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Abstract— Stereo cameras are crucial sensors for self-driving
vehicles as they are low-cost and can be used to estimate
depth. It can be used for multiple purposes, such as object
detection, depth estimation, semantic segmentation, etc. In this
paper, we propose a stereo vision-based perception framework
for autonomous vehicles. It uses three deep neural networks
simultaneously to perform free-space detection, lane boundary
detection, and object detection on image frames captured using
the stereo camera. The depth of the detected objects from the
vehicle is estimated from the disparity image computed using
two stereo image frames from the stereo camera. The proposed
stereo perception framework runs at 7.4 Hz on the Nvidia
Drive PX 2 hardware platform, which further allows for its
use in multi-sensor fusion for localization, mapping, and path
planning by autonomous vehicle applications.

Index Terms— advanced driver assistance system, au-

tonomous vehicle, deep neural network, depth estimation,

free space detection, lane detection, object detection, stereo

camera, stereo perception, stereo vision.

I. INTRODUCTION

Perceiving the environment accurately in real-time is one

of the most challenging tasks for autonomous vehicles.

Perception refers to the ability of the autonomous vehicle to

collect sensor data, extract relevant knowledge, and develop

a contextual understanding of the environment, for example,

detection of obstacles, lanes, and the drivable area in front of

the vehicle [1]. Sensors such as cameras, lidars, and radars

are used in autonomous driving vehicles to perceive the en-

vironment around it. LiDARs are very accurate active depth

measurement sensors, but these are very expensive and are

not ready to be equipped on consumer-grade vehicles. Radars

are robust sensors used in advanced driver assistance systems

(ADAS) like adaptive cruise control (ACC), blind-spot de-

tection, etc. But the resolution of radar is not high enough

to extract semantic information of the surrounding. Cameras,

on the other hand, are the only sensor that is comparatively

less expensive and provides a high level of details such as

color, contrast, texture information, which allows for better

semantic understanding of the environment and can also be

used to estimate depth. With ever-increasing performance

in dynamic lighting conditions and being relatively cheap

to manufacture, camera-based systems are widely used in

today’s ADAS and autonomous vehicles. Monocular camera-

based systems are generally used for ADAS applications
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Fig. 1: Block Diagram of the Proposed Stereo Perception Framework.

such as ACC [2], forward collision warning (FCW) [3], lane

departure warning (LDW) [4], etc.

In recent years there has been a lot of advancement in

the field of deep learning. Deep neural networks (DNNs),

specifically different variants of convolutional neural network

(CNN) have been used in the field of computer vision for

complex tasks like object detection [5], pattern recognition

[6], segmentation [7], depth estimation [8], etc. It even

outperforms human beings in tasks like object recognition

and pattern recognition [9]. The main drawback of com-

plex DNNs is that it is computationally very expensive

and cannot meet real-time system constraints. But, with

recent development in graphical processing units (GPUs) and

DNN optimized hardware platforms, it is becoming easier to

deploy DNNs for real-time applications.

Depth estimation of objects around the surrounding can

be performed using a monocular camera or a stereo camera.

There is no direct method to estimate depth from a monocu-

lar camera. The depth information of the surroundings can be

estimated by assuming the surface to be planar or by using

image feature tracking with additional information about the

twist of the camera in subsequent frames [10]. DNN based

monocular depth estimation techniques are not robust enough

to be used in automotive-grade applications. Stereo cameras

use intrinsic projective geometry between two views, it is

independent of scene structure and only depends on camera’s

internal and external parameters. It is widely used for depth



estimation in the robotics and automotive domain.

In this paper, we propose and evaluate a stereo camera-

based perception framework for autonomous vehicles. Fig-

ure 1 shows the block diagram of the stereo perception

framework. The framework uses DNNs to perform lane

boundary detection, free space detection, object detection,

and classification on the left image frame of the stereo

camera. It uses the left and right image frame for the stereo

camera to compute a disparity image then estimates the depth

of the detected objects. The framework requires a lot of

parallel processing power from GPUs. PCs with consumer-

grade GPUs consume a lot of electricity, and vehicles do

not produce that much of electrical energy. We use Nvidia’s

Drive PX 2 platform to deploy the framework [11]. The

Drive PX 2 is a very powerful and efficient automotive-

grade platform which can be used to deploy highly optimized

DNNs for real-time applications.

The main contributions of this paper are: i) Developed

and integrated a stereo camera-based perception framework

for autonomous vehicles, ii) Developed depth estimation

module, iii) Evaluated performance of the depth estimation

and stereo perception framework in real-time.

This paper is structured as follows: Section II discusses

about the camera calibration process. Section III provides

details of the stereo vision module. Section IV provides

details of the DNN module. Section V explains the proposed

stereo perception framework in detail. Section VI explains

the experimental setup in detail. Section VII discusses the

experimental results. Section VIII evaluates the depth esti-

mation and stereo perception framework performance. In the

Section IX presents the paper conclusions.

II. CAMERA CALIBRATION

The process of estimating the intrinsic and extrinsic pa-

rameters of a camera is called camera calibration [12]. Since

the manufacturing process of camera sensors and its lenses

are never perfect, precise camera calibration is essential to re-

project 2D images into the 3D world. The intrinsic parameter

characterize the geometric, digital, and optical characteristics

of the camera. It is specific to each camera. It is composed of

the principal point or optical center (cx, cy), the focal length

(fx, fy), the pixel size (px, py), the skew coefficient (s), the

camera image resolution, and the lens distortion coefficients

(k1, k2, p1, p2). The extrinsic parameter represents the six

degrees of freedom (6DoF) pose of the camera in the world.

It is represented by a translation vector T and a rotation

matrix R [13]. Stereo camera calibration is the process

of estimating the intrinsic and extrinsic parameter of two

cameras in the stereo setup.

We use the Matlab stereo calibration toolbox [14] to

perform stereo calibration. It uses multiple images of a

checkerboard pattern captured using the stereo camera to

estimate the intrinsic and extrinsic parameters, for more

details on how the toolbox works, please refer to [14].

The calibration toolbox computes the camera extrinsic pa-

rameters of the stereo camera, considering the left camera’s

optical center as the origin, which needs to be again trans-

formed to the vehicle coordinate system using a rigid body

transformation. The vehicle uses a right-handed coordinate

system, where the vehicle origin is considered to be under the

center of the rear axle. The x-axis points forward to the front

of the vehicle, the y-axis points to the left of the vehicle, and

the z-axis points to the upward of the vehicle. The camera has

a right-handed coordinate system, where the camera origin is

at the optical center of the left camera. The x-axis points to

the right of the image plane, the y-axis points to the bottom

of the image plane, and the z-axis points forward along the

optical axis. The estimated intrinsic and transformed extrinsic

parameters are written to a rig configuration file in XML

format, which is used in the stereo perception framework.

III. STEREO VISION

The stereo vision module computes the depth of the

detected objects in the stereo perception framework. It is

divided into three parts, namely stereo rectification, disparity

computation, and depth estimation.

A. Stereo Rectification

The left and right image frames of the stereo camera are

undistorted and rectified before computing disparity. The

left and right cameras are modeled as a pinhole camera

[15]. Image undistortion refers to the process of removing

lens distortion artifact form the image. Lens distortion is

modeled as two types, namely radial distortion and tangential

distortion. Straight lines in an image appear curved due to

radial distortion, and the effect is more prominent as we

move away from the center of the image. It is represented

using two coefficients k1, k2. Tangential distortion occurs if

the lens is not mounted parallel to the image sensor. It is

represented using two coefficients p1, p2. Let’s consider that

a point in 3D when projected on a camera image plane is

represented as (x1, y1), but due to lens distortion, it appears

to be at (x2, y2). The distorted points are described using

the following function [16]:
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where, r is the distance of the pixel from the optical centre,
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√
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+ y2

1
. These coefficients are estimated during the

camera calibration process.

The undistorted left and right camera images are then

rectified. Image rectification is a transformation process that

projects left and right camera images onto a common plane

parallel to the line between optical centers of the camera

such that the epipolar lines become collinear and parallel

to the horizontal image axes. In simple words, the image

transformation is such the projection of every point in the

left image will have a corresponding point on the right

image on a horizontal line, which is collinear and parallel to

the horizontal image axes. This limits the search space for

stereo correspondence [17]. For more details on the image

rectification process, refer to [18].



B. Stereo Disparity

The disparity of all pixels, also known as the disparity

map, is computed using the stereo image pair. The disparity

is the distance between two corresponding points in the left

and right images of a stereo pair. The problem of finding

pixel correspondences between a stereo image pair is called

stereo matching. After image rectification, the search space

for the corresponding pixel is constrained to the epipolar

line. Pixels are matches by comparing the sum of absolute

difference (SAD) or sum of squared differences (SSD) or

normalized cross-correlation (NCC) of the intensity of pixels

around it [19]. The disparity d of each pixel is represented

as:

d = (ul − ur) (3)

where, (ul) and (ur) is the horizontal positions of the

correspondence pixel on the left and right image plane.

C. Depth Estimation

The output of the object detection and tracking module,

which is explained in Section IV-A, is a bounding box

around the detected object along with its label. The pixel

disparity values of the detected objects are available from the

computed disparity map. The depth of a pixel is estimated

from its disparity value using the triangulation equation from

the stereo geometry [20]:

z = f ∗ b/d (4)

where, z is the depth, f is a focal length, b is a baseline

distance between the left and right camera, d is the disparity.

IV. DEEP NEURAL NETWORK

This part of the framework processes image frames to

understand the surroundings of the autonomous vehicle.

It consists of three modules, namely object detection and

tracking, lane detection, and free space detection, which are

explained in detail below.

A. Object Detection and Tracking

The object detection and tracking module is used to

provide semantic information about the surroundings of the

autonomous vehicle. This module consists of three parts: ob-

ject detection, object clustering, and object tracking. We use

Nvidia’s proprietary DNN called DriveNet [21] to perform

object detection. The input to the object detection network

is RCCB (Red-Clear-Clear-Blue) image and the output is

object proposals with bounding boxes. Each object can have

multiple proposals; the object clustering algorithm clusters

these multiple proposals into one bounding box for each

detected object. The object tracking algorithm tracks the

detected bounding boxes to maintain temporal consistency.

It detects and tracks various six different classes of objects

such as car, truck, person, bicycle, traffic sign, and road sign.

It overlays bounding boxes on the detected objects. The color

of the bounding boxes represents the classes that it detects are

as follows: red for cars, cyan for trucks, green for persons,

blue for bicycles, yellow for traffic signs, and magenta for

road signs.

B. Lane Detection

A robust and accurate lane detection system is crucial

to ADAS systems like Lane Keep Assist System (LKAS),

Lane Departure Warning System (LDWS), and also provides

vital information to autonomous vehicles. We use Nvidia’s

proprietary DNN called LaneNet [21] to perform lane de-

tection. The input image format to this network is RCCB

(Red-Clear-Clear-Blue) image and the output is polylines

representing lane markings. It calculates a probability map

of lane markings for each pixel using an encoder-decoder

architecture on the input image. The map is then binarized

into clusters of lane-markings, through which polylines are

fitted to assign lane position types. It recognizes the four

different types of lane markings, such as left adjacent-lane,

left ego-lane, right ego-lane, and right adjacent-lane, when

they are present on the road. The lane detection module

overlays polylines on the detected lane markings. The colors

of the polylines represent the lane marking types are as

follows: yellow for left adjacent-lane, red for left ego-lane,

green for right ego-lane, and blue for the right adjacent-lane.

C. Free Space Detection

Free space detection provides critical information about

the drivable space to the navigation system of an autonomous

vehicle. We use Nvidia’s proprietary DNN called OpenRoad-

Net [21] to perform the free space detection. The input to

the network is RCCB (Red-Clear-Clear-Blue) image and the

output is a boundary across the image from left to right.

The boundary separates the obstacle from open road space.

Each pixel on the boundary is associated with one of the four

semantic labels: red for vehicle, blue for pedestrian, green

for curb, and yellow other.

V. PROPOSED STEREO PERCEPTION FRAMEWORK

In this Section, we present the stereo-vision based per-

ception framework for autonomous vehicles. The functional

architecture of the stereo perception framework that is de-

ployed in Nvidia Drive PX 2 platform is shown in Figure

2.

The input to the framework is a synchronized raw stereo

image pair from a stereo camera or a video file. We use a

custom made stereo camera manufactured using two AR0231

GMSL cameras. The stereo camera is calibrated using a

stereo calibration tool, as mentioned in Section II, and

the camera calibration parameters are read from the rig

configuration file during the initialization of the framework.

Camera synchronization is guaranteed as the ports on which

the two cameras are connected, are hardware synchronized.

The images from the cameras are in Bayer RCCB (Red-

Clear-Clear-Blue) format, which is converted to RGBA (Red-

Green-Blue-Alpha) format before the rectification process.

The left and right images are then undistorted and rectified,

as explained the Section III-A. We use the stereo rectification

functionality provided in the Nvidia DriveWorks software

development kit (SDK) to perform the task. The rectified left

and right camera images are converted to gray-scale images,

and a pyramid of Gaussian images is built up to a specified



Fig. 2: Functional Architecture of the Proposed Stereo Perception Framework.

level. The level 0 image of the pyramid or the full resolution

gray-scale image is used for disparity computation. We use

SSD pixel matching technique to find the stereo correspon-

dence of every pixel of the left image with the right image

to compute the disparity map with respect to the left image

as explained in Section III-B. The Nvidia DriveWorks SDK

provides the disparity computation library, and it returns both

the disparity map and disparity confidence map of the left

image. The disparity and confidence map are used to generate

a colored disparity map, which is displayed as output, where

the invalid pixels are displayed in black color.

The rectified left camera image from the stereo rectifier

is passed as input to the DNN module, as explained in

Section IV. The object detector and tracker described in

Section IV-A, outputs region of interest of detected objects as

bounding boxes with its class. The depth estimator computes

the depth of each detected object by utilizing the computed

disparity map of the left image. We compute the disparity

of the each object by computing average disparity of 1/3
rd area of the bounding box around its centre. This filters

out outlier near the edges of the bounding box. The depth

of each object is then computed, as explained in Section III-

C. The lane detector described in Section IV-B can classify

four different lane markings within an image, and overlays

the recognized lane markings on the output image. The

free space detector described in Section IV-C identifies the

drivable collision-free space within the image and overlays

the identified drivable area with a separation boundary on

the output image.

The output image is converted to an OpenGL image, and

it overlays the output of the object detector and tracking,

depth estimator, lane detector, and free-space detector on it

before the image rendering process. The image rendering

process renders the results from the previous modules in

a meaningful way to the user through the in-vehicle Tegra

A/Tegra B HDMI computer monitors.

VI. EXPERIMENTAL SETUP

The TU/e–TASS International highly automated driving

research prototype vehicle, based on a 3rd generation hybrid

Toyota Prius, is used to deploy and demonstrate the proposed

stereo perception framework.

This vehicle is equipped with a GMSL (Gigabit Multime-

dia Serial Link) stereo camera, a Nvidia Drive PX 2 hardware

platform, Ubuntu 16.04 based computer with Intel Core-i7

7700k with Nvidia Titan XP and 32GB RAM, two LG 21

inch 60Hz 1920x1080 pixels Full HD IPS LCD HDMI com-

puter monitors along with HDMI cable to connect with Drive

PX 2, Logitech K400 Plus Wireless Touch Keyboard, 10

Gigabit Ethernet switch, Huawei 3G/4G/Wifi modem/router

to provide internet to the computer and Drive PX 2, and

CAT7 cable supports 10 Gigabit Ethernet protocol to connect

the computer and Drive PX 2 via Ethernet switch. All of the

equipment is powered using a 2000W 12V DC to 220V AC

converter connected to the battery of the vehicle. Figure 3

shows the prototype vehicle along with the used hardware

components.

(a) A Toyota Prius Vehicle. (b) Nvidia Drive PX 2.

(c) GMSL Stereo Camera. (d) HDMI Computer Monitors.

Fig. 3: An Autonomous Research Vehicle Platform: (a) A Toyota Prius

Vehicle equipped with (b) Nvidia Drive PX 2 (in the trunk of a vehicle), (c)

GMSL Stereo Camera (at the rear view mirror), and (d) HDMI Computer

Monitors (at the back side of vehicle front seats).

We use a custom-built stereo camera, which is com-

posed of two identical Sekonix GMSL Automotive Cameras

SF3323 with an ONSEMI CMOS AR0231 image sensor

[22], 1928x1208 resolution (2.3 Mega Pixel), 60 FOV (field

of view), focal length 5.8 mm, baseline of 30 cm, with

FAKRA (Fachkreis Automobil, a German Standard) connec-

tor. The stereo camera is firmly fixed using a rigid mounting

bar, high up at the rear-view mirror position, at the inner



center of the windshield, align the camera center vertically

with the horizon.

We use the Nvidia Drive PX 2 AutoChauffeur as an

embedded hardware platform, which contains the two parker

SoC (System on Chip), called Tegra A and Tegra B, two

discrete GPUs (dGPUs), two integrated GPUs (iGPUs), and

Aurix TC297. The Drive PX 2 hardware platform is mounted

in the trunk of a car.

The proposed stereo perception software framework is

developed in C++ on an Ubuntu 16.04 LTS and deployed

on a Drive PX 2 hardware platform with DriveWorks 0.6.67,

CUDA 9.0, and CuDNN 7.3.0 library.

VII. EXPERIMENTAL RESULTS

In this Section, we show the intermediate results of the

proposed framework to get a better overview of how it works,

is depicted in Figure 4.

The acquired left and right images from the stereo camera

are displayed in Figure 4a and Figure 4b. The rectified left

and right images from the stereo rectifier are displayed in

Figure 4c and 4d. The computed confidence map with respect

to the left disparity map from the stereo disparity is displayed

in Figure 4e. The detected objects on the road along with

the stereo depth are displayed in Figure 4f. The recognized

lane markings on the road along with their classification are

displayed in Figure 4g. The identified drivable free space on

the road along with obstacles classification are displayed in

Figure 4h. The detected objects along with depth, recognized

lane markings, and identified free space simultaneously on

the road by the proposed stereo perception framework, are

shown in Figure 4i.

VIII. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of the pro-

posed stereo perception framework by analyzing the depth

estimation output of detected objects and also its processing

time on two different platforms.

A. Depth Estimation

We compare the depth output of the framework with the

known distance of three different objects: a vehicle, a bicycle,

and a person. The computed confidence map of the vehicle

with respect to the left disparity map is displayed in Figure

5a, and the depth estimation of the vehicle is shown in Figure

5b. The computed confidence map of the bicycle with respect

to the left disparity map is displayed in Figure 5c, and the

depth estimation of the bicycle is shown in Figure 5d. The

computed confidence map of the person with respect to the

left disparity map is displayed in Figure 5e, and the depth

estimation of the person is shown in Figure 5f. The depth

estimation results along with actual depth, estimated depth,

and depth error, are summarized in Table I.

B. Processing Time

We compare the processing time of the proposed stereo

perception framework with the Nvidia DNNs: DriveNet,

LaneNet, and OpenRoadNet, on the Ubuntu 16.04 and Drive

(a) Left stereo input image. (b) Right stereo input image.

(c) Left stereo rectified image. (d) Right stereo rectified image.

(e) Left stereo disparity map. (f) Result of objects with depth.

(g) Result of lane detection. (h) Result of free space detection.

(i) Result of proposed stereo perception framework.

Fig. 4: Experimental Results: Proposed Stereo Perception Framework.

TABLE I: Depth Estimation Results (in meters).

Objects Actual Depth Estimated Depth Depth Error

Car 13.00 12.41 0.59

Bicycle 10.00 9.89 0.11

Person 7.00 6.71 0.29

PX 2 platform, are shown in Table II. The processing time

of the proposed framework is 99 ms (10.1 Hz) on a laptop

with Quadro M1200 GPU and quad-core Intel Core i7 CPU



(a) Car stereo disparity map. (b) Car depth estimation.

(c) Bicycle stereo disparity map. (d) Bicycle depth estimation.

(e) Person stereo disparity map. (f) Person depth estimation.

Fig. 5: Experimental Results: Proposed Depth Estimation.

running Ubuntu 16.04 (x86 64 architecture) and 134 ms (7.4

Hz) on the Drive PX 2 platform (aarch64 architecture), which

is suitable for various low-speed ADAS applications.

TABLE II: Performance of frameworks (in milliseconds).

Platform Nvidia Nvidia Nvidia Stereo

(architecture) DriveNet LaneNet OpenRoadNet Perception

Ubuntu16.04 38 09 07 99

(x86 64)

Drive PX2 34 06 04 134

(aarch64)

IX. CONCLUSIONS

In this paper, we proposed and developed a stereo per-

ception for autonomous vehicles that runs real-time on the

Nvidia Drive PX2 platform. We use images from a custom

made stereo camera manufactured using two AR0231 GMSL

cameras as input to the framework. The framework processes

the stereo image pair to detect objects and estimate its

depth, recognize lane boundaries, and identify drivable space

simultaneously. It is deployed and tested on Drive PX2

platform in our prototype research vehicle to demonstrate the

practical feasibility in real-time environment. The framework

runs at 7.4 Hz on Drive PX 2 platform, which is suitable for

various low-speed ADAS applications.
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