge, our work is the first to exploit the
framework of DQL and DC for jointly determining UAV po-
sition, UAV-UE association and beamfomers in the cooperative
UAVs-assisted wireless network.

The remaining of the paper is as follows. In Section II,
we introduce the system model and formulate the problem of
interest. Section III proposes the solution approach. Section
IV shows our numerical results. Finally, conclusion are given
in Section V.

II. SYSTEM MODEL

A. Spatial Model

We consider the downlink communications of a UAN
consisting of one macro base station (MBS) and a set U =
{1, . . . , U} of UAVs operated in an circular area of radius d0.
Each UAV has a ground-projected communication range R and
flies at a fixed altitude H to serve a group of ground UEs. We
consider a scenario in which U UAVs connect to the ground
controller associated with the MBS through wireless fronthaul
links. We assume that the fronthaul communications between
UAVs and MBS are accommodated on separate spectrum from
the access communications between UAVs and UEs. Thus,
there is no interference between UAV-MBS and UAV-UE links.

Let us denote the position of the kth UE, which is fixed on
the ground, by vk = {x̄k, ȳk, 0}, where k ∈ K = {1, . . . ,K}
denotes the set of UE’s indices within the given geographical
region. In addition, we consider that each ith UAV positioned
at ui = {xi, yi, H} can cooperate with other UAVs to serve the
group of UEs. The UAV’s positions are opted to be calculated
after some period of time while the UE’s positions are assumed
fixed during a cycle of UAVs positioning. When the UEs
shifts their position, we must recalculate the UAVs position
according to the updated positions at any UAV positioning
cycle. For simplicity, we only consider for a cycle of UAV
positioning in this paper.

B. Channel Model

We assume that the fading channel remains unchanged
within a coherence time. Following [3], we consider hik(δik)

as the air-to-ground (AtG) channel from the ith UAV to the
kth UE, which can be written as hik(δik) = δikh̃ik,∀i ∈
U , k ∈ K where δik ,

[
(xi − x̄k)

2
+ (yi − ȳk)

2
+H2

]−1/2
represents the path-loss coefficient and and h̃ik represents
the small scale fading between the ith UAV and the kth
UE. Since the AtG channel are often governed by LoS
propagation, h̃ik follows the Rician distribution with factor
Kb, which consists of a deterministic LoS component h̄ik with∣∣h̄ik∣∣ = 1 and a random scattered component ĥik as h̃ik =√
Kb/(1 +Kb)h̄ik +

√
1/(1 +Kb)ĥik where ĥik follows a

complex Gaussian distribution CN (0, 1). Similarly, we denote
by gmi(∆mi) = ∆mig̃mi as the ground-to-air (GtA) channel
from MBS to the ith UAV, consisting of the pathloss coefficient

∆mi ,
[
(x̄m − xi)2 + (ȳm − yi)2 + (Hm −H)

2
]−1/2

and

small scale fading g̃mi =
√
Km/(1 +Km)ḡmi +√

1/(1 +Km)ĝmi, where {x̄m, ȳm} and Hm represent the
fixed grounded position and height of MBS. Similar to g̃mi
follows the Rician distribution of factor Km which consists
of a deterministic LoS component ḡmi with |ḡmi| = 1 and a
random scattered component ĝmi ∼ CN (0, 1).

C. Transmission Model

1) Transmission from MBS to UAV: Let us assume that
the MBS can communicate with each UAV on the orthogonal
subchannels. Then, the received signal at the ith UAV is given
by yi =

√
pigmi(∆mi)smi + ñi where pi ∈ R+ is the power

from MBS to the ith UAV, smi is the message for the ith UAV
where E{sis?i } = 1 and ñi ∼ CN (0, N0) is the AWGN at the
ith UAV, where N0 is the noise power. Thus, the achievable
rate in b/s/Hz at the ith UAV is computed as

Υi (pi,∆mi) = log2

(
1 +

pi |gmi(∆mi)|2
N0

)
(1)

2) Transmission from UAVs to UEs: We consider that
all UAVs can serve their UEs simultaneously in the same
spectrum by applying the beamforming technique. For notation
convenience, we denote the set of beamforming vectors in-
tended for the kth UE as wk , [w1k, w2k, . . . , wUk] ∈ CU×1,
and the vector includ1ing the channels from all UAVs to the
kth UE as hk(δk) , [h1k(δ1k), h2k(δ2k), . . . , hUk(δUk)]T ∈
CU×1 where δk = {δik}∀i∈U represents the location vector of
all UAVs to the kth UE. Using these notations, the received
signal at the kth UE is given by

yk = hHk (δk)wkqk +
∑

j∈K\k
hHk (δk)wjqj + zk (2)

where qk is the message for the kth UE where E{qkq?k} = 1,
zk ∼ CN (0, σ2

0) is the additive white Gaussian noise (AWGN)
and σ2

0 is the noise power. In (2), we assumed that the kth UE
is connected to all the UAVs, but the ith UAV serves the kth
UE only if

∥∥wiks∥∥22 > 0. By treating interference as noise,
the achievable rate in b/s/Hz at the kth UE is given by

υk (w, δk) = log2

(
1 +

|wH
k hk(δk)|2∑

j∈K\k |wH
j hk(δk)|2 + σ2

0

)
(3)

where w , [wT
1 ,w

T
2 , . . . ,w

T
k ]T ∈ C(KU)×1 is the vector

stacking the beamformers for all UEs.
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In addition, let us introduce the integer variable cik =
{0, 1}∀i∈U,k∈K representing the association variable between
the ith UAV and the kth UE. Accordingly, cik = 1 implies that
the ith UAV serves the kth UE (i.e., wik > 0) and cik = 0 (i.e.,
wik = 0) otherwise. Importantly, to enable the transmission
from a UAV to its associated UEs, the total UE achievable
rate served by the ith UAV should be smaller than or equal
to the fronthaul capacity provided from MBS to the ith UAV.
This fronthaul rate constraint at the ith UAV is expressed as

Υi (pi,∆mi) ≥
∑
∀k∈K

cikυk (w, δk) (4)

D. Problem Formulation

We aim at finding the optimal UAVs location u = {ui =
{xi, yi}},∀i ∈ U , the UAV-UE association c = {cik},∀i ∈
U ,∀k ∈ Kand transmit beamformers w to maximize the sum
achievable rate of all UE in the cooperative UAV-assisted
network while guaranteeing the fronthaul rate and power
budget constraints. By considering δ = {δk},∀k ∈ K and
∆ = {∆mi},∀i ∈ U and Ω = {c,w,u,p,λ, δ,∆} as the
slack variables, the problem can be formulated as

(P) : max
Ω

∑
k∈K

υk(w, δk) (5a)

s.t.δ−1
ik ≥

√
(xi − x̄k)2 + (yi − ȳk)2 +H2 (5b)

∆−1
mi ≥

√
(x̄m − xi)2 + (ȳm − yi)2 + (Hm −H)2

(5c)∑
∀i∈U

pi ≤ PMBS
max (5d)

‖wik‖2 ≤ cikλik (5e)∑
∀k∈K

λik ≤ PUAV
i,max (5f)√

(xi − x̄k)2 + (yi − ȳk)2 ≤ R+ η(1− cik) (5g)
Υi (pi,∆mi) ≥

∑
∀k∈K

cikυk (w, δk) (5h)

Constraint (5d) is to guarantee the maximum power budget at
MBS. The constraint in (5e) guarantees that the transmit power
‖wik‖2 from the ith UAV to the kth UE is zero if cik = 0
where λik represents the soft power level corresponding to
the upper bound of power that the ith UAV can transmit
to the kth UE. The constraint in (5f) is to guarantee the
power budget at each UAV. Constraint (5g) implies that the
kth UE may be served by the ith UAV only if it is located
in the communication range of the ith UAV where η > 0
and η is large to make (5g) hold. The constraints in (5h)
represent the limited fronthaul rate constraints. Then, we have
the observations about the problem (P) as follows. First,
problem (P) is generally NP-hard due to the presence of
binary variable c. Moreover, even when this binary variable
is relaxed to be continuous, the obtained problem is still non-
convex because of the nonconvexity of the objective function
(5a) and the constraints in (5b), (5c), and (5h). In mathematical
programming, (P) is categorized as a MINLP for which
methods in previous works is not applicable to find a globally
optimal solution. Given the non-convexity and combinatorial
nature of (P), a pragmatic goal is to find a sufficiently good
feasible solution in a reasonable amount of time.

III. PROPOSED DQL AND DC ALGORITHM

In this section, we present a novel framework of deep
Q-learning based reinforcement learning (DQL) algorithm
and difference of convex (DC) algorithm, called DQL-DC
algorithm, that enables UAVs to learn the network state to
adapt their position jointly with determining the transmit
beamforming and UE association.

A. DQL Introduction

In DQL, an agent interacts with a system environment in
a sequence of discrete times t. At each time t, the agent
including MBS and UAVs observes the overall network state
st, takes action at and receives the reward rt. Then, the
environment of network moves to new state st+1 at time t+1.
In order to present our proposed DQL algorithm, we first
introduce and define the state st, action at and reward rt at
time step t as follows:

- Action at = {φi,t, di,t} ,∀i ∈ U decided for all UAVs
where φi,t = (0, 2π] and di,t = [0, dmax] are the movement
direction and distance for each UAV i, respectively.

- The state st = {{hik,t(δik,t)} , gmi,t(∆mi,t)} ,∀k,∀i ∈ U
is the CSI obtained from all UAVs corresponding to UAVs
location {ui,t} ,∀i ∈ U at time t.

- After receiving an selected action at sent from MBS via
fronthaul link, each UAV i moves to the new position ac-
cording to movement direction φi,t and distance di,t, ∀i ∈ U .
Given the current positions, UAVs update and send to MBS
their CSI {hik,t+1(δik,t+1), gmi,t+1(∆mi,t+1)} ,∀k, ∀i ∈ U
which refers to the new state st+1. The transition from state
st to st+1 due to action at generates a reward rt (st, at)
calculated in (6) where κ > 0 is a constant parameter and
w?
t is the optimal beamforming solution obtained by solving

the following optimization problem

(Pt) : maximize
wt,pt,λt,ct

∑
k∈K

υk(wt, δk,t) (7a)

subject to (5d); (5e); (5f); (5g); (5h) (7b)
given ut, δt, and ∆t from the received action at and state st
at the time step t. By doing this way, determining the transmit
beamforming w?

t and UE association c?t solution is associated
with the UAVs position ut and network environment st
obtained at time step t of DQL-DC algorithm. However, it
is not trivial to calculate the reward since solving (Pt) is very
challenging due to the binary variable c and non-convexity of
UE rate in objective (7a) and constraints (5h). In the following,
we present our proposed DC algorithm to solve (Pt).

B. DC Algorithm for Solving (Pt)
We observe that the problem (7) is difficult to solve

mainly because of the non-convex non-concave rate function
υk(wt, δk) and the term cik,tυk (wt, δk) with respect to vari-
able wt. Based on the concept of DC programming, we will
express each of the non-convex non-concave functions as the
difference of two convex or concave ones. To illustrate this,
we rewrite υk (wt, δk,t) asoptimization

υk(wt, δk,t) = υk(wt, δk,t) + ξk,t ‖wt‖2︸ ︷︷ ︸
fk(wt,δk,t)

−ξk,t ‖wt‖2 (8)
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rt(st, at) =


∑
∀k∈K υk(w?

t , δk,t) + κ if
∑
∀k∈K υk(w?

t , δk,t) >
∑
∀k∈K υk(w?

t−1, δk,t−1)∑
∀k∈K υk(w?

t , δk,t) if
∑
∀k∈K υk(w?

t ,δk,t) =
∑
∀k∈K υk(w?

t−1,δk,t−1)∑
∀k∈K υk(w?

t , δk,t)− κ otherwise
(6)

for any ξk,t ≥ 0. Intuitively if ξk,t is chosen sufficiently
large, the function fk(wt, δk,t) will become convex with
respect to the variable wt due to the dominance of the
strongly convex quadratic term ξk,t ‖wt‖2. To find a proper
value of ξk,t to make (8) DC, we have for ξk,t > ξ̄k
where ξ̄k = ||Hk(δk,t)||F + (2PUAV

max ||Hk(δk,t)||F )2 +
||H̃k(δk,t)||F + (2PUAV

max ||H̃k(δk,t)||F )2, fk(wt, δk,t) is a
ξ̄k-smooth function and strongly convex [8]. Here, we
denote H̄k(δk,t) = hk(δk,t)h

H
k (δk,t) to support the notation

ofHk(δk) = Bdiag
(
H̄k(δk,t), . . . , H̄k(δk,t)

)︸ ︷︷ ︸
Kelements

and H̃k(δk,t) =

Bdiag(H̄k(δk,t), . . . , 0︸︷︷︸
kth element

, . . . , H̄k(δk,t)) Similarly, we

consider the following DC decomposition cik,tυk (wt, δk,t) =(
cik,tυk (wt, δk,t)− ζk,t

(
‖wt‖2 + c2ik,t

))︸ ︷︷ ︸
yk(wt,δk,t,cik,t)

+ζk,t
(
‖wt‖2 + c2ik,t

)
for any ζk,t ≥ 0. Similarly, for ζk,t > ζ̄k where

ζ̄k =

√
2ξ̄2k + 8

(
||Hk(δk,t)||2F + ||H̃k(δk,t)||2F

)
PUAV2
max ,

yk(wt, δk, cik,t) is strongly concave [8]. Furthermore, to
deal with the binary variables c, we proceed to equivalently
rewrite the binary constraint cik,t ∈ {0, 1} into the continuous
DC form constraints as

cik,t − c2ik,t ≤ 0 (9)
0 ≤ cik,t ≤ 1 (10)

Now, we observe that the non-convexity of objective
function is due to the maximization over the convex
function fk(wt, δk,t). Thus, we can iteratively
approximate function fk(wt, δk,t) by its first order Taylor
linearization Fk(wt, δk,t; w

[n]
t ) around the point w

[n]
t as

Fk(wt, δk,t; w
[n]
t ) = fk(w

[n]
t , δk,t) + f̆k(wt, δk,t; w

[n]
t ) +

2ξk Re(w
[n]H
t wt − ||w[n]

t ||2)where f̆k(wt, δk,t; w
[n]
t ) is in

(11). Similarly, it can be seen that the non-convexity of
(5h) is because of the concave function yk(wt, δt,k, cik,t)
on the lesser side of inequality. In the same way, we can
approximate function yk(wt, δk,t, cik,t) by its upper bound
Yk(wt, δk,t, cik,t; w

[n]
t , c

[n]
ik,t) around the point w

[n]
t , c

[n]
ik,t

as Yk(wt, δk,t, cik,t; w
[n]
t , c

[n]
ik,t) = yk(w

[n]
t , δk,t, c

[n]
ik,t) +

y̆k(wt, δk,t; w
[n]
t , c

[n]
ik,t) + ẙk(cik,t, δk,t; w

[n]
t , c

[n]
ik,t) −

2ζk,t(w
[n]H
t wt − ||w[n]

t ||2 + c
[n]
ik,tcik,t − (c

[n]
ik,t)

2) where
y̆k(wt, δk,t; w

[n]
t , c

[n]
ik,t) = c

[n]
ik,tf̆k(wt, δk,t; w

[n]
t ) and

ẙk(cik,t; w
[n]
t , c

[n]
ik,t) = (cik,t − c[n]ik,t)υk(w

[n]
t , δk,t). Similarly,

we also approximated c2ik,t in the left side of (9). Finally,
by applying above approximations and introducing a new
slack variable zt = {zik,t ≥ 0a,∀i, k}, we can formulate the
convex approximation of (7) at the nth iteration as

max
w,p,c,λ,z

∑
k∈K

Fk(wt, δk;w
[n]
t )− ξk,t ‖wt‖2 − V

∑
i

∑
k

zik,t

(12a)
s.t.Υi (pi,∆mi) ≥

∑
∀k∈K

Yk(wt, δk, cik,t;w
[n]
t , c

[n]
ik,t)

+ ζk,t
(
‖wt‖2 + c2ik,t

)
(12b)

cik,t − 2c
[n]
ik,tcik,t +

(
c
[n]
ik,t

)2
≤ zik,t (12c)

(5d); (5e); (5g); (10) (12d)

where w[n], c[n] are not the optimization variables but param-
eters obtained from the previous iteration and V ≥ 0 is a
penalty parameter. Thus, the problem (7) can be solved by
the DCA based algorithm, which is outlined in Algorithm 1.
The proof that Algorithm 1 converges after a finite number of
iterations is similar to [8], which is omitted here.

Algorithm 1 DCA-based algorithm.
1: Set n := 0 and initialize starting points of w[n], c[n];
2: repeat
3: Solve the approximated problem (12) to achieve the optimal

solution c?,w?,p?, λ?, z?;
4: Update w[n+1] = w?, c[n+1] = c?;
5: Set n := n+ 1;
6: until Convergence of the objective (12a)

C. DQL-DC Algorithm

In this section, we present the DQL-DC algorithm whose
the decision policy is built based on the calculated reward
rt(st, at) in (6) to recompute the UAV position until conver-
gence. We recall that DQL is a popular method of RL algo-
rithm that incorporates the deep Q-neural networks (DQNN)
as the approximator of Q(st, at, θ) function to seek for the
optimal actions from current states, where θ is the weights of
the edges in DQNN. Action-value function Qπ(s, a, θ) is the
expected accumulated reward when an action a is taken in the
environmental state s under decision policy π

Qπ(st, at, θ) = E [Rt|st, at, π(st)] (13)
where the cumulative discounted reward is defined as Rt =∑∞
j=0 γ

jrt+j+1(st+j+1, at+j+1) and γ ∈ (0, 1] is a discount
factor for weighting future rewards. In DQL, Q(st, at; θ) is
updated by adjusting the weights θ in DQL through a training
process. Specifically, the weights θ in DQL is trained and
optimized by minimizing prediction errors of Q(st, at; θ) as
follows. At time step t, given the state st input into DQNN
which currently has the weights θ, the action at is chosen
as at = arg maxaQ(st, a; θ) where Q(st, a; θ) are ouputs
of DQNN corresponding to all different possible actions a.
Given the action at is taken, DQL generates the reward
rt(st, at) calculated as in (6) and the overall environment
moves to the next state st+1. Let us define an experience
sample (st, at, rt, st+1) at time step t. Then, DQL is able
to be trained by minimizing prediction error of Q(st, at; θ)
through the loss function Lt(θ) defined as

Lt(θ) = E [yt(rt, st+1)−Q(st, at; θ)] (14)
where the target value yt(rt, st+1) can be estimated as

yt(rt, st+1) = rt(st, at) + γmax
a

Q(st+1, a; θ) (15)
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f̆k(wt, δk,t;w
[n]
t ) =

2 Re
(
w

[n]H
t Hk(δk,t)wt −w

[n]H
t Hk(δk,t)w

[n]
t

)
w

[n]H
t Hk(δ

[n]
k,t)w

[n]
t + σ2

0

−
2 Re

(
w

[n]H
t H̃k(δk,t)wt −w

[n]H
t H̃k(δk,t)w

[n]
t

)
w

[n]H
t H̃k(δk,t)w

[n]
t + σ2

0

(11)

TABLE I
SIMULATION PARAMETERS

Parameters Notation Value
Discount factor γ 0.97
Learning rate β 0.001

Random action probability ε 1.0 to 0.05
Target network update steps E 100

Batch size N 48
Replay buffer capacity B 2000

Training time Ttrain 4
Started training time Tstart 2000

Noise power σ2
0 -120 dB

Maximum transmit power of UAV PUAV
max 30 dBm

Maximum transmit power of MBS PMBS
max 45 dBm

Thus, the weights θ of DQNN now can be updated by
minimizing loss function Lt(θ).

To improve learning stability, we employ the experience
replay technique where the agent stores the collected samples
into the replay buffer with capacity B and pick a mini batch
of them from the buffer to calculate the loss function rather
than using a single sample as in (14). Note that the buffer is
always updated by removing the oldest samples and adding
the newest samples whenever the buffer is full. Consequently,
by sampling N experience samples from the buffer B, the loss
function can be computed as

L̄(θ) =
1

N

N∑
i=1

(yi(ri, si+1)−Q(si, ai; θ))
2 (16)

In addition, we also employ the target DQNN with parameter
θtarget for training purpose. Particularly, every E time steps
target DQNN is replaced by the latest DQNN by assigning
θtarget to the latest θ of DQNN and target values is computed
based on this target DQNN as yt(rt, st+1) = rt(st, at) +
γmaxaQ(st+1, a; θtarget). The overall training and testing
phases of DQL-DC algorithm are presented in Alg. 2.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme with DQL algorithm. We also introduce the “no UAVs
cooperation” scheme in the reference [5] and classical Q-
learning algorithm as the baseline schemes. The parameters
and simulation settings used to produce our results are listed
in Table I. In our simulation, we consider the circular coverage
of radius d0 = 10 meters centered at the MBS with coordinate
vm = {0, 0}. The ground UEs are randomly distributed within
the circle. Unless otherwise stated, we set Kb = 3dB, Km = 4
dB, R = 4 meters. Here, the proposed DQL algorithm was
trained using Tensorflow 1.15 and Python 3.6 on Window 10
for L = 1000 episodes, each of which has T = 1000 time
steps. In Fig. 2(a), we show the convergence of total reward
obtained by our proposed DQL-DC algorithm (Alg. 2) and
classical-QL algorithm with different setting of U = 2 and
4 UAVs and K = 4 UEs. In this experiment, we consider
the small setting with 2 UAVs for classical-QL algorithm

Algorithm 2 The DQL-DC Algorithm
1: MBS initializes weights θ of DQNN, weights θtarget of target

DQNN, replay buffer with capacity B, ε , β, γ, ρ, N , E and
global step l := 0

2: for Episode: 0 : L do
3: UAVs are randomly positioned u0, estimates CSI state srand

0

and send to MBS
4: for Time step: t = 0 : T do
5: Decide action at ={

arg maxaQ(st, a; θ) with probability 1-ε
random action with probability ε

6: Applying Alg. 1 to solve (7) and achieve w?
t , c

?
t to calcu-

late rt(st, at) in (6); then MBS sends the actions at, w?
t

and c?t to UAVs.
7: UAVs move to their new positions ut+1 according to the

received action at and estimate the new CSI st+1 and send
back to MBS.

8: for i=0...U do
9: if ∆mi,t > d0 then

10: Punish action at by deducting the reward:
rt(st, at) := rt(st, at) − p with a penalty p
and put UAV i back to previous position: st+1 ← st

11: end if
12: end for
13: Store sample (st, at, rt, st+1) into replay buffer B
14: if Remainder( l

Ttrain
)==0 and l > Tstart then

15: Randomly sampling N experience samples from the
replay buffer B

16: for i = 1 : N do
17: Compute target value yi(ri, si+1) = ri(si, ai) +

γmaxaQ(si+1, a; θtarget)
18: end for
19: Update weights θ by minimizing the loss: L̄(θ) =

1
N

∑N
i=1 (yi(ri, si+1)−Q(si, ai; θ))

2

20: end if
21: if Remainder( l

E
)==0 and l > Tstart then

22: Update θtarget := θ
23: end if
24: t := t+ 1; l := l + 1
25: end for
26: end for

due to the exponential increase of the possible number of
states and actions with number of UAVs resulting in the
increased computational complexity in maintaining the Q-table
in classical-QL algorithm. Here, the total reward correspond-
ing to each episode is the sum of reward

∑T
t=0 rt(st, at)

over T = 1000 time steps. As seen, our proposed DQL-DC
algorithm converges a total reward much higher and faster
than that obtained by the classical-QL algorithm for the same
number of UAVs. It can be observed that when U increases,
the convergence speed of proposed DQL-DC algorithm varies
slightly. This shows the stable operation of proposed DQL-DC
algorithm which can be scalable when UAV number increases.

In the next experiments, we compare the performance of
our proposed scheme and algorithm to other related schemes.
Scheme A considers no UAV cooperation [9], where our
proposed DQL-DC algorithm is applied. Scheme B also
considers no UAV cooperation, however the ESN algorithm
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Fig. 2. (a) The convergence of total rewards between proposed DQL-DC algorithm (Alg. 2) and classical-QL algorithm vs number of episodes; (b) Performance
comparison of our proposed cooperative UAVs with no cooperation scheme vs number of UAVs; (c) Performance comparison of different schemes vs PUAV

max.

in the reference [5], [7], [9] is applied. For power control
design, 4 different transmit power level for each UAV i:
p̂ik,t = [1/4PUAV

i,max, 1/2P
UAV
i,max, 3/4P

UAV
i,max, P

UAV
i,max] is consid-

ered. Scheme C considers no UAV cooperation and fixed
transmit power, where the algorithm in [10] is used. In
Fig. 2(b), we consider two network configurations for the
comparison, which we set the circular coverage of radius
d0 = 10 and d0 = 20 meters centered at the MBS, respectively
while the same number of UEs K = 12 are randomly placed
in configuration 1 (c1) and configuration 2 (c2). In Fig. 2(b),
it can be seen that the achievable sum rate of all schemes
in the c1 is higher than the corresponding schemes in the
c2 and the achievable sum rate increases when number of
UAVs increases for all schemes and both configurations. It is
simply explained that in the smaller considered coverage area,
more UEs can be covered by UAVs than in the larger area.
In addition, we observe that our proposed scheme outperforms
scheme A, B and C, which verifying the benefit of considering
the cooperation between UAVs as well as the effectiveness
of proposed DQL-DC algorithm compared to ESN algorithm
in [5], [7], [9]. Particularly, our proposed scheme in c1
outperforms the scheme B and C up to 70 % and 67% at
very high number of UAVs, e.g., U=10, respectively.

In Fig. 2(c), we show the achievable sum rate with respect
to the UAV’s maximum power budget PUAV

max at two different
MBS’s maximum power budget PMBS

max = 43 and 53 dBm,
where U= 6 UAVs and K = 12 UEs. We again observe
that when PUAV

max increases, the achievable sum rate of all
schemes increase and saturate at high regime of PUAV

max , where
the proposed scheme always outperforms scheme A, B and
C. When the UAVs have higher PUAV

max , the UAVs can allocate
more power to increase the users’ rate. An other observation
is that when PUAV

max is significant high, UAVs do not allocate all
of their available power to served UEs due to the bottleneck
on the fronthaul rate between UAV and MBS as shown in
the limited fronthaul rate constraints (4). This results in a
saturation of rate of all users in all schemes. Besides, the
higher PMBS

max , the higher achievable sum rate can be obtained.
This can be explained as when PMBS

max increases, the MBS can
allocate more power to increase the fronthaul rate, which in
turn allows UAV allocating more available its power to the
served UEs. This corroborates the impact of fronthaul rate

capacity on the performance of UANs.

V. CONCLUSION

In this paper, we investigated the design of UAVs position
and resource allocation in the downlink of an UANwhere
cooperative UAVs scheme is considered to enhance the system
performance. We jointly optimized the radio resource alloca-
tion at UAVs and MBS along with UAVs position to maximize
the users’ sum rate. We proposed a novel framework based
on the deep reinforcement Q-learning method in combination
with DC program based optimization to jointly solve for the
UAV’s positions and radio resource solution. Numerical results
showed that our achieved solution, under the proposed model
and developed algorithm, can outperform the other designs
which aim at optimizing without using cooperative UAVs.
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