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Joint Optimization of the Deployment and Resource Allocation of UAVs

in Vehicular Edge Computing and Networks
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Abstract— With the development of smart vehicles,
computing-intensive tasks are widely and rapidly generated.
To alleviate the burden of on-board CPU, connected vehicles
can offload tasks to or make request from nearby edge server
thanks to the emerging Mobile Edge Computing (MEC).
However, such approach may sharply increase the workload
of an edge server, and cause network congestion, especially in
rural and mountain areas where there are few edge servers.
To this end, a UAV-assisted MEC system is proposed in this
paper, and joint optimization algorithm of the deployment
and resource allocation of UAVs (JOAoDR) is proposed to
decide the location and balance the resource and rewards of
the UAVs. We solve a long-term profit maximization problem
in terms of the operator. Numerical results demonstrated that
our algorithm outperforms other benchmarks algorithm, and
validated our solution.

I. INTRODUCTION

In recent years, with the rapid development of Internet of

Things (IoT), IoT have been rapidly shifting to application

of artificial intelligence (AI) to transform smart devices,

which generated massive computation data and transmission

data. Internet of Vehicles (IoV), as a special portion of

IoT, have become smarter in supporting intelligent appli-

cations, such as on-board cameras and embedded sensors,

autonomous driving, intelligent platoon control, video-aided

real-time navigation, interactive gaming, on-board Virtual

Reality (VR) and Augmented Reality (AR) [1], [2], [3], [4].

Different from common smart devices, the high mobility

of vehicles cannot be overlooked, which indicated that data

processing of vehicles need to be low delay and high

reliability. The on-board CPU was gradually overloading and

cannot provide high-quality services [5], [6].

Under this circumstance, Mobile Edge Computing (MEC)

[7], [8], [9] was proposed to tackle high transmission delay

and network congestion. This new paradigm brings computa-

tion and data storage closer to the location where it is needed,

to improve response times and spectrum resources. It allows

the availability of the cloud servers inside or adjacent to the

base station. The end-to-end latency perceived by the mobile

terminal is therefore reduced with the MEC platform [5],

[10]. After the application of MEC in the IoV, computation-

intensive tasks generated by vehicles can be offloaded to

nearby ES to process instead of occupying on-board CPU

resources, which only have limited computation capability in

general [11]. Furthermore, offloading computation-intensive

tasks to edge server is not the only advantage which MEC

brings. It is also easier and faster for vehicles to get the

required information from the cloud center, such as area high

definition map [12], nearby traffic density data and personal

traffic demand [13].

However, once vehicles offload their computation-

intensive tasks to a single edge server (which is commonly

a base station) to relieve its own computing workload at the

same time, the workload of the edge serve will rise sharply,

especially in areas where the density of vehicles is relative

high or during peak periods, causing latency and network

congestion.

Unmanned aerial vehicles (UAVs) have been witnessed

as a promising approach for offering extensive cover-

age and additional computation capability to smart mobile

devices. Compared with infrastructure-based VEC, UAV-

assisted VEC possesses more reliable line-of-sight (LoS)

links [14], [15]. the mobility of the UAV makes it easier

to deploy in most areas, to improve quality of service (QoS)

and to maintain, having advantage in saving cost [16].

In related works, Zhang et al. [14] investigated a UAV-

assisted mobile edge computing system with stochastic com-

putation tasks. The system aims to minimize the average

weighted energy consumption of smart mobile devices and

the UAV, subject to the constraints on computation offload-

ing, resource allocation, and flying trajectory scheduling of

the UAV. Zhou et al. [15] studied a UAV-enabled wireless

powered MEC system and formulate a power minimization

problem to minimize the energy consumption of the UAV.

Both of these works have destined initial and final locations

for only one UAV.

While in this paper, we considered a UAV-assisted VEC

system with only one BS and multiple UAVs. Each UAV

provide service in a given area. Note that the coverage of

different UAVs may partially overlap, and for one vehicle

(user), it maybe within the coverage of several UAVs at the

same time. Thus we investigated the task scheduling and

cooperation among UAVs, as well as the deployment of them

in each time period, aiming to maximize the long-term profit

of the UAVs while balancing the energy consumption from

the operator’s perspective.

It is common that massive computation-intensive tasks

and service requests are generated in a stochastic model

for the operator, so that existing offloading strategies for

deterministic tasks cannot be well applied. Besides, in this

paper, we consider new energy powered UAVs. The UAV

can collect energy and recharge itself. The process of energy

harvest also has stochastic nature, which cannot be ignored

when a long-term performance is desired.To this end, we

utilize Lyapunov optimization [17] to handle the issue where

energy-efficient and profit-maximizing decisions must be

made without knowing the future energy harvest or tasks

arrival.
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The main contributions of this paper are stated as follows.

• We considered a UAV-assisted VEC system with only

one BS and multiple UAVs where ground vehicles can

generate tasks and service request. We characterized

the uplink and downlink communication time delay si-

multaneously. Different from most works which ignore

downlink transmission, as mentioned before, vehicles

may request area high definition map, nearby traffic

density data and so on, so we cannot ignore the effect

of downlink.

• Unlike works towards stationary RSUs and other smart

devices, the mobility of UAVs and ground vehicles is

well considerd in this paper, which may have great

influence on matching strategy and the deployment of

UAVs.

• Due to the stochastic nature of both ground users’

tasks arrival and UAVs’ energy harvest, in order to

obtain long-term profit maximization, by leveraging a

Lyapunov-based approach, we balanced the profit and

the remaining battery power of the UAVs. To sum up,

we proposed the joint optimization algorithm of the

deployment and resource allocation of UAVs (JOAoDR)

to solve the formulated problem.

The rest of this paper is organized as follows. Section

II describes the system model. The long-term profit max-

imization problem is formulated in Section III. Section

IV presents the Lyapunov-based approach to transform the

origin problem and our solution. Section V shows the the

numerical results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Architecture

We considered a rural area with a base station BS whose

signal covers the entire area. There are |B| UAVs equipped

with MEC servers having idle computing resources to help

the BS to provide service within the area, denoted by set

B = {1, 2, · · · , |B|} , where | · | denotes the cardinality

of a set. The coverage of each UAV is given and fixed.

Note that the ’coverage’ here is not the exact wireless signal

coverage but a fixed service range given in advance. The

diameter of the ’coverage’ is set to the radius of the exact

wireless signal coverage so that each UAV can hover at any

area within the given coverage, providing stable service. The

system is divided by time slots t ∈ T = {1, 2, · · · , T },

where τ denotes the length of a time slot. Let U(t) =
{1, 2, · · · , |U(t)|} denote the set of ground vehicles within

the coverage of the BS in time slot t. It is assumed that

the position of the vehicles do not change in one time

slot, and may vary in different time periods. The historical

distribution data of vehicles in the area is easily obtain, and

the distribution probability density function is represented by

fx,y(t).
As shown in Fig. 1, the coverage of UAVs can partially

overlap each other. Therefore, vehicle m may be in the

service range of multiple UAVs at the same time. In Fig.

1, vehicle 4 can access to either UAV 2 or UAV 3 for

UAV 2UAV 2

UAV 1UAV 1

UAV 3UAV 3

Coverage of BS

Coverage of UAV1

Coverage of UAV2

Coverage of UAV3

BS

Vehicle 1 Vehicle 2 Vehicle 3

Vehicle 5

Vehicle 4

Fig. 1. An example of network model

task process at current time. At the beginning of each time

slot, computation tasks and traffic request may generated by

vehicles in a stochastic manner. Then those vehicles transmit

corresponding task information to the BS, which collects

all of the information and acts as the dispatch center to

determine the resource allocation of UAVs.

Notations: In this paper, unless otherwise specified, we

use i and m to identify the index of UAVs, vehicles with

tasks, respectively.

B. UAVs Trajectories Model

Like most works, we assume that all the UAVs hovers at

a fixed altitude h, which is determined by their mechanical

parameters. And (xi(t), yi(t)) can be used to represent the

horizontal coordinate of UAV i at time slot t. The maximum

speed of UAVs denotes as Vmax. Then in one time slot, the

longest distance a UAV can fly is no more than τVmax, i.e.,
√

(xi(t+ 1)− xi(t))2 + (yi(t+ 1)− yi(t))2 ≤ τVmax,

∀i ∈ B. (1)

C. Task Processing Model

For simplicity of exposition, the path of vehicles are

assumed to be straight and the speed are assumed to be fixed.

1) Characteristics of the Computation Tasks: At the

beginning of each time period, each ground vehicle may

generate a computing-intensive task or have traffic service

request, and transmit the task information to the BS.

The information can be expressed as a tuple Am(t) =
〈Im(t), Om(t), φm(t), pm(t), λm, (xm(t), ym(t)), ~vm(t)〉,
where m represent the index of tasks in time slot t,

m ∈ M(t). To be more specific, Im(t) and Om(t) denote

the input data size and output data size, respectively. φm(t)
is the number of CPU cycles required to process the task.

pm(t) denotes the remuneration to complete the task. λm

denotes the minimum acceptable quality of service (QoS),

i.e., transmission rate of downlink. While (xm(t), ym(t))
and ~vm(t) are the position and velocity of vehicle m.

2) Uplink Model: Because the studied scenario is a rural

area and there are no high-rise occlusions, we modeled

the air-to-ground propagation channel as a LoS link. The

freespace path loss model is adopted and the channel power

gain from vehicle m to UAV i can be expressed as

him(t) = g0d
−2
im(t), (2)



where g0 is the channel power gain at the reference distance

d = 1 m. And dim(t) denotes the Euclidean distance between

UAV i and ground vehicle m in time slot t, which are given

by dim(t) =
√

(xi(t)− xm(t))2 + (yi(t)− ym(t))2 + h2.

Let N0 denote the noise power. Furthermore, the Signal-to-

Noise-Ratio (SNR) received at UAV i from ground vehicle

m is

Γim(t) =
Pm(t)him(t)

N0
, (3)

where Pm(t) denotes the transmission power of the mth

vehicle. In this paper, for simplicity, we assume that there

are enough wireless channels for communication, and the

bandwidth of each channel is W Hz. By applying Orthogonal

Frequency Division Multiple Access (OFDMA) technique,

each communication between UAVs and ground vehicles can

access one channel. Although such assumption may lead to

waste of spectrum resources, in our scenario, i.e., rural areas,

there are enough idle resources to utilize.

According to ShannonHartley theorem, the maximum

transmission rate from ground vehicle m to UAV i can be

expressed as

Rim(t) = W log2(1 + Γim(t)). (4)

Limited by coding methods and other reasons, the actual

transmission rate R̄ cannot reach the ideal rate, i.e.,

R̄im(t) = γRim(t), γ ∈ (0, 1). (5)

Once we obtain the actual transmission rate, the time slot

delay caused by the uplink communication can be calculated

by

tdim(t) =

⌈

Im(t)

γR̄im(t)

⌉

, i ∈ B,m ∈ M(t), (6)

where ⌈·⌉ denotes rounding up.

3) Binary Decision Variables: Let J(t) = {Jim(t)}, i ∈
B,m ∈ M(t) denote the binary decision matrix, where

Jim(t) = 1 means that UAV i is chosen to process task

or request from ground vehicle m at time slot t, otherwise

Jim(t) = 0. Typically, a user’s task can only be assigned to

at most one UAV, i.e.,
∑

i∈B

Jim(t) ≤ 1. (7)

Furthermore, due to the strong mobility of ground vehicles,

we must ensure that vehicle m cannot move out the coverage

of UAV i before the input data is completely transmitted to

the UAV i, otherwise Jim(t) = 0. To be more specific, define

a set Bm(t), i ∈ Bm(t) represents vehicle m is within the

coverage of UAV i in time slot t. Then, equation (7) can be

expanded to
∑

i∈B

Jim(t) =
∑

i∈Bm(t)

Jim(t) =
∑

i∈Bm(t+td
im

(t))

Jim(t) ≤ 1

(8)
∑

i/∈Bm(t)

Jim(t) =
∑

i/∈Bm(t+td
im

(t))

Jim(t) = 0, Jim(t) ∈ {0, 1}

(9)

From (8) and (9) we can obtain that whether UVA i can

handle user m’s task at the current time period is not only

affected by the vehicle position at the current time, but also

by the vehicle position after tdim(t) time slots.

4) QoS: Let P(t) = {Pim(t)}, i ∈ B,m ∈ M(t) denote

downlink transmission power matrix, where Pim(t) is a

optimization variable, representing the transmission power

from UAV i to ground vehicle m. Once UAV i is chosen to

process task or request from ground vehicle m at time slot t,

i.e., Jim(t) = 1, it has to wait for tdim(t) time slots until the

task is completely uploaded. Then UAV i computes the task

and returns output data to vehicle m within only one time

slot, otherwise vehicle m may move out of the coverage,

which may cause connection loss. Likewise, the downlink

transmission rate

rim(t) = γW log2

(

1 +
Pim(t)g0

d2im(t+ tdim(t))N0

)

, (10)

where dim
(

t+ tdim(t)
)

is the distance between UAV i and

vehicle m in time slot t+ tdim(t). The transmission rate must

satisfy the the minimum acceptable QoS of user m, i.e.,

rim(t) ≥ λmJim(t). (11)

Let sim(t) denote the CPU speed (in cycle per second) of

UAV i to compute task from vehicle m generated in time

slot t. Note that if Jim(t) = 1, sim(t) is in fact the CPU

speed for corresponding task after tdim(t) slots, because of

uploading delay. Due to the powerful computation capacity

and transmission capacity compared to ground vehicles, its

assumed that a UAV can adjust computing frequency and

transmission power to finish the task within one time slot t,

i.e.,
(

φm(t)

sim(t)
+

Om(t)

rim(t)

)

· Jim(t) ≤ τ (12)

5) UAV Energy Consumption: UAV energy consumption

can be divided into three parts, namely receiving energy

consumption, calculating energy consumption and transmit-

ting energy consumption. Suppose UAV i serves vehicle m.

The receiving energy consumption is given by Erec
im (t) =

Cr
i Im(t), where Cr

i denotes the energy consumption of UAV

i for receiving one-unit input data size from ground vehicle

m. The calculating power consumption is given by

p
cpu
im (t) = αis

3
im(t) + βi (13)

by adopting a simple computing model [18], [19], where

αi and βi are two parameters determined by UAV i’s

CPU system. We can further derive the calculating energy

consumption by

E
cpu
im (t) = p

cpu
im (t) ·

φm(t)

sim(t)
. (14)

Finally, the transmitting energy consumption can be obtained

by

Esnd
im (t) = Pim(t) ·

Om(t)

rim(t)
. (15)



To sum up, the energy consumption of UAV i for serving

vehicle m is

Eim(t) = Erec
im (t) + E

cpu
im (t) + Esnd

im (t). (16)

6) Processing Capability: The parallel computing capa-

bility of a UAV is limited, and the number of channels

allocated to each UAV is limited, too. Without loss of

generality, we supposed that the maximum number of tasks

that UAV i can perform parallel at the same time is equal to

the number of channels allocated to it, denoted as ci. Once

UAV i is chosen to serve groung vehicle m in time slot t, the

corresponding channel will be occupied until t+ tdim(t)+ 1,

because tdim(t) slots are needed to upload input data and

one slot is for UAV to compute task and return output data.

Let yi(t) denote the number of channels which are occupied

during time slot t. Accordingly,

yi(t) =
∑

m∈M(t)

Jim(t) +
∑

m∈M(t−1)

F (tdim(t− 1)) · Jim(t− 1)

+ · · ·

+
∑

m∈M(0)

F (tdim(0)− (t− 1)) · Jim(0)

=

t−1
∑

k=0

∑

m∈M(k)

F (tdim(k)− (t− k − 1)) · Jim(k)

+
∑

m∈M(t)

Jim(t) (17)

where we define F (x) =

{

1, x > 0

0, x ≤ 0
. The number of

channels which are occupied during time slot t can not

exceed the maximum number of channels, i.e.,

yi(t) ≤ ci, ∀i ∈ B. (18)

D. Dynamic Battery Power Model

UAVs can charge themselves and the charging process is

stochastic process. Let ηi(t) be the electrical energy collected

by UAV i through solar conversion during time period t,

which is upper bounded by ηmax. Let E(t) = {Ei(t)}, i ∈ B
be the dynamic battery energy queue vector.

How much the UAV can charge at the current slot depends

on its current battery power and the energy it collects. To be

more specific, the amount of energy which UAV i charge

itself is

ei(t) = min(θi − Ei(t), ηi(t)), (19)

where θi is the desired battery energy corresponding to UAV

i. It means that UAV i will charge itself in every slot until

the desired battery energy is reached. Then the dynamic of

UAV i’s battery energy is

Ei(t+ 1) = Ei(t) + ei(t)−
∑

m∈M(t)

Jim(t)Eim(t) (20)

Note that Ei(t) is not exactly the battery energy of UAV i in

practice, because it predict the energy consumption Eim(t)

after tdim(t) slots. But it can measure the remaining battery

energy as much as possible. Without loss of generality, we

assume that the batteries of UAVs are full of charge initially,

i.e., Ei(0) = θi, ∀i ∈ B. For simplicity, we assume UAVs

charge themselves at the end of each slot. Further we can

obtain the energy consumption constraint in time slot t

Ei(t) ≥
∑

m∈M(t)

Jim(t)Eim(t), ∀i ∈ B. (21)

III. PROBLEM FORMULATION

In this paper, we focus on maximizing the long-term profit

of UAVs. The remuneration of UAVs in time slot t is given

by

R(t) =
∑

i∈B

∑

m∈M(t)

Jim(t)pm(t) (22)

Then the problem can be formulated as follows

P1: max
P(t),s(t),J(t),L(t)

lim
T→∞

1

T + 1

T
∑

0

E







∑

i∈B

∑

m∈M(t)

Jim(t)pm(t)







s.t. (1), (8), (9), (11), (12), (18), (20) and (21)

sim(t) ≤ si,max, i ∈ B,m ∈ M(t)

In the above formulation,the optimization variable matrix

s(t) = {sim(t)}, i ∈ B,m ∈ M(t) denotes the UAVs’ CPU

speed matrix in time slot t, while L(t) = {(xi(t), yi(t))}, i ∈
B repersents the horizontal coordinate matrix of UAVs in

time slot t. The last constraint shows that the CPU speed of

UAV i allocated for each task cannot exceed si,max because

of the limited parallel computing capacity.

Solving such an optimization problem requires not only

the decision of the current time slot, but also the decision

of the future, which is difficult to solve without knowing

in advance the energy collection and task arrival in the

future. In the next section, we apply a Lyapunov-based

approach to transform the long-term optimization into single-

slot optimizations that can be solved separately. Then, our

JOAoDR is proposed to solve the problem.

IV. PROBLEM TRANSFORMATION AND

SOLUTION

In this section, in order to solve the long-term maximiza-

tion problem which is difficult to analyze, we first transform

the original optimization problem P1 into several single-slot

optimizations base on Lyapunov optimization, by which we

removed the relevance of the problem in continuous time.

However, the transformed problem is still hard to solve due

to the strong coupling between variables. Accordingly, we

divided the transformed problem into two stages,i.e., online

solving stage and offline solving stage.

A. Problem Transformation

For simplicity to express, we define Q(t) = {Qi(t)}, i ∈
B, where Qi(t) = θi−Ei(t). To ensure the stability of UAVs

batteries power , we define the Lyapunov function as

L(t) =
1

2

∑

i∈B

Q2
i (t) (23)



This definition intuitively means that we expect the battery

power of UAV i to be as close to the corresponding parameter

θi as possible by minimizing the drift of the Lyapunov

function. The Lyapunov drift can be defined as

∆(t) = E {L(t+ 1)− L(t)|Q(t)} . (24)

By adding the penalty function (subtracting the profit of

UAVs ) on both sides of (24), the drift-plus-penalty (drift-

minus-reward) function can be given by

∆V (t) = ∆(t)− V E{R(t)|Q(t)}

= E {L(t+ 1)− L(t)− V R(t)|Q(t)} , (25)

where V is a control parameter to deal with the tradeoff

between UAVs profit and batteries power. After incorporate

the UAVs profit into the drift-plus-penalty function, we can

transform the origin optimization problem into minimizing

∆V (t) at each time slot.

Theorem 1: The given drift-plus-penalty function ∆V (t)
is upper bounded by

∆V (t) ≤ A− E

{

∑

i∈B

Qi(t)ei(t)|Q(t)

}

−E







∑

i∈B

∑

m∈M(t)

[V Jim(t)pm(t)−Qi(t)Jim(t)Eim(t)] |Q(t)







,

(26)

where A = |B|
2 η2max + 1

2

∑

i∈B ciEmax is a constant.

Proof: Let’s define Li(t) = 1
2Q

2
i (t), ∀i ∈ B and

∆i(t) = E {Li(t+ 1)− Li(t)|Q(t)}. Substituting the first

equation into the second yields

∆i(t) =
1

2
E
{[

E2
i (t+ 1)− E2

i (t)
]

|Q(t)
}

− θi · E







ei(t)−
∑

m∈M(t)

Jim(t)Eim(t)|Q(t)







.

(27)

Substituting (20) into (27), we omit the time indication (t)
without affecting expression for simplicity and get

∆i =
1

2
e2i +

1

2

(

∑

m∈M

JimEim

)2

− E {Qiei|Q(t)}

+ E

{

(Qi − ei)
∑

m∈M

JimEim|Q(t)

}

≤ Ai − E {Qiei|Q(t)}

+ E

{

Qi

∑

m∈M

JimEim|Q(t)

}

, (28)

where Ai =
1
2e

2
i +

1
2

(
∑

m∈M JimEim

)2
.

By summing (28) from i = 1 to i = |B| and adding

−V E{R(t)|Q(t)} on both sides of (28), we obtain

∆V ≤A− E

{

∑

i∈B

Qiei|Q

}

+ E

{

∑

i∈B

∑

m∈M

QiEimJim − V Jimpm|Q

}

. (29)

Rearranging the terms yields (26).

Then, minimizing the drift-plus-penalty function ∆V (t) is

equivalent to minimizing the right-hand-side (RHS) of (26).

We can further solve the following optimization problem

P2: max
P(t),s(t),J(t),L(t)

∑

i∈B

∑

m∈M(t)

Jim(t) [V pm(t)−Qi(t)Eim(t)]

s.t. (1), (8), (9), (11), (12), (18) and (21)

sim(t) ≤ si,max, i ∈ B,m ∈ M(t)

B. Online Optimization

In the aforementioned problem P2, the term vim(t) ,

V pm(t) − Qi(t)Eim(t) can be regarded as the weight of

Jim(t). The optimal deployment of UAVs L(t) is difficult

to get an explicit solution in such problem. In the following,

we first obtained the optimal solution of P(t), s(t) and J(t)
with fixed L(t). Then we provided a feasible offline solution

to optimize L(t) in next subsection.

We extract a sub-problem P3 from problem P2, i.e.,

P3: min
Pim(t),sim(t)

Eim(t)

s.t. (11) and (12)

sim(t) ≤ si,max

Theorem 2: The optimal solution for P3 is necessary

conditions for the optimal solution for P2. i.e., for those

J∗
im(t) = 1 in P2, the corresponding s∗im(t) and P ∗

im(t) are

equal to the optimal solution s∗∗im(t) and P ∗∗
im(t) for P3.

Proof: We prove by contradiction. Assume that the op-

timal solution of P2 are P∗(t), s∗(t), J∗(t), and without loss

of generality, we assume J∗
11(t) = 1 and the corresponding

s∗11(t), P
∗
11(t) are not equal to s∗∗11(t), P

∗∗
11 (t), respectively,

in P3 with i = 1,m = 1. So that there exists at least one

feasible pair
〈

s̄11(t), P̄11(t)
〉

(e.g., 〈s∗∗11(t), P
∗∗
11 (t)〉) such

that Ē11(t) < E∗
11(t) in P3.

Now we set a solution pair for P2, with J̄(t) =
J∗(t), P̄im(t) = P ∗

im(t), s̄im(t) = s∗im(t), i ∈ B,m ∈
M(t) except s̄11(t) and P̄11(t).

It is obvious to verify that the new solution pair

is feasible. Besides, Mathematical Induction (MI)

can be used to verify that θi ≥ Ei(t). So that

Qi(t) ≥ 0. Because Ē11(t) < E∗
11(t) and Qi(t) ≥ 0,

v̄im(t) > v∗im(t). Thus
∑

i∈B

∑

m∈M(t) J̄im(t)v̄im(t) >
∑

i∈B

∑

m∈M(t) J
∗
im(t)v∗im(t), which contradicts with

P∗(t), s∗(t), J∗(t) being the optimal solution of P2.

Through theorem 2, we can first solve the sub-problem P3

for all i ∈ B and m ∈ M(t) in each slot and then substitute

the optimal values 〈s∗∗im(t), P ∗∗
im(t)〉 into P2.



However, the Hesse matrix of function Eim(t) is not

positive definite or semi-positive definite, so Eim(t) is not

a convex function, leading to P3 a non-convex problem.

Traditional Karush-Kuhn-Tucker (KKT) conditions cannot

be applied to find the optimal solution. To solve P3, we first

decouple two variables sim(t) and Pim(t). i.e., we neglect

constraint (12).

Lemma 1: Without constraint (12), the optimal solution

for P3 is given by


















s∗∗im(t) = min

(

3

√

βi

2αi
, si,max

)

P ∗∗
im(t) =

(

2
λmJim(t)

γW − 1
) N0d

2
im(t+ tdim(t))

g0
Proof: Now that P3 can be divided into two sub-

problems regarding sim(t) and Pim(t), respectively.

1) As for sim(t), the sub-problem can be formulated as

P4: min
sim(t)

E
cpu
im (t) =

(

αis
3
im(t) + βi

)

·
φm(t)

sim(t)

s.t. sim ≤ si,max

P4 is a convex optimization and the optimal solution

s∗∗im(t) can be obtained by KKT conditions.

2) As for Pim(t), the sub-problem can be formulated as

P5: min
Pim(t)

Esnd
im (t) =

Pim(t)Om(t)

γW log2

(

1 + Pim(t)g0
d2
im
(t+td

im
(t))N0

)

s.t. γW log2

(

1 +
Pim(t)g0

d2im(t+ tdim(t))N0

)

≥ λmJim(t)

When Jim(t) = 0, the constraint of P5 can be naturally

satisfied. At this time UAV i is not chosen to serve

vehicle m. So we can easily set P ∗∗
im(t) = 0. Thus here

the situation only when Jim(t) = 1 is considered.

Taking derivative of Esnd
im (t), we can get

dEsnd
im (t)

dPim(t)
=

log2

(

1 + Pim(t)
µim(t)

)

− Pim(t)
(Pim(t)+µim(t)] ln 2

1
γWOm(t)

[

γW log2

(

1 + Pim(t)
µim(t)

)]2 ,

where µim(t) ,
N0d

2
im(t+tdim(t))

g0
. Define Fim(t) =

log2

(

1 + Pim(t)
µim(t)

)

− Pim(t)
(Pim(t)+µim(t)) ln 2 , then

dFim(t)

dPim(t)
=

Pim(t)

(Pim(t) + µim(t))
2
ln 2

.

We can get
dFim(t)
dPim(t) > 0 when Pim(t) > 0. So

that Fim(t) is monotonically increase with Pim(t).

Fim(t)|Pim(t)=0 = 0, thus Fim(t) > 0, i.e.,
dEsnd

im (t)
dPim(t) >

0. It is proved that Esnd
im (t) is monotonically increase

with Pim(t). By rearranging the constraint term, we can

get Pim(t) ≥
(

2
λmJim(t)

γW − 1
)

N0d
2
im(t+tdim(t))

g0
, through

which we can get the optimal solution.

Lemma 1 gives the optimal solution of sim(t) and Pim(t)
when constraint (12) is satisfied. However, sometimes the

optimal solution in Lemma 1 is not feasible in P3. To this

end, we provide the following theorem.

Theorem 3: When the solution cannot meet the constraint

(12), the optimal solution must be at the constraint boundary,

i.e.,
(

φm(t)

s∗∗im(t)
+

Om(t)

r∗∗im(t)

)

= τ (30)

Proof: We prove by contradiction. Assume
(

φm(t)
s∗∗
im

(t) +
Om(t)
r∗∗
im

(t)

)

< τ , then we can find a proper

value of P̄im(t) such that
(

φm(t)
s∗∗
im

(t) +
Om(t)
r̄im(t)

)

= τ ,

where r̄im(t) = γW log2

(

1 + P̄im(t)g0
d2
im
(t+td

im
(t))N0

)

. Note

that P̄im(t) < P ∗∗
im(t) because rim(t) is monotonically

increase with Pim(t). According to the aforementioned

lemma, Esnd
im (t) is monotonically increase with Pim(t).

So it can be obtained that Ēsnd
im (t) < Esnd ∗∗

im (t), further,

Ēim(t) < E∗∗
im(t), which contradicts with s∗∗im(t), P ∗∗

im(t)
being the optimal solution of P3.

To sum up, we solve P3 by the following steps. First we

adopt the values of sim(t) and Pim(t) in lemma 1 and check

the feasibility. If constraint (12) is satisfied, the adopted

values are the optimal solution. Otherwise, we substitute

(30) into P3 and formulate a one-dimensional optimization

problem, which can be solved via well-known methods.

With the optimal solution E∗∗
im(t) given, we can further

transform P2, i.e.,

P6:max
J(t),

∑

i∈B

∑

m∈M(t)

Jim(t)v
∗∗
im(t)

s.t. (8), (9), (18) and (21)

where v∗∗im(t) = V pm(t) − Qi(t)E
∗∗
im(t) is given, and it

can be regarded as the weight of Jim(t). While with these

constraint, P6 is a non-standard assignment problem. We

aim to convet it to a standard assignment problem such that

classic methods can be applied.

Theorem 4: By setting θi = V pmax

Ei,min
+ ciEi,max, i ∈

B, where pmax, Ei,min and Ei,max denote the maximum

payment from users, minimum and maximum energy con-

sumption of UAV i to serve one vehicle, respectively, the

constraint (21) is indeed redundant.

Proof: By setting θi, if Ei(t) < ciEi,max, then

vim(t) = V pm(t)− (θi − Ei(t))Eim(t)

= V pm(t)−

(

V pmax

Ei,min
+ ciEi,max − Ei(t)

)

Eim(t)

< V pmax −
V pmax

Ei,min
· Eim(t) ≤ 0

That is to say, the optimal J∗
im(t) = 0,m ∈ M(t).

Then (21) is satisfied. On the other hand, note that
∑

m∈M(t) Jim(t)Eim(t) ≤ ciEim(t) ≤ ciEi,max because

of constraint (18). Thus if Ei(t) ≥ ciEi,max, constraint (21)

is satisfied, too. To sum up, the constraint (21) is indeed

redundant.

We still need some procedures to convert the problem to

standard assignment problem.



1) Based on (9), whether vehicle m is within the coverage

of UAV i or not must be judged. The location lm(t +
tdim(t)) ,

(

xm(t+ tdim(t)), ym(t+ tdim(t))
)

of vehicle

m is given by

lm(t+ tdim(t)) = lm(t) + ~vm(t)τtdim(t). (31)

At each slot, the algorithm checks whether lm(t), lm(t+
tdim(t)) ∈ Ci, where Ci denotes the coverage of UAV

i. If either one not so, set vim(t) = 0, thus we make

sure the optimal J∗
im(t) = 0, which satisfies (9).

2) At each slot, Eq (17) is applied to update yi(t) and
∑

m∈M(t) Jim(t) is determined by (18).

The transformed problem is a standard assignment prob-

lem which the Hungarian algorithm [20] can be utilized to

solve.

C. Offline Optimization

We focus on finding an indicator that measure the effi-

ciency of UAVs’ position. The position of the UAVs cannot

be determined through online procedures, because we must

grasp the task arrival situation and vehicle position distribu-

tion at the current moment if online optimization is applied,

which is unrealistic in practice. In the actual situation, a UAV

cannot know the stochastic task arrival situation until it reach

a place and provide service. Therefore, the deployment of

the UAVs must be determined through offline calculations in

advance. Here, the historical distribution data of vehicles is

needed. We use fx,y(t) to denote their distribution density

function in slot t. The position of a UAV will affect the

communication when the UAV transmits the output back to

a vehicle, which in turn will affect the energy consumption

of the task.

Without knowing the specifics of vehicles, UAV i must

guarantee that Pi(t) =
(

2
λmax
γW − 1

)

N0d
i 2
x,y(t)

g0
, (x, y) ∈ Ci,

where λmax denotes the maximum QoS requirement, and

di 2x,y(t) denote the Euclidean distance between UAV i and

vehicle located at (x, y).
Inspired by [21], the average total transmit power of the

UAVs in the network is given by

P̄ (t) =

∑

i∈B

∫∫

Ci
ciPi(t)fx,y(t) dx dy
∑

i∈B ci
(32)

In lemma 1 we proved that the communication energy

consumption is increase with transmission power. Our goal

is to minimize the energy consumption in each slot, So P̄ (t)
is a suitable indicator to measure the efficiency of UAVs’

position, and the following formulation is equivalent

min
L(t)

P̄ (t)

Minimizing P̄ (t) is equivalent to minimize Zi(t) ,
∫∫

Ci
ciPi(t)fx,y(t)dx dy, ∀i ∈ B. By applying KKT condi-

tions such that















∂Zi(t)

∂xi
= 0

∂Zi(t)

∂yi
= 0

, the optimal solution is given

by






















x∗
i (t) =

∫∫

Ci
xfx,y(t) dx dy

∫∫

Ci
fx,y(t) dx dy

y∗i (t) =

∫∫

Ci
yfx,y(t) dx dy

∫∫

Ci
fx,y(t) dx dy

, i ∈ B. (33)

Note that the UAV has limited hover speed,i.e., (1). Equation

(33) gives the ideal deployment distribution. For simplicity,

let Li(t) denote (xi(t), yi(t)). The practical deployment

should be rewritten as

L∗′

i (t) =



















L∗
i (t),

∣

∣

∣

∣

∣

∣
L∗
i (t)− L∗′

i (t− 1)
∣

∣

∣

∣

∣

∣
≤ Vmaxτ

L∗′

i (t− 1) +
Vmaxτ

(

L∗
i (t)− L∗′

i (t− 1)
)

∣

∣

∣

∣L∗
i (t)− L∗′

i (t− 1)
∣

∣

∣

∣

, otherwise

(34)

V. NUMERICAL RESULTS

In this section, we evaluate the efficiency and performance

of the proposed algorithm JOAoDR by presenting simulation

results. We consider a rectangular area which is the coverage

of a BS. Two UAVs are deployed and each of them has fixed

service range. The coverage of them are partially overlapped.

In our simulation, we set the length of one time slot

τ = 5 s. The maximum speed of UAVs Vmax is 5 m/s.

The velocities of ground vehicles are randomly distributed

in [10, 20] m/s. At the beginning of each time slot, tasks or

requests are randomly generated. The input and output data

sizes are set within [4000, 10000] Kb and [2000, 10000] Kb,

respectively. The required QoS is in the interval [256, 768]
Kb/s. For simplicity, transmission power of all vehicles are

set to 10 mW, and the CPU cycles needed to process one

unit size of tasks are set to 1000 cycle/bit. The system-

specified parameters of UAVs are α = 0.05 and β = 0.9.

The channel gain g0 is −50 dB and the noise power N0

is 10−8 W. The ratio of actual transmission rate to channel

capacity γ = 0.95.

Fig.2 depicts the trajectory and remuneration of both

UAVs. The red and blue rectangular areas in Fig. 2(a)

denote the coverage of UAV 1 and UAV 2, respectively. The

advantage of the deployment in our JOAoDR is shown in

Fig. 4 which we will discuss later. Fig. 2(b) illustrates two

UAVs remuneration versus time periods T . In our setup, both

UAVs hover at a fixed altitude of 300 m, with energy harvest

rate of 200 mW and V = 2. The curves present the form

of the ladder to rise, because once a UAV processes a task

and gets the reward, it will cost several time slots to finish it

and collect energy for other tasks. In fact, the UAVs should

be deployed at a relatively high altitude to avoid non-line-

of-sight (NLoS) link. Fig. 2(c) shows the remaining battery

energy of each UAV versus T . The proposed JOAoDR can

balance the energy consumption and rewards from the users

to obtain a stable lone-term performance. it can be observed

obviously that the remaining energy won’t run out with a

proper setup θi (In this case we set θi = 36 J) and verified

the correctness of theorem 4. Fig. 2(d) presents the remaining

capacity of each UAV, i.e., the number of tasks it can process
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Fig. 2. The trajectory, remuneration and consumption of UAVs
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Fig. 4. Remuneration comparison of different deployment methods

simultaneously at the end of each slot. From the long-term

perspective, UAVs will basically not fully put resources at a

certain time slot, resulting in the lack of resources and energy

in subsequent time slots to handle newly arrived high-value

tasks.

Fig. 3 presents time average utility of the operator system

versus control parameter V in three different cases where the

number of users in the network is 5, 15 and 25, respectively.

The system utility is consistent with the objective function

of P2. When the control parameter is small, the number of

vehicles in the network cannot significantly affect the overall

utility of operator system, because our algorithm is tend to

concern the energy consumption of UAVs at that time. As the

parameter increased, the slight reward gaps between different

tasks will be magnified. At this time, the greater the number

of users in the network, the greater the probability of tasks

with higher rewards, so the system utility gaps will gradually

increase.

Fig. 4 illustrates the UAVs deployment method in our

JOAoDR outperforms the fixed deployment method as a

benchmark. In the benchmark method, both UAVs are de-

ployed at the geometric center of their coverage and do not

move between slots. Our algorithm can adjust the location

of UAVs in each time slot according to historical distribution
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Fig. 5. Remuneration comparison of different resource allocation methods

of ground vehicles. Because the distribution of vehicles

has great similarity in time, this method can estimate the

distribution of vehicles to a certain extent and let the UAV

fly to the best location to reduce the energy consumption of

communication with the ground vehicles. So that UAVs are

able to serve more vehicles to increase remuneration.

In order for comparison, a greedy algorithm is introduced.

It greedy seeks the tasks with the highest payments from

vehicles, and process them if possible in every time slot.

It can be seen from Fig. 5 that when the number of time

periods is less than 90, the greedy algorithm gains more

than our algorithm, because the greedy algorithm utilize the

energy and computing resources of the UAVs to process the

most high-value tasks as much as possible. But over time,

the superiority of our algorithm becomes more and more

obvious, because our algorithm well balances the energy

consumption of the UAVs and the completion rewards, and

it can avoid the situation that one UAV cannot process high-

value tasks at a certain moment due to insufficient computing

resource. Compared with greedy algorithms, our JOAoDR

greatly improves long-term performance.

VI. CONCLUSION

In this paper, we proposed a Lyapunov-based algorithm

to balance the resource and rewards of the UAVs, and

solved a long-term profit maximization problem in terms of

the operator. First, Lyapunov optimization was applied to

transform origin problem. Then our JOAoDR was proposed

to optimize the deployment and the resource allocation of

UAVs. Numerical results demonstrated that our algorithm

outperforms other benchmarks algorithm, and validated our

solution.
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