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Abstract—Vehicular networks are vulnerable to a variety
of internal attacks. Misbehavior Detection Systems (MDS) are
preferred over the cryptography solutions to detect such attacks.
However, the existing misbehavior detection systems are static
and do not adapt to the context of vehicles. To this end, we exploit
the Software-Defined Networking (SDN) paradigm to propose a
context-aware MDS. Based on the context, our proposed system
can tune security parameters to provide accurate detection
with low false positives. Our system is Sybil attack-resistant
and compliant with vehicular privacy standards. The simulation
results show that, under different contexts, our system provides
a high detection ratio and low false positives compared to a static
MDS.

Index Terms—Vehicular Networks; Software Defined Net-
works; Security; Privacy; Misbehaving Detection Systems

I. INTRODUCTION

Vehicular networks offer interesting applications ranging
from safety-related applications to comfort applications. How-
ever, vehicular networks are vulnerable to many types of inter-
nal and external attacks such as message droppings and false
information injections that can lead to hazardous situations for
drivers and passengers. While external active attacks can easily
be avoided using cryptographic solutions, internal attacks are
difficult to avoid using these same solutions since internal
attackers are authenticated members in the considered net-
work [1]. Alternatively, using Misbehavior Detection Systems
(MDSs) is considered as an efficient way to detect internal
attacks. MDSs generally use two detection mechanisms [2]: (i)
node-centric: this mechanism is primarily interested in nodes
(vehicles or RSUs). For example, an MDS can continuously
monitor the forwarding behavior of nodes and calculate the
ratio between the receiving packets and forwarded packets of
each node, and thereby it can decide on the trustworthiness
of nodes; and (ii) data-centric: this mechanism is primarily
interested in data rather than nodes. For example, an MDS
can check the correctness using plausibility and consistency
methods and, thereby evaluate the trustworthiness of these
messages. Most proposed MDSs adopt a combined approach
where a node-centric mechanism is used to evaluate nodes
according to the correctness of the exchanged data, while the
correctness of data is verified using a data-centric mechanism.

Although the significant number of proposed MDSs for
vehicular networks, several questions are still open: (i) Most
of existing MDSs are not compliant with current vehicular
privacy standards which expect that vehicles use a set of

pseudonyms (temporal identifiers) to protect their location
privacy [3]. Indeed, these MDSs assume that nodes use
fixed identifiers; (ii) Although pseudonyms are beneficial for
location privacy, they could be used to generate Sybil attacks,
which can significantly affect the performances of MDSs. For
instance, an attacker can use pseudonyms as Sybils to influence
on a vote decision on the trustworthiness of nodes; and more
importantly (iii) all existing MDS are static and do not take
into the account the context where vehicles are evolving such
as mobility, number of attackers, and the network performance.

To address these issues, we exploit the Software-Defined
Networking (SDN) paradigm to propose a context-aware
MDS. The control plane in this system is responsible for the
secure clustering, the election and deployment of the watch-
dogs, the dynamic adjusting of different security parameters
like the threshold of detection according to context to provide
an accurate detection with low false positives. Our system is
also based on a generic and flexible trust model that can be
adapted to detect any attacks on vehicular networks. In contrast
to previous proposed MDSs, our system is Sybil attack-
resistant and compliant with vehicular privacy standards.

II. RELATED WORK

As previously mentioned, most of the existing MDSs use a
hybrid approach that combines node-centric and data-centric
detection mechanisms. The authors of [4, 5] propose a scheme
to evaluate the reputation of vehicles based on their behaviors
and the quality of provided information. The reputation values
provided by each Cluster Member (CM) are periodically
reported to the Cluster Head (CH). Each detected attacker is
also reported to the CH. When a CH receives an attacker
detection report, it leverages on a vote decision and the
received reputation values to check the correctness of this
detection. The proposed scheme also periodically calculates
the trust levels of vehicles based on their reputation. However,
this solution suffers from a significant overhead due to clusters
management complexity and a large number of monitoring
vehicles. In addition, the security parameters such as trust
thresholds and the evaluation period, are not dynamically
adjusted. Moreover, this scheme is not privacy-preserving and
vulnerable to Sybil attacks. The authors of [6] outline the
importance of considering the context where vehicles are
evolving to increase the efficiency of MDSs. Indeed, their
results show that the performance of MDSs varies from one



context to another. However, this study only considers two
parameters of the context: the mobility of both vehicles and
attackers. The authors of [7] propose an MDS for software-
defined vehicular networks where vehicles analyze the in-
coming traffic and forward some selected data flows to the
SDN controller. On the basis of these data flows, the SDN
controller trains a multi-classifier model based on SVM. The
parameters of the trained model are forwarded to vehicles to be
used in the detection of misbehaving vehicles. However, many
details on how the model is trained are missing. In addition,
once the model is trained, it cannot be updated according to
the context of vehicles. Finally, the performance evaluation is
based on the KDD data set, which does not reflect the intrinsic
characteristics of vehicular networks. Recently, the authors
of [8], propose an SDN-based framework for 5G vehicular
networks where the control plane consists of two modules: an
authentication module and a misbehavior detection module.
The proposed MDS uses a data-centric mechanism to verify
the consistency of the data. However, the proposed MDS is
again static and not context-aware.

III. SYSTEM MODEL AND MDS DESCRIPTION

Fig. 1: Software defined vehicular network architecture for
MDS

As illustrated in Figure 1, we consider a software-defined
vehicular network architecture consisting of vehicles, Road
Side Units (RSUs), and the Certification Authority (CA). This
architecture has three levels of SDN control: (i) Local SDN
controllers, which are installed on each Cluster Head (CH).
The role of these controllers is to select the Watchdogs accord-
ing to the strategy described in Section IV-B and to calculate
the trust level of Cluster Members (CMs); (ii) Regional SDN
controllers, which are installed on RSUs. These controllers
calculate trust levels of local SDN-controllers and aggregate
the trust level of vehicles; and (iii) Global SDN controller,
which is installed at the CA and has global knowledge of
the software-defined vehicular network. The global SDN-
controller creates the vehicular clusters, selects CHs (see
Section IV-A) tunes the security parameters of the MDS.

Vehicles except the CHs belong to the forwarding plane.
Each vehicle is equipped with an IEEE 802.11p interface
to communicate with other vehicles. Each vehicle is also
equipped with an SDN controller and an SDN agent. This
agent is always activated. However, the SDN controller is
initially deactivated and will only be activated when the
vehicle becomes a CH and deactivated again if the vehicle
reverts to a CM. Each RSU is equipped with two interfaces:
wired link to communicate with the neighboring RSUs, and
an LTE/5G interface to communicate with the global SDN
controller. We assume that the RSUs are trusted nodes and
the communication links between the local SDN controllers,
the vehicles, and between the three types of SDN controllers
are secured.

In our proposed SDN-based MDS system, the control plane
five main control functions: (i) Creation of vehicular clusters;
(ii) Selection of the Watchdogs; (iii) Evaluation of the trust;
(iv) Detection of Sybil attacks; and (v) Tuning of security
parameters including not only the parameters and thresholds
of the trust, but also the number of Watchdogs. A Watchdog
monitors the neighboring vehicles and sends its reports to
the local SDN-controller. The local SDN controller monitors
all CMs and calculates their trust levels leveraging on their
monitoring reports and the reports received from Watchdogs.
Finally, The local SDN controller sends its report to the
regional SDN controller. This latter monitors local SDN-
controllers and calculates their trust levels. Then, the regional
SDN controllers aggregate all the trust values of vehicles and
send the final report to the global SDN-controller. This process
is periodically executed during the evaluation period.

IV. CLUSTERING AND WATCHDOGS ELECTION

A. Clustering Strategy

We assume that the road is divided into equal static seg-
ments as shown in Figure 1. The length of the segment (L)
is less than the communication range of vehicles (R). We
assume that the global SDN controller periodically creates
the vehicular clusters, which are restrained to these segments.
Indeed, at a given time t, all vehicles within a given segment
are all considered members of the same cluster and the cluster
head is selected according to the Selection Factor (SF), which
is given by the formula (1):

SFi = α ∗ Trusti + β ∗ (Ndistancei ∗Nspeedi) (1)

Ndistancei =
Maxdistance− distancei

Maxdistance
(2)

Nspeedi = 1− |speedi −Avgspeed|
Maxspeed−Minspeed

(3)

Formula (1) selects the most honest and stable vehicle to
become the CH. A vehicle i is stable if it is close to the center
of the cluster and its speed is close to the average speed of
all CMs of the same cluster. For this reason, the selection of
the CH is based on two criteria: trust (Trusti) and mobility.



The impact of each of these criteria is weighted by α and β
(α + β = 1, α,β ∈ [0, 1]). The mobility is measured according
to: (i) Ndistancei (calculated by the formula (2)), which is
the normalized value of the distance between the vehicle and
the center of the segment, and (ii) Nspeedi (calculated by the
formula (3)), which is the normalized value of the difference
between the vehicle’s speed and the average speed of the CMs.
The vehicle with the highest SF value is selected as a CH.

We assume that the cluster management (the creation and
the update of clusters) is performed by the global SDN-
controller.

B. Watchdogs Election

The evaluation of the trust of a vehicle is computed based
on the opinions collected from his neighbor vehicles, namely
watchdogs. However, it is crucial to ensure that opinions are
not collected from misbehaving Watchdogs. In addition, a
significant overhead could be generated if a large number of
vehicles plays the role of a watchdog. For these reasons, the
local SDN-controller should carefully select the Watchdogs
according to their trust level and their distance to vehicles. To
this end, we propose that the number of Watchdogs should
be determinate by the formula (4) where z is the size of the
cluster and ρw is the density of the watchdogs. The density
of watchdogs is determined as functions of the presence the
misbehaving vehicles.

nbrwatchdogs =
z

ρw
(4)

After the calculation of the number of Watchdogs, we
deploy them according to the number of road lanes and
the distribution of vehicles on the considered segment. The
segment is thus divided into zones whose number (nbrzone)
is calculated using the following formula:

(5)

{
nbrzone = nbrlanes if(nbrlanes)%2 = 0

nbrzone = nbrlanes + 1 else

with nbrlanes denotes the number of lanes. The num-
ber of Watchdogs that can be deployed at each zone
(nbrwatchdogs/zone) can be calculated using the formula (6).
The vehicles with high trust values in each zone are selected
as Watchdogs.

nbrwatchdogs/zone =
nbrvehicle/zone

ρw
(6)

V. TRUST COMPUTATION AND SYBIL ATTACK RESISTANCE

A. Trust computation

The trust of Vehicles (CMs) is evaluated by the local SDN
controller based on their actions. The trust level of a vehicle
is divided into two parts: the direct and the indirect trust. The
direct trust is calculated based on the interactions between the
vehicle and the local SDN controller (CH), whereas indirect
trust is calculated based on interactions of the vehicle and the

Watchdogs. The trust level of a given vehicle v (Trustv) is
thus given by the following formula:

Trustv = (1− 1

(γ ∗ Iv) + 1
)∗DTv+(

1

(γ ∗ Iv) + 1
)∗ITv (6)

Where Iv is the number of direct interactions between the
vehicle and the local SDN controller. Since the direct trust is
more important in the calculation of the trust, we assign more
weight to it (1 − 1

(γ∗I)+1 ), which rapidly increases with the
number of direct interactions (Iv). However, it is controlled
by the parameter γ ∈ R+.

1) Direct Trust: Direct trust is computed based on the ac-
tions of the vehicle during its journey. An action can be either
honest or misbehaving. A misbehaving action in our model
is defined as a malicious action performed by misbehaving
vehicles such as a message drop, false information injection,
message replay and channel jamming. The impact of these
misbehaving actions is different. For example, injecting false
information is more harmful than replaying a message [6]. For
this reason, we introduce a weight sj ∈ {1: Low, 2: Medium,
3: High, 4: Lethal} for each misbehaving action to reflect its
impact on the safety. To this end, we denote by (Ah

v ) and Am
v ,

the number of honest actions performed by a vehicle v and the
number of weighted misbehaving actions given by the formula
(7), respectively. The total number of weighted actions Av is
the sum of honest actions and weighted misbehaving actions
as given in the formulas (8).

Am
v =

n∑
j=1

sj ∗Aj (7)

Av = Ah
v +Am

v (8)

The direct trust is thus calculated using the following
formula.

DTv = (
Am

v

Av
) ∗ (1− 1

(γ∗Am
v )+1 ) (9)

2) Indirect Trust: The indirect trust of a vehicle v is the
average of trust levels calculated by the watchdogs who were
interacting with them. The indirect trust of a vehicle is thus
calculated using the formulas (10), where nbrw is the number
of Watchdogs who have interacted with v and DTwk

v is the
direct trust of a vehicle v calculated by a Watchdog k using
the formula (9).

ITv =
1

nbrw

nbrw∑
k=1

DTwk
v (10)

B. Trust computation of local SDN-controllers

Local SDN controllers (CHs) are also evaluated by the
regional SDN controller based on their actions. The trust level
of a local SDN controller (LT ) is thus the average of direct
trust levels of regional SDN controllers who have interacted
with it. It is hence given by the formula (11), where nbrrc is
the number of regional SDN controllers and DT rci

v is a direct



trust level reported by a regional SDN controller rci. DT rci
v

is defined by the formula (12).

LT =
1

nbrrc

nbrrc∑
i=1

DT rci
lc (11)

DTlc = (
Am

lc

Alc
) ∗ (1− 1

(γ ∗Alc) + 1
) (12)

Where Am
lc is the number of weighted misbehaving actions

performed by the local SDN controller, while Alc is the total
number of weighted actions.

C. Aggregation, privacy and Sybil attack resistance

In our MDS, the trust levels of vehicles are regularly
calculated according to a fixed time period ∆, which is
dynamically adjusted by the global SDN controller. During
∆, the local SDN controller (CH) calculates the direct trust
levels of its cluster members and each Watchdog calculates
the trust levels of its neighboring CMs. At the end of ∆, each
Watchdog reports the calculated direct trust levels to the local
SDN controller. As soon as these reports are received, the
local SDN controller calculates the final trust level of all its
CMs. These calculated trust levels (trust report) are sent to
the global SDN-controller (CA) via regional SDN-controllers
(RSUs). The CA thus decides the truthiness of vehicles if
the trust of the vehicle is below a trust threshold σ ∈ [0, 1].
This threshold is dynamically adjusted by the SDN-controllers
to provide high detection accuracy and to decrease the false
positive.

Algorithm 1: Sybil attack detection
Data: Trust Report (TR)
Result: Sybil Attacker set (SA)
foreach pseudo psi ∈ TR do

if ! notified (IDv , psi) then
SA← SA ∪ IDv;

end
end

However, as vehicles frequently change their pseudonyms,
different trust values associated with the same vehicle could be
reported to the CA. In addition, misbehaving vehicles could
use their pseudonyms as Sybils to avoid being detected. To
overcome this problem, we propose that each vehicle notifies
its local SDN-controller before changing its pseudonym. This
notification is forwarded to the global SDN controller (CA).
Each time the CA receives a trust report, it runs the Sybil
attack detection algorithm as described in Algorithm 1. For
each reported trust level entry, the CA checks if the used
pseudonym psi was reported or not using its long-term identity
IDv . If a vehicle v changes its pseudonym without informing
the CA, it is considered as a misbehaving vehicle and added
to the Sybil attacker list.

VI. PERFORMANCE EVALUATION

We have carried out a set of simulations to evaluate the
performance of our proposed MDS. These simulations are
conducted using Veins Simulation Framework [9]. Table I
summarizes the simulation parameters.

TABLE I: Simulation Parameters

Parameter Value

Simulation duration 60 s
Transmission Range 500 m
The size of the cluster {20, 30}
Ratio of misbehaving vehicles {10%, 30%}
Number of watchdogs {1, 2}
α,β 0.5
si 1

We considered the case of a freeway road. We simulated a
2-lane straight road section of 3 Km. The mobility of vehicles
is generated using SUMO. As shown in Table I, we considered
the case of medium clusters (20 to 30 vehicles). We also
considered low (10%) and high (30%) ratio of misbehaving
vehicles. The parameters α and β are fixed to 0.5, while the
weight of all misbehaving actions (sj) equals to 1.

We studied the efficiency of the proposed MDS in general,
but in particular, we evaluated the merit of introducing the
SDN in our proposed system. For this reason, we considered,
two versions of our proposed MDS: (i) the Static-MDS: this is
a free-SDN version, which uses a default configuration (nbrw
= 2, σ = 0.5, γ = 1) that does not change over time and
do not adapt to the context of vehicles; and (ii) SDN-MDS:
which was described in the previous sections and ensures
the implementation of an adaptive MDS. In this version,
the security parameters of the MDS (nbrw, σ, and γ) are
changed according to the context of vehicles. By mixing up
the ratio of attackers and the the size of cluster, we came
up with 4 different contexts. During the evaluation period,
30 interactions between the local SDN controllers and the
Watchdogs were performed. We run simulation several times
with different random seeds and calculate the average value
with a 95% confidence interval.
Figures 2, 3, 4, and 5 compare the performances of Static-
MDS and SDN-MDS in terms of detection ratio and false pos-
itives in each considered context. It is clear that our proposed
MDS provides higher detection ratio. In addition, we can see
that SDN-MDS adapts the security parameters (nbrw, σ, and
γ) according to the context to enhance the detection ratio
and decrease the false positive as the number of interactions
increase. As shown in Table II, the SDN controller deploys
2 Watchdogs for the cluster with 20 vehicles, because the
attackers were distributed over the cluster. However, the values
assigned to the parameter γ show that the SDN controller puts
much consideration on the direct trust evaluation provided
by the local SDN controller compared to the indirect trust
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Fig. 2: Context 1
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Fig. 3: Context 2
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Fig. 5: Context 4

TABLE II: Context Parameters

Size of
Cluster

Ratio of misbehaving
Vehicles nbrw σ γ

Context 1 20 10% 2 0.63 5
Context 2 30% 2 0.55 100
Context 3 30 10% 1 0.58 0.7
Context 4 30% 1 0.68 1

the evaluation provided by the Watchdogs as the number of
attackers increases. On the other hand, for the cluster with 30
vehicles, only 1 Watchdog is deployed because the attackers
are grouped only on one side of the cluster. However, the
values assigned to the parameter γ show that the global
SDN controller gives more importance of the indirect trust
evaluation given by this Watchdog compared to the case of
the cluster with 20 vehicles. Table II also shows that the trust
threshold (σ) is also adapted in each considered context to
provide high detection radio with low positive rate.

VII. CONCLUSION

The failure in detecting misbehaving nodes in a vehicular
network could jeopardize the safety of users. In this paper, we
have proposed an adaptive misbehavior detection system that,
leveraging on the Software-Defined Networking paradigm,
adjusts its security parameters according to the context of
vehicles. Our system is privacy-preserving and Sybil attack
resistant.
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