
Adaptive Transmission Based on MMSE
Equalization over Fast Fading Channels

Hongyang Zhang, Xiaojing Huang, J. Andrew Zhang, and Y. Jay Guo

University of Technology Sydney, Ultimo, NSW, 2007, Australia
Emails: Hongyang.ZHANG-1@student.uts.edu.au

{Xiaojing.Huang, Andrew.Zhang, Jay.Guo}@uts.edu.au

Abstract—The sixth generation (6G) mobile systems will
enable high mobility applications in both space and ground
based networks. In this paper, we investigate low-complexity
equalization and adaptive transmission schemes to combat fast
fading channels due to high mobility. We first derive signal
and channel models in fast fading channels, which allow low
complexity minimum mean square error (MMSE) equalization.
We then analyze the output signal-to-noise ratio (SNR) using
eigenvalue decomposition for a generalized modulation represen-
tation. Assuming the channel state information (CSI) is known at
the transmitter, we propose an adaptive transmission technique
which utilizes the CSI to precode data symbols in order to
improve the output SNR at the receiver. Simulation results show
that the adaptive transmission scheme effectively improves the
MMSE equalization performance in non-line-of-sight channels
especially when the transmission signal frame is short.

Index Terms—Adaptive transmission, MMSE equalization, fast
fading channel, eigenvalue decomposition

I. INTRODUCTION

With the deployment of the fifth generation (5G) mobile
networks, the research on next generation technology has
become an emerging topic for meeting the demands for higher
system capacity and global coverage. The sixth generation
(6G) systems will target worldwide low-latency and reliable
communications since the ground based communication sys-
tems cannot provide fully covered high speed and reliable
network to any place on the earth [1]. In particular, the
emerging space-air-ground integrated network (SAGIN) com-
bining satellites, aircraft and terrestrial networks will provide
seamless connectivity to rural, ocean and mountain areas [2].

For high-mobility situations in space networks, where the
wireless channels can be mostly regarded as line-of-sight
(LOS) channels, the Doppler frequency shifts caused by
relative motion can affect performance significantly. Besides,
many ground based communications such as those in ve-
hicular networks, can also work in fast fading non-line-of-
sight (NLOS) channels. The 6G technologies should address
the high mobility issues under both LOS and NLOS channel
conditions.

Conventional modulations, such as orthogonal frequency
division multiplexing (OFDM), work well in slow fading
channels, since they transmit signals in short frames so that
the channel during every frame can be assumed to be constant.
However, when the channel coherence time is much smaller

than the frame length, it is difficult for conventional modula-
tions to recover signals in such fast fading channels. Although
significant efforts on channel estimation, equalization and
channel tracking have been made to improve the performance
and reduce the pilot overhead, the lack of capability for
achieving full time diversity in conventional techniques still
limits their applications in high mobility scenarios.

The recently proposed orthogonal time frequency space
(OTFS) modulation shows great potential for coping with fast
fading channels. Formulating the data in a two dimensional
(2D) matrix, OTFS signals can be represented in delay-
Doppler domain and frequency-time domain [3]. With longer
transmission frames, it is easier to equalize signals with mul-
tiple Doppler frequency shifts and multipath fading. Current
researches on OTFS have been focused on developing more
effective and efficient equalization and channel estimation
techniques using algorithms like Markov chain Monte Carlo
(MCMC), message passing (MP) and so on. However, most
of recent studies adopt an effective channel matrix which is
a product of permutation matrices and diagonal matrices to
incorporate the signal multipath delays and Doppler shifts
in their channel models, resulting in complicated channel
equalization and signal detection. Some other existing models
are developed for OTFS only and cannot be applied to other
modulations. Therefore, better general signal and channel
models are needed to characterize the fast fading channels,
not only for long-frame modulations like OTFS, but also
for conventional short-frame modulations such as OFDM and
single-carrier frequency-division multiple access (SC-FDMA).
Besides, how to improve the performance of conventional
short-frame modulations in fast fading channels is of signifi-
cant importance since a long-frame modulation will inevitably
increase the detection complexity and processing delay.

In this paper, we introduce a new channel model and
propose an adaptive transmission scheme that allows low-
complexity minimum mean square error (MMSE) equalization
and achieves high output signal-to-noise ratio (SNR) at the
receiver. Different from existing OTFS study, we introduce
a channel model which demonstrates a circular stripe diago-
nal characteristic in frequency-Doppler domain. This channel
model allows low-complexity MMSE equalization to be used
to combat fast fading channels. We then analyze the output
SNR of the received signals after MMSE equalization by



using eigenvalue decomposition. To further improve the output
SNR and achieve better performance, we propose an adaptive
transmission scheme which uses channel state information
(CSI) to precode the data information to be transmitted over
the fast fading channels. Simulation results show that our adap-
tive transmission scheme performs better in NLOS channels,
compared with conventional OTFS, SC-FDMA and OFDM.

The rest of the paper is organized as follow. In Section
II, channel representation is extended from delay-Doppler
domain to different domains over a fast fading channel in
continuous and discrete forms respectively. In Section III, the
theoretical performance of MMSE equalization is analyzed
through eigenvalue decomposition. In Section IV, the adaptive
transmission scheme is presented to improve the output SNR
at the receiver. Simulation results are shown in Section V and
conclusions are drawn in Section VI.

II. SIGNAL MODELS

Considering a single-input single-output (SISO) system and
denoting the continuous signal waveform to be transmitted
over a fast fading channel as s(t), the received signal can be
expressed as

r (t) =

∫ +∞

−∞

∫ +∞

−∞
h (τ, ν) s (t− τ) ej2πνtdτdν + w (t) ,

(1)

where h(τ, ν) is called the delay-Doppler spreading function
of the fast fading channel, j =

√
−1 and w(t) is the additive

white Gaussian noise. For a sparse P -path channel, h(τ, ν) is
defined as

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (2)

where hi, τi, and νi are the path gain, delay and Doppler shift
of the i-th path, respectively, and δ(·) denotes the Dirac delta
function satisfying ∫ +∞

−∞
δ(x)dx = 1. (3)

Applying Fourier transform (FT) and inverse Fourier trans-
form (IFT) to h(τ, ν) with respect to delay τ and Doppler
frequency ν respectively, the channel’s frequency-Doppler
domain representation Hν(f, ν) and delay-time domain rep-
resentation ht(τ, t) can be obtained. In addition, the channel’s
frequency-time domain representation H(f, t) can be obtained
after applying 2D FT with respect to τ and ν. The relationships
among these channel representations in different domains are
shown in Fig. 1.

Note that the recent studies on OTFS system in [4], [5]
adopt a different received signal model which is expressed as

r (t) =

∫ +∞

−∞

∫ +∞

−∞
h (τ, ν) s (t− τ) ej2πν(t−τ)dτdν + w (t)

=

∫ +∞

−∞

∫ +∞

−∞
h′ (τ, ν) s (t− τ) ej2πνtdτdν + w (t) ,

(4)

Fig. 1. Relationships among channel representations in different domains.

where h′(τ, ν) = h(τ, ν)e−j2πντ . With this model, the rela-
tionships shown in Fig.1 and the discrete signal models to be
discussed below are no longer valid.

Using the delay-time domain channel representation
ht(τ, t), the received signal can be re-written as

r(t) =

∫ +∞

−∞
ht(τ, t)s(t− τ)dτ + w(t). (5)

Letting τ ′ = t− τ , we have

r(t) =

∫ +∞

−∞
ht(t− τ ′, t)s(τ ′)dτ ′ + w(t). (6)

To derive the received signal model in discrete domain, we
first assume that the discrete-time transmitted signal vector
s = (s[0], s[1], ..., s[MN − 1])T is the vectorized form of an
M -by-N data symbol matrix with the discrete data symbols
s[i] = s(idr), i = 0, 1, ...,MN − 1, where dr is the sampling
period, also called the delay resolution. The discrete channel
in the delay-time domain can be expressed as

ht[i, j] = ht(idr, jdr) =

∫ 1/2dr

−1/2dr
H(f, jdr)e

j2πfidrdf, (7)

where H(f, t) is derived from (2) as

H(f, t) =

P∑
i=1

hie
−j2πfτiejv2πνit. (8)

Therefore, from (6), the discrete time-domain received signal
can be expressed in the matrix form as

r = Hts + w, (9)

where r is the received signal vector,

Ht =


ht[0, 0] · · · ht[1, 0]
ht[1, 1] · · · ht[2, 1]

...
. . .

...
ht[MN − 1,MN − 1] · · · ht[0,MN − 1])


(10)

denotes the delay-time domain channel matrix and w is the
time-domain noise vector.

Applying discrete Fourier transform (DFT) to (9), we can
obtain the discrete frequency-domain received signal as

R = HνS + W, (11)



where R and S are the transmitted and received signals in the
frequency domain respectively,

Hν = FMNHtF
H
MN

=


Hν [0, 0] · · · Hν [MN − 1, 1]
Hν [0, 1] · · · Hν [MN − 1, 2]

...
. . .

...
Hν [0,MN − 1] · · · Hν [MN − 1, 0]

 , (12)

FMN and FH
MN are the DFT and IDFT matrices of length

MN respectively,

Hν [i, j] = Hν(ifr, jfr) =

∫ 1/fr

0

H(ifr, t)e
−j2πjfrtdt (13)

with fr being the Doppler frequency resolution, and W is the
frequency-Domain noise vector.

The construction of Ht is shown in Fig. 2(a) where the
shaded squares stand for the discrete values of ht[i, j] and
the blank squares stand for zero elements. The frequency-
Doppler domain channel matrix Hν demonstrates a circular
stripe diagonal property as has been shown in [6] for OFDM
systems in time-varying channels. Assuming that the signal
frame is long enough to resolve the Doppler frequencies with
resolution fr, the width of the stripe diagonal is 1 + 2KD

where KD is the Doppler spread. The construction of Hν

is shown in Fig. 2(b) where the shaded squares stand for the
discrete values of Hν [i, j] and the blank squares stand for zero
elements.

Fig. 2. Constructions of channel matrices Ht (a) and Hν (b) in both time
and frequency domain.

Compared with the channel matrix dimension, the width
of the diagonal stripe in Hν is much smaller for a practical
system with moving speed from hundreds to thousands of
kilometers per hour, which reduces the cost of matrix inversion
significantly and allows for MMSE algorithm to be adopted
to equalize the fast fading channels at a low complexity.

III. OUTPUT SNR ANALYSIS

Assuming the CSI is already perfectly known at the receiver,
MMSE equalization can be used to recover the signals in either
time or frequency domain. Due to the equivalence of time and
frequency domain equalizations, we only perform frequency-
domain analysis. From the frequency domain received signal

model in (11), an estimate of the transmitted signal can be
expressed as

Ŝ = GνR = GνHνS + GνW, (14)

where Gν is the equalization matrix expressed as

Gν = HH
ν (HνH

H
ν +

1

γin
IMN )−1, (15)

γin denotes the input SNR at the receiver, IMN denotes the
identity matrix of order MN and (·)H denotes the matrix
conjugate and transpose operation of a matrix [7]. Assume
that the total number of data symbols to be transmitted is
M ×N and let x = (x[0], x[1], ..., x[MN − 1])T denote the
data symbol vector after the quadrature amplitude modula-
tion (QAM) symbol mapping. Let S = FMNVx where V
and VH denote the modulation and demodulation matrices,
respectively, satisfying VVH = VHV = IMN . A general
representation of the received signals after MMSE equalization
is given by

y = VHFH
MN Ŝ

= VHFH
MNGνHνFMNVx + VHFH

MNGνW. (16)

Different modulation schemes can be realized by selecting dif-
ferent V matrices. To be specific, V = FH

M represents OFDM,
V = IM represents SC-FDMA and V = FH

N ⊗ IM represents
OTFS. Note that for different modulations, the dimension of
channel matrix and frame length may be different.

Defining A = VHFH
MNGνHνFMNV, which represents

the signal transformation from x to y in (16), and using (15),
we can obtain

A = VHFH
MNHH

ν (HνH
H
ν +

1

γin
I)−1HνFMNV

= VHFH
MN (I +

1

γin
(HH

ν Hν)
−1)−1FMNV

= VH(I +
1

γin
(FH

MNHH
ν HνFMN )−1)−1V

= (I +
1

γin
(VHFH

MNHH
ν HνFMNV)−1)−1. (17)

Note that HH
ν Hν is a Hermitian matrix so that it can

be expressed using eigenvalue decomposition as HH
ν Hν =

QΛQH, where Q is a square MN ×MN unitary matrix and
Λ is a diagonal matrix with the i-th diagonal element λi for
i = 0, 1, ...,MN − 1. Further denoting U = VHFH

MNQ, we
can simplify A as

A = (I +
1

γin
UΛ−1UH)−1

= U(I +
1

γin
Λ−1)−1UH

= U(diag(1 +
1

γinλi
))−1UH

= Udiag(
γinλi

γinλi + 1
)UH

= I−Udiag(
1

γinλi + 1
)UH, (18)



where diag(xi) denotes a diagonal matrix with the i-th diago-
nal element xi. According to the MMSE equalization princi-
ple, the normalized noise power for the (nM+m)-th equalized
data symbol, m = 0, 1, ...,M − 1 and n = 0, 1, ..., N − 1, can
be expressed as

JnM+m = 1−A[nM +m,nM +m]

=

MN−1∑
i=0

1

γinλi + 1
|U[nM +m, i]|2. (19)

Therefore, the output SNR for the (nM +m)-th data symbol
after equalization can be expressed as

γout[m,n] =
1− JnM+m

JnM+m

=
1

JnM+m
− 1. (20)

IV. ADAPTIVE TRANSMISSION

Assuming that the CSI can be fed-back to the transmitter,
we can minimize the normalized noise power (19) by pre-
coding the transmitted data symbols based on the the channel
conditions, resulting in an adaptive transmission system. This
can be achieved by constructing a modulation matrix V such
that U satisfies

|U[nM +m, i]|2 =
1

MN
, (21)

and the optimized output SNR becomes

γ∗out[m,n] =
1

1

MN

MN−1∑
i=0

1

γinλi + 1

− 1. (22)

Letting V = FH
MNQFMN and substituting it into U, we

have

U = FH
MNQHFMNFH

MNQ = FH
MN , (23)

and hence the condition (21) is satisfied. Therefore, the adap-
tive transmission system can be designed as shown in Fig. 3.

Fig. 3. Adaptive transmission system block diagram: transmitter (upper) and
receiver (lower).

At the transmitter of adaptive transmission, the data symbol
vector x is transformed into the frequency domain first and
then precoded by the eigenvalue matrix Q. After transforming
it back to time domain and appending the cyclic prefix (CP) to

the data symbol vector, the data symbol frame is sent over the
fast fading channel. At the receiver, after the CP removal and
channel estimation, the CSI is fed-back to the transmitter and
the received signal is recovered by frequency-domain MMSE
equalization.

Assuming QAM modulation for data symbols, the average
bit error rate (BER) for a given channel realization is

Pb =

M−1∑
m=0

N−1∑
n=0

2(1− 2−k)

k
Q(

√
3

4k − 1
γout[m,n])

MN
, (24)

where the Q-function is defined as

Q(x) =
1
√
2π

∫ ∞
x

e−
t2

2 dt, (25)

and 22k indicates the modulation level. For example, k = 1
means 4-QAM or QPSK. Averaging over all possible fading
channel realizations, the ergodic BER for the fast fading
channel is expressed as Eh{Pb}, where Eh{·} denotes the
ensemble average over all delay-Doppler channel realizations.

V. SIMULATION

In this section, BER performance of various modulation
schemes using MMSE equalization is compared over fast
fading channels. The ETSI tapped delay line (TDL) models,
which define the time delay in each fading path depend-
ing on the LOS or NLOS channel condition, are adopted
to generate multipath channel coefficients [8]. To simulate
fast fading channels, Doppler frequency shifts are added to
every path obeying uniform distribution within the Doppler
frequency range [−KD,KD]. The simulation parameters are
listed in Table 1. Different modulation schemes such as OTFS,
SC-FDMA, OFDM with different frame lengths and their
associated adaptive transmission schemes are simulated and
compared. To be specific, there are M × N data symbols in
one OTFS frame and M data symbols in one SC-FDMA or
OFDM frame. The two adaptive transmission schemes with
frame lengths M and MN are named Adaptive-short and
Adaptive-long respectively in the following discussions.

TABLE I
SIMULATION PARAMETERS

Carrier Frequency 6 GHz

No. of Subcarriers (M ) 256

No. of OFDM/SC-FDMA Symbols (N ) 32

Subcarrier Spacing 30 KHz

Maximum Speed 500 Km/h

No. of Doppler Shifts (Positive or Negative) (KD) ≈ 3

We firstly assume that the CSI is perfectly known at both
receiver and transmitter. Fig. 4 shows the simulated BER
performance of OTFS, OFDM, SC-FDMA and their associated
adaptive transmission schemes in the fast fading TDL-D LOS
channel. We observe that the performance of Adaptive-long is
very similar to that of OTFS and better than other modulations,



achieving 10−7 BER at 17 dB SNR. SC-FDMA and Adaptive-
short have about 2 dB degradation while OFDM is the worst
among these modulations.

Fig. 4. Comparison of various modulation schemes in LOS channel.

Fig. 5 shows the BER results in fast fading TDL-A NLOS
channel. We observe that Adaptive-long demonstrates the
best performance, achieving 10−7 BER at 24 dB SNR. The
performance of OTFS is degraded about 5 dB at the same
BER. The performance of Adaptive-short is slightly degraded
as compared to that of OTFS but is much better than that
of SC-FDMA. OFDM still shows the worst performance.
Since perfect CSI can not be achieved in practice, we also
simulate the performance when imperfect channel estimation
is applied to the system. Adding a random error matrix obeying
Gaussian distribution into the estimated channel matrix, the
eigenvector matrix is re-produced for adaptive transmission
and equalization. The variance of the channel error matrix
is assume to be inversely proportional to the SNR. OTFS-
practical and Adaptive-long-practical in Fig. 5 demonstrate
the practical performance with channel estimation error. It
is shown that the impact of channel estimation error on the
performance is significant at lower SNR but tends to be minor
at higher SNR. Meanwhile, adaptive transmission still shows
better performance than that of OTFS.

Fig. 5. Comparison of various modulation schemes in NLOS channel.
We see that the adaptive transmission utilizes the eigenvec-

tor matrix to precode the data symbols in the frequency domain

and hence can alleviate the fast fading effects especially in
NLOS channels with low-complexity MMSE equalization. On
the other hand, the ability of a modulation scheme to explore
frequency diversity and the length of the signal frame also
have impacts on system performance. The results show that
the long-frame OTFS always outperforms the short-frame SC-
FDMA and OFDM. The reason is that the long-frame OTFS
can resolve the Doppler frequency and achieve full diversity
in both time and frequency domain, whereas SC-FDMA can
only partially resolve the Doppler frequency and hence has
degraded performance. OFDM always performs worst since it
only achieves partial time diversity and no frequency diversity.

VI. CONCLUSION

In this paper, we have derived new signal models and
presented an adaptive transmission scheme allowing low-
complexity MMSE equalization for wireless communication
in fast fading channel. The characteristics of frequency-
Doppler domain channel matrix makes it possible to adopt
low-complexity MMSE equalization. Through channel matrix
eigenvalue decomposition, we have proposed an adaptive
transmission scheme to improve the equalized signal output
SNR. Simulation results show that the proposed adaptive trans-
mission scheme performs well in NLOS channels especially
with short signal frames. With the aid of CSI feedback, high
performance and low complexity signal equalization with low
processing delay can be achieved by the proposed adaptive
transmission scheme over fast fading channels. The effective-
ness of the proposed adaptive transmission principle is also
demonstrated in the cases with practical channel estimation
and feedback.
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