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Abstract—With the advantages of Millimeter wave in wireless
communication network, the coverage radius and inter-site dis-
tance can be further reduced, the ultra dense network (UDN)
becomes the mainstream of future networks. The main challenge
faced by UDN is the serious inter-site interference, which needs
to be carefully addressed by joint user association and resource
allocation methods. In this paper, we propose a multi-agent Q-
learning based method to jointly optimize the user association
and resource allocation in UDN. The deep Q-network is applied
to guarantee the convergence of the proposed method. Simulation
results reveal the effectiveness of the proposed method and
different performances under different simulation parameters are
evaluated.

Index Terms—User Association, Resource Allocation, Ultra
Dense Network, Multi-agent Q-learning.

I. INTRODUCTION

As one of the key technologies of 5G, Ultra-Dense Network

is used to densely deploy a large number of small base

stations (SBSs) in hotspots to increase capacity and achieve

seamless coverage[1]. However, the dense deployment of SBSs

complicates the problems of user association, radio resource

allocation, interference control and mobility management [2].

In UDN, SBSs are deployed in overlapping manner, users can

choose to be associated with several adjacent SBSs via multi-

connectivity solutions [3]. The system performance is greatly

influenced by the user association patterns. With the increasing

deployment density of SBSs, the network topology becomes

very complicated. Moreover, a large number of interference

sources with very close signal strength bring huge interference

to users. This requires a better resource allocation strategy for

interference control.

Recently, several research works have devoted to tackle the

user association and resource allocation in UDN [4]-[11]. In

[4], a novel modularity-based user-centric (MUC) clustering is

proposed for resource allocation in UDN to maximize the sum

rate per resource block. The basic idea of MUC clustering is

to decompose the UDN into several subnetwork by the group

structure of users. A energy-efficient (EE) resource allocation

strategy in UDN is presented in [5], the EE optimization

problem is decomposed into two sub-optimization problems

of sub-channel allocation and power allocation. These two

problem are solved by a two-stage Stackelberg game with

a uniform pricing scheme. The Millimeter Wave (mmWave)-

based UDN is considered in [6] and [7]. In [6], the joint user

association and resource allocation problem are modeled as

a mixed-integer programming problem, which take multiple

factors (e.g., load balance, user quality of service, EE and

cross-tier interference) into consideration. In [7], the joint user

association and resource allocation problem are considered in

mmWave self-backhauling UDN, a coalition game based algo-

rithm is proposed to maximize network sum rate. Similarly, a

joint power allocation and user association strategy using non-

cooperative game theory is developed in [8]. The joint user

association and resource allocation problem are considered in

[9], [10] and [11]. In [9], a unified non-orthogonal multiple

access (NOMA) in UDN is proposed, which focuses on the

user association and resource allocation. Two case studies are

presented to demonstrate the effectiveness of the framework.

Joint optimization of user association and dynamic time divi-

sion duplexing (TDD) for UDN are studied in [10]. Authors

decompose the problem into separate subproblems that can

be solved in a distributed manner and prove convergence

to the global optimum. The more similar to our work is

[11], they propose a novel method for user association and

resource allocation based on coordinated multipoint (CoMP).

A cell-filtering and location-load based clustering methods are

used to reduce network complexity. Then a competition-based

resource allocation scheme is proposed based on the results of

clustering.

In the light of previous works, we focus on the joint

optimization of user-AP association and resource allocation

in UDN rather than solve the joint problem in a separate

manner. Due to the complexity of this joint problem, we

propose a learning-based joint optimization algorithm. The

main contributions of this paper can be summarized as follows:

• We propose a multi-agent Q-learning based solution

to solve the joint problem of user-AP association and

resource allocation in UDN.

• We apply deep Q-network to avoid the curse of dimen-

sionality and accelerate convergence.

• Demonstrate the effectiveness of the proposed method

with simulation results compared with other methods.

The remainder of the paper is organized as follows: In

Section II, we present the system model and the joint problem

of user-AP association and resource allocation is formulated.

In Section III, the multi-agent Q-learning based solution is
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Fig. 1. The example layout of UDN.

proposed. Simulation results are shown in Section IV and we

conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network model

N We consider a typical UDN composed of M access

points (APs) and N users. All APs are identical in terms of

coverage radius, antenna gain, pathloss model and maximum

transmission power. The set of APs and users are denoted as

M = {1, 2, . . . ,M} and N = {1, 2, . . . , N}, respectively.

All APs can operate on L orthogonal subcarriers, the set of

subcarriers is denoted as L = {1, 2, . . . , L}. Assume that

the user can access at least one AP and a maximum of k
APs, each AP can serve up to f users. For the simplicity of

discussion, we assume that each user can only choose at most

one subcarrier from one AP at any time and can only access

to its neighboring APs. Thus, we define the candidate AP set

for user i as Si = {j|di,j ≤ r, i ∈ N , j ∈ M}, where di,j is

the distance between user i and AP j, r is the coverage radius

of the AP. Similarly, we define the candidate user set for AP

j as Uj . The maximum transmission power of the AP is Pap.

Since all APs are closely deployed, the co-subcarrier inter-

ference should be considered, the signal to interference plus

noise ratio (SINR) at the user i with AP j using subcarrier l
at time t is

γl
i,j(t) =

PjGi,j
∑

j′∈M\{j} Pj′Gi,j′ +N0

(1)

where Pj = Pap/nj is the transmission power of AP j, where

nj is the number of users associated with AP j. Gi,j is the

channel gain from AP j to user i, which incorporates antenna

gain, path loss and shadow fading. We consider a flat fading

on all subcarriers and thus the channel gains are same from

an AP to a user on all subcarriers. N0 is the noise power on

the subcarrier of bandwidth W .

At any time t, the transmission capacity of user i with AP

j on subcarrier l can be denoted as

rli,j(t) = W log
(

1 + γl
i,j(t)

)

(2)

B. Access point selection model

At any time t, all users make AP selection decisions.

Here we take a binary indicator xi,j to denote the user-AP

association pattern. Let xi,j = 1 if user i is associated with

AP j, otherwise xi,j = 0 . Note that at any time t, we have

the following constraints for xi,j as:

∑

j∈Si

xi,j ≤ k, ∀i ∈ N (3)

∑

i∈N

xi,j ≤ f, ∀j ∈ M (4)

xi,j ∈ {0, 1}, ∀i ∈ N , ∀j ∈ Si (5)

where constraint (3) indicates that each user cannot be served

more than k APs. Constraint (4) means that one AP can serve

simultaneously up to f users.

C. Resource allocation model

As mentioned above, all subcarriers are shared by the

APs, thus the co-subcarrier interference needs to be carefully

addressed which greatly limits the system capacity of the

UDN. How to effectively allocate L subcarriers to M APs

will be the major issue. At any time t, users choose to

occupy a subcarrier from an AP. Thus, a binary indicator yli,j
is introduced to indicate the resource allocation strategy. If

yli,j = 1 means the subcarrier l is allocated to user i from

the AP j, otherwise yli,j = 0. The constraints for yli,j are as

follows:

∑

l∈L

yli,j ≤ 1, ∀i ∈ N , ∀j ∈ Si (6)

yli,j = 1− yli′,j , ∀i, i
′ ∈ Uj , ∀j ∈ M (7)

{

yli,j = yli,j′ |xi,j = xi,j′ , ∀i ∈ N , ∀j, j ∈ Si

}

(8)

yli,j ∈ {0, 1}, i ∈ N , j ∈ Si, l ∈ L (9)

where constraint (6) states that each user can only choose

one subcarrier from its associated AP. Constraint (7) ensures

that the user is associated with the same AP use orthogonal

subcarriers. Constraint (8) indicates that the APs use the same

subcarrier to serve the same user.

Thus, we have the total transmission capacity of the user i
at time t as:

ri(t) =
∑

j∈Si

∑

l∈L

xi,jy
l
i,jr

l
i,j(t), ∀i ∈ N (10)



D. Problem formulation

The main goal in this paper is to maximize the aggregate

network utility while satisfy user’s quality of service (QoS)

requirements in the UDN. The joint problem of user-AP

association and resource allocation is considered. The utility

functions are defined for user i at time t as:

U (ri(t)) = ri(t) (11)

The utility function is a linear function of user i’s transmis-

sion capacity. As we aim to maximize the long term network

utility, we define the long-term reward of user i Ri as the

weighted sum of instantaneous rewards over a finite period T :

Ri =

T
∑

t=1

γtU (ri(t)) (12)

where γ ∈ [0, 1) is the discount factor. Thus, the long-term

reward maximization can be formulated as (13).

max
xi,j ,y

l
i,j

:

N
∑

i=1

Ri

s.t. (3)− (9)

(13)

Note that due to the non-convex and combinatorial char-

acteristics of the formulated problem, difficulties exist in

obtaining a global optimal strategy of this joint problem. In the

following section, the multi-agent Q-learning (MAQL) based

solution is proposed.

III. MULTI-AGENT Q-LEARNING BASED SOLUTION

In this section, we first present the basic idea of MAQL

method. Then, the deep Q-network is proposed to avoid the

curse of dimensionality.

A. Multi-agent Q-learning method

In the joint optimization problem of user-AP association

and resource allocation, we can model this problem as a

discounted stochastic game. In this game, we assume N users

are agents. This N agents stochastic game is defined by the

tuple (S,A1, . . . , AN , r1, . . . , rN , p). S is the state space, Ai

and ri are the agent i’s action space and reward function. p
is the state transition probability. According to the research of

stochastic game model, the single-agent Q-learning is extended

to a multi-agent scenario, which is called Nash Q-learning.

Due to space constraints, refer to [12] for details.

At any time t, the user i will observe the current state of

the environment and takes action. When all users have taken

actions, they observe the reward and the new state, each user

then updates its Q table according to

Qi (s, ai) =Qi (s, ai) + α [ui (s, ai, π−i)+

γmaxQi (s
′, a′i)−Qi (s, ai)]

(14)

where α is the learning rate, ui (s, ai, π−i) is the agent i’s
one-period reward in state s adopting the joint strategies.

As the number of APs and users are fixed in the UDN, if

each user obtains the information about reward function and

state transition, the Nash equilibrium (NE) can be found to

maximize the network utility through message passing within

the finite time period T [13]. In the following, we define

the agents, states, actions and reward function of our MAQL

algorithm.

• Agents: All N users.

• States: At time t for user i, the state is defined as

si,t ∈ {0, 1}, indicates whether the user meets its QoS

requirement:

si,t =

{

1, ri(t) ≥ rQoS

0, ri(t) < rQoS
(15)

where rQoS is the minimum data rate to satisfy the QoS

requirement of the user. The number of possible states is

2N and this will be very large with large N . The state

vector can be denoted as St = {s1,t, s2,t, . . . , sN,t}.

• Actions: At time t, each user can select up to k APs

from the candidate AP set first, then occupy at most one

subcarrier from every selected AP. Therefore, the number

of possible actions for each user is M ∗ L with one-hot

coding. However, the actual action space for AP selection

depends on the candidate AP set Si.Then, we define the

action for user i as

ai,t = {mi,t, li,t} (16)

The action vector of N users can be denoted as At =
{a1,t, a2,t, . . . , aN,t}.

• Reward Function: As we want to maximize the ag-

gregate network utility, then the reward function can be

define as Ψt =
∑N

i=1
U (ri(t)).

B. Multi-agent deep Q-network for the joint problem

As can be seen from above, the number of states and actions

of the MAQL for the joint problem can be very large for a

large N , M and L. Thus, it is no longer feasible to store the

state-action pairs in a Q-table and deep Q-network (DQN) is a

better method. The basic idea of DQN is to use the deep neural

network (DNN) to represent action and state spaces. DQN

takes the advantages of neural network to approximate the

action-value function, and uses memory replay to improve the

learning performance. Two different neural networks with the

same structure, called target-network and evaluated network,

are used in DQN. The parameters of the two networks are

alternately updated every several steps to improve the learning

stability. In each episode, the evaluated Q-network is trained to

adapt its parameters to decrease the loss function as follows:

Li(θ) = E
[

(yi −Qi (s, ai; θ))
2

]

(17)

yi = ui (s, ai) + γ max
a′

i
∈Ai

Qi

(

s′, a′i; θ
−
)

(18)

where Li(θ) is the loss function, yi is the estimated Q-value

of target network. θ, θ− are the weights of evaluated network

and target network, respectively.



The multi-agent DQN (MADQN) algorithm for the joint

problem is summarized in Algorithm 1.

Algorithm 1 MADQN for joint User-AP Association and

Resource Allocation
1: Initialize learning rate α, discount factor γ, exploration

rate ǫ, maximum learning episode EP , maximum training

steps T per episode.

2: Initialize the replay memory D, evaluated network

Q(s, a; θ) parameters with random weight θ.

3: Initialize the target network Qi (s
′, a′i; θ

−) with weights

θ− = θ.

4: for episode=1 : EP do

5: Initialize the network state s.

6: for each step=1 : T do

7: Each user takes action ai using the ǫ-greedy policy

from Qi(s, ai; θ).
8: Each user obtains the immediate reward ui and

new state s′, and let s = s′.
9: Each user stores the transition (s, ai, ui, s

′) in D.

10: Each user samples random minibatch of transitions

(s, ai, ui, s
′) from D.

11: Each user set yi according to (18).

12: Each user performs a gradient descent step on

(yi −Qi (s, ai; θ))
2

with respect to the network param-

eters θ.

13: Every C steps update θ− = θ
14: end for

15: end for

IV. PERFORMANCE EVALUATION

A. Simulation setup

In this Section, we conduct the simulation to evaluate the

performance of our proposed scheme. We consider a simula-

tion area with a length and width of 50 meters. The APs and

users are uniformly distributed within the simulation area.The

pathloss model for all APs is PL = α+10β log
10
(d)+ ξ[dB]

ξ ∼ N
(

0, σ2
)

, d in meters. α = 72.0, β = 2.92, σ = 8.7dB
for NLOS and α = 61.4, β = 2, σ = 5.8dB for LOS [14].

Other important simulation parameters are listed in table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier frequency 28 GHz
Number of subcarriers L 4

Subcarrier bandwidth 180 KHz
Number of APs 10
Number of users 2:2:10

AP radius 15 m
AP transmission power/Gain 23 dBm/ 5 dBi

Maximum APs for one user k 4
Maximum users for one AP f 4

Noise power density -174 dBm/Hz
minimum Qos data rate(rQoS ) 2 Mbps
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Fig. 2. Normalized reward for each episode. The AP number is 5 and the
user number is 10.

The DQN for each learning agent consists of 3 fully

connected hidden layers, containing 100, 200, and 50 neurons.

The ReLU activation function and RMSProp optimizer are

used [15]. We train the learning agent for a total of 400

episodes and 500 steps per episode with a learning rate 0.0001

and a exploration rate from 0.99 to 0.0001. We set the discount

factor γ to be 0.9.

Due to space constraints, instead of using the state of the

art as a comparison, a Max_RSRP based method is simulated

as the baseline to compare the performance with our proposed

MADQN method. Users choose to be associated with the k
APs with the largest reference signal receiving power (RSRP)

and randomly choose a subcarrier in the Max_RSRP based

method. All simulation results are the average result of 50

different user and AP distributions.

B. Simulation results

Fig. 2 demonstrates the convergence behavior of our pro-

posed MADQN method. As can be seen from the figure, the

horizontal axis is the number of training episodes and we take

the normalized reward for each episode as the vertical axis.

The reward increases with the number of training episodes in

the first 150 episodes. when the training episode approximately

reaches 200 episodes, the performance gradually converges

despite some fluctuations.
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Fig. 3. The throughput versus the user number of two different methods.

The performances of the two different methods are drawn

in Fig. 3. The total throughput and average throughput per

user versus the user number of the two methods are com-

pared. As can be seen from Fig. 3, our proposed MADQN
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APS.
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Fig. 5. The throughput versus the user number under different values of k
and f .

method outperforms the Max_RSRP based method both in

total throughput and average user throughput. In particular,

the difference between the total throughput is more obvious

as the number of users increases. The rationale behind this is

that the interference of the Max_RSRP based method increases

rapidly with the number of users.

We further analysis the performance of our proposed

MADQN method under different simulation parameters. In

Fig. 4, we evaluate the throughput versus the user number for

different number of APs. It can be seen that both total through-

put and average user throughput increase with the number of

APs. The performance of different k and f are evaluated in

Fig. 5. The larger k and f , the larger the throughput, but this

growth is limited as the interference management becomes

more complex.

V. CONCLUSION

In this paper, we propose a multi-agent Q-learning (MAQL)

based method for the joint problem of user-AP association

and resource allocation in ultra dense network. Furthermore,

we use the deep Q-network to accelerate the convergence of

MAQL. The simulation results demonstrate the feasibility and

effectiveness of the proposed method. Moreover, we analysis

the performance of our proposed method under different key

simulation parameters. This enlightens us to further analyze

the relationship between different parameters.
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