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Abstract—Data-driven approaches, e.g., deep learning (DL),
have been widely studied in terrestrial wireless communications
fields, proving the benefits and potentials of such techniques.
In comparison, DL for satellite networks is studied to a limited
extent in the literature. In this paper, we develop a DL assisted
approach to facilitate efficient beam hopping (BH) in multi-
beam satellite systems. BH is adopted to provide a high level of
flexibility to manage irregular and time variant traffic requests
in the satellite coverage area. Conventional iterative optimization
approaches and typical data-driven techniques may have their
respective limitations in achieving timely and satisfactory perfor-
mance. We herein explore a combined learning-and-optimization
approach to provide a fast, feasible, and near-optimal solution
for BH scheduling. Numerical study shows that in the proposed
solution, the learning component is able to largely accelerate
the procedure of BH pattern selection and allocation, while the
optimization component can guarantee the solution’s feasibility
and improve the overall performance.

Index Terms—Beam hopping, deep learning, optimization,
satellite communications.

I. INTRODUCTION

Satellite resources are expensive and thus it is necessary
to optimize and, whenever possible, share these precious
resources. The main objective of the present work is to assess
the use of data-driven approaches, e.g., deep learning (DL), to
optimize the satellite resource allocation in multibeam system
scenarios with non-uniform traffic demands. The capability to
flexibly allocate on-board resources over the service coverage
is becoming a must for future broadband multibeam satellites
[1]. Previous and current systems have shown that in large
multibeam satellites the demand in some spot beams greatly
exceeds the available capacity (hot spots) while in others
the situation is inverted (cold spots) [1], [2]. This raises a
paradoxical scenario where demand is left unmet in the hot
spots while capacity is left unused in the cold spots. The
consequence for the satellite operator and service provider is
twofold: a loss of the revenue corresponding to the unmet
demand, and the loss of the investment in the unused capacity.
The primary goal of flexibility is then to solve this paradox and
maximize the amount of system capacity that is actually used
(sold) by allocating it where needed. While in conventional
payloads the resources per beam are fixed and uniformly
distributed across beams [3], therefore providing the same
capacity to each beam.

Satellite’s payload flexibility can be implemented in several
ways involving the flexible allocation of bandwidth (irregular

frequency reuse), of time, and of power. Beam hopping
(BH) for satellite systems has been proposed as a promising
technological enabler to provide a high level of flexibility
to manage irregular and time variant traffic requests in the
satellite coverage area [1], [4]. With BH, all the available
satellite resources are employed to provide service to a certain
subset of beams, which is active for some portion of time,
dwelling just long enough to fill the demand in each beam.
The set of illuminated beams changes in each time-slot based
on a time-space transmission pattern (called BH illumination
pattern) that is periodically repeated.

The challenging task in BH systems is to determine the
beam illumination pattern, i.e., the beams to be simultaneously
activated and for how long. Some works in the literature
have addressed the beam illumination pattern design from
different perspectives, e.g., iterative algorithm for BH illu-
mination design in [2], BH for power minimization in [5].
The main difficulty in BH pattern design is the exponentially
increased search space for obtaining optimal BH patterns.
For the satellite systems composed of hundreds/thousands of
beams, it renders a complicated optimization procedure with
long computation time. Given the inherent difficulty in optimal
BH design, it is hard to expect that a suboptimal solution can
achieve satisfactory performance and with very low complex-
ity [6]. In this context, DL appears as a promising technique
that offers an alternative to design efficient algorithms for
complex resource management in wireless networks. DL has
received considerable research attention over the past few
years in wireless communications [6]–[8].

In the literature, applying DL to satellite scenarios is studied
to a limited extent compared to its applications in terrestrial
communication systems. In addition, suitable DL based solu-
tions for BH pattern design, along with their performance eval-
uation have not been investigated yet for satellite scenarios.
Being aware of this gap, we provide initiative investigations
for DL in BH optimization. The main contributions of this
work are summarized as follows.

• We explore a viable way to combine learning and opti-
mization methods for BH design, in order to overcome
the shortcomings in conventional optimal/suboptimal al-
gorithms and classical learning models.

• To apply DL to BH optimization, we identify a learnable
feature for BH, i.e., the cardinality of the beam patterns,
which leads to high prediction accuracy in DL. In the



proposed algorithm, we provide a simple but efficient
manner to combine DL and optimization components.

• We carry out performance comparisons among optimal,
suboptimal, and the proposed DL-based optimization
(DBO) algorithm, in terms of computational time and
optimality approximation. Numerical study demonstrates
that the learning component is capable of dramatically
accelerating the procedure of promising BH pattern se-
lection. While the optimization component can guarantee
the solution’s feasibility and improve the overall perfor-
mance.

II. SYSTEM MODEL

A. Multibeam Satellite Systems
We consider the forward link of a broadband multibeam

satellite system that aggressively reuses frequency resources.
We consider a bent-pipe transparent geostationary orbit (GEO)
satellite architecture, which relays the signal from the gateway
to the final receivers. We assume the forward link transmission
of N satellite beams, which are considered to be equal to the
number of transmitting elements on the satellite. All beams
share the same frequency band B. The key notations are
summarized in Table I.

Table I
NOTATIONS

N number of beams
n beam index n = 1, . . . , N
B bandwidth per beam
Dn requested demand in beam n
TH duration of a BH cycle
g index of snapshots, g = 1, . . . ,G
Ng set of all the active beams in snapshot g
G set of candidate snapshots, |G | = G
tg duration of snapshot g (continuous or discrete)
Rn offered capacity for beam n
Rng achievable rate of beam n in snapshot g
h j,n channel gain from the j-th satellite antenna to beam n
pn transmit power for beam n

The channel matrix H gathers the forward link budget
information and phase rotations introduced by the over-the-
air propagation. In particular,

H = PĤ (1)

where the matrix P models the phase variations due to the
different propagation paths and its components [P]x,y are
defined as,

[P]x,y =
{

e jϕx if x = y

0 otherwise,
(2)

being ϕx a uniform random variable between −π and π.
The matrix Ĥ represents the real channel state information

(CSI) contribution, which is determined by the satellite an-
tenna gain, the path loss, the received antenna gain and the
noise power. More precisely, the (k, n)-th component of Ĥ is
given by, [

Ĥ
]
k,n
=

√
GRGk,n

4π dk

λ

√
KBT B

(3)

where GR is the user terminal antenna gain, Gk,n denotes
the gain from the n-th satellite antenna towards the k-th user
served within the n-th beam and dk is the slant range between
the satellite and the k-th user. The term

√
KBT B represents the

noise contribution, where KB is the Boltzmann constant and
T is the receiver noise temperature. It is common practice to
include the noise contribution into the channel model in order
to proceed with the assumption of unit-variance noise.

The received signal at the k-th user located at the n-th beam
can be expressed as,

yk,n = hT
k,nx + nk,n, (4)

where hk,n ∈ CN×1 is the CSI vector corresponding to this
particular user, x ∈ CN×1 represents the vector of N symbols
and nk,n is the complex Additive White Gaussian Noise
(AWGN) at user k of beam n.

For the sake of clarity, we can rearrange the received signals
(4) by using the following matrix notation,

y = Hx + n (5)

The received samples are arranged into y =[
yT1 yT2 · · · yTN

]T , where yn is the vector containing the
received signal for the users belonging to the n-th beam.

B. Beam Hopping

The main design task in BH is to determine which beams to
be illuminated together and the duration. The BH illumination
pattern design also consists of designing a BH cycle of
duration TH , which is periodically repeated. Within a BH
cycle, a number of illuminated snapshots are used. In this
paper, we define a snapshot as a particular arrangement of
illuminated and un-illuminated beams. As an example, Fig.
1 illustrates a BH cycle composed of 6 different snapshots.
Each beam is covered by the used snapshots at least once.
These selected snapshots can be sequentially scheduled with
optimized duration.

Figure 1. An example of a BH cycle composed of 6 different snapshots

By enumeration, the total number of possible snapshots,
denoted as G, is equal to 2N . Clearly, the number of snapshots
increases exponentially with the number of beams, resulting
in a huge search space for optimization. We define that a BH
cycle is segmented into Nslot time slots of duration Tslot (i.e.,
TH = TslotNslot ). The division of the BH cycle into time-slots
is depicted in Fig. 2, where the selected snapshots and its
duration are illustrated using different colors. We use variables
t1, . . . , tg, . . . , tG to represents the number of slots allocated to



snapshots 1, . . . , g, . . . ,G, respectively. If tg is equal to 0, then
the g-th snapshot is not used. Since each time slot can only
be used by at most one snapshot, thus

∑
g∈G tgTslot = TH .

Figure 2. A BH Frame

A beam provides service to multiple terminal users in
the coverage area. In a beam, multiple terminal users are
assumed to be served by the time division multiple access
(TDMA) approach. In this paper, we focus on the long-term
BH performance at the beam level, and thus, we use beam’s
demand Dn to represent the aggregated users’ demands in
the n-th beam. Correspondingly, we assume a single user
virtually located in the center of the beam that emulates
the overall traffic demand of the corresponding beam. Then,
the channel matrix H can be simplified to a N × N matrix,
where the diagonal elements hn,n represent the channel gain
from the n-th satellite antenna to the user in beam n. The
delivered data rate of beam n in snapshot g in a time slot

can be expressed as, Rng = TslotB fDVB

(
pnhn,n∑

j∈Ng \{n} p jh jn+σ2

)
,

where fDVB is the rate mapping function according to the
digital video broadcasting through satellite second generation
specifications extensions (DVB-S2X) [3].

III. PROBLEM FORMULATION

The BH design problem is formulated in P0. The problem
aims at optimizing the performance of offered capacity to
requested demand ratio (OCDR), i.e., the fraction of the
offered capacity (Rn) divided by the requested demand (Dn)
of the worst beam. As a consequence of BH optimization,
the offered and requested capacity can achieve a good match
among beams. The optimization task is to determine which
snapshots to be scheduled in a BH cycle, and how many
time slots to be used for each snapshot. The constraint (6b)
states that the total duration for the illuminated snapshots
should be equal to a BH cycle TH . Constraints (6c) define
the offered capacity for each beam. In (6d), the optimization
variables t1, . . . , tG are integer, resulting in a mixed integer
linear programming problem (MILP) in P0.

P0: max
t1,...,tG

min ( R1

D1
, . . . ,

RN

DN
) (6a)

s.t.
∑
g∈G

tgTslot = TH, (6b)

Rn =
∑
g∈G

tgTslotB fDVB(1 +
pnhn,n∑

j∈Ng\{n} pjhjn + σ2 ), ∀n

(6c)
t1, . . . , tG, integer (6d)

Solving P0 is difficult in general, in particular for the large-
sale instances. The high computational complexity and long
computing time impose obstacles for real-time BH scheduling.
We circumvent this issue by solving P0’s linear relaxation

problem which is formulated in P1 with non-negative continu-
ous variables t1, . . . , tG representing the duration of snapshots
1, . . . ,G, respectively.

P1: max
t1,...,tG

min ( R1

D1
, . . . ,

RN

DN
) (7a)

s.t.
∑
g∈G

tg = TH, (7b)

Rn =
∑
g∈G

tgB fDVB(1 +
pnhn,n∑

j∈Ng\{n} pjhjn + σ2 ), ∀n

(7c)
t1, . . . , tG ≥ 0. (7d)

P1 can be equivalently reformulated as P1’ by introducing
an auxiliary variable η. From P1’, one can observe that P1 is
a Linear Programming (LP) problem.

P1’: max
t1,...,tG

η (8a)

s.t.(7b), (7c), (7d) (8b)
Rn

Dn
≥ η, ∀n = 1, . . . , N, (8c)

In general, P1 (or P1’) provides an upper bound for P0.
However, the optimal solution of the LP P1 can ultimately
approach to the MILP P0, when the granularity of time slots
improves, e.g., reduce the duration Tslot . Once Tslot is small
enough, e.g., Tslot = 1 ms (0.001 s), P0 and P1 converge to
almost the same optimum points (refer to Fig. 4 in Section
V). As a result, the training data in DL can be generated more
efficiently by solving P1 rather than P0.

IV. THE PROPOSED DBO ALGORITHM

To optimally solve P0 and P1, some standard optimization
methods can be applied, e.g., branch-and-bound (B&B) al-
gorithm for MILP P0, and simplex algorithm (SA) or column
generation (CG) algorithm for LP P1 [9]. The difficulty is that
the size of candidate snapshot set G or number of variables
in P0 and P1 increase exponentially with the number of
beams, e.g., 2N snapshots in G. When larger-scale scenarios
are considered, e.g., more beams, the number of variables
in optimization problems P0 and P1 becomes huge. The
computational complexity and time are not affordable for
practical BH scheduling. From the learning aspect, classical
end-to-end learning approaches, i.e., relying on a learning
model to directly output a complete solution for the addressed
optimization problem, may help but typically be applicable to
limited instances [6], [10], [11] .

By observing and analyzing the optimal solutions from P1,
we extract and characterize the following feature which can be
well learned by DL. The feature vector consists of N binary
elements, v = [v1, . . . , vn, . . . , vN ], where vn represents if any
of n-cardinality snapshots (n active beams in the snapshot) is
scheduled in the optimum (vn = 1), or none of n-cardinality
snapshots is used at all (vn = 0). For example, in 4-beam
BH, if the optimal snapshots are {{1, 2}, {1, 3, 4}, {2, 3}}, the
corresponding vector v is organized as [0, 1, 1, 0] since only
2-cardinality and 3-cardinality snapshots are scheduled.



In DL training, a training/validation/test set contains two
parts data, i.e., input data and optimized results. The input
data includes channel matrix H , traffic demand per beam
D1, . . . ,DN , and the power per beam p1, . . . , pN . Note that DL
only accepts the real-value inputs, thus the original complex
values in H are normalized to real values. The beam coverage
area, channel matrix, and traffic demand per beam are gener-
ated by an adopted emulator based on real-life topologies [12].
The conventional optimal algorithms, SA or CG, are used to
produce the corresponding optimal labels offline. The optimal
labels are organized in the feature vector [v1, . . . , vN ] for each
realization. A DL model is then trained to learn the mapping
from the input data to the optimal labels.

After training, the DL model is expected to provide its fast
predictions. We show the procedure in Fig. 3. Scanning all
the 0-elements in the predicted feature vector, a considerably
large amount of snapshots can be excluded from the original
candidate set, forming a small-scale candidates set. For in-
stance, if v = [0, 1, 1, 0], all the 1-cardinality and 4-cardinality
snapshots will be removed from the restricted set. Note that
the raw values in the DL model’s output nodes may not be
binary. A rounding operation is adopted to convert fractional
values to binary. Specifically, we use M as the mean of v. If
any fractional value vn > αM , we set vn = 1, otherwise zero,
where α > 0 is a control parameter.

Well-trained 

DL model
Test-set data

DL-based prediction 

for 
Form a restricted 

snapshot set

SA or CG 

algorithm to solve P1 

with the restricted set

Optimized results

Figure 3. DL-based optimization approach in operation phase

V. NUMERICAL RESULTS

To evaluate the performance of the proposed DBO, we
consider a multi-beam GEO satellite scenario, whose antenna
pattern and link budget parameters have been provided by
“ESA71” simulator [12]. We adopt a fully-connected deep
neural network (FC-DNN) as the DL model. The adopted
parameters in simulation are summarized in Table II. Firstly,
we show the optimality gaps between P1 and P0 with respect
to Tslot in Fig. 4. As expected, under the adopted time
scale Tslot = 1 ms, the optimality gap between P0 and P1
is diminished. The generated optimal labels in training sets
can be used exchangeably by optimally solving P0 or P1.
Secondly, we show the performance gain of DBO over opti-
mization algorithms and end-to-end learning. In Table III, the
computational time of DBO (consumed time for executing the
procedure in Fig. 3) and the optimal methods are compared.
The computational time in B&B, SA, and CG exponentially
increases with the number of beams, whereas the proposed
algorithm is insensitive to the problem’s scale. It keeps at the
same magnitude in all the cases. In general, the computational

Table II
PARAMETERS SETTINGS

Satellite longitude 130 (GEO)
Number of beams 16
Carrier frequency 19.5 GHz
Bandwidth per beam 500 MHz
Transmit power per beam 20 dBW
Noise power -120.64 dBW
BH cycle TH 256 ms
Tslot in P0 1 ms
Number of hidden layers 3
Nodes per hidden layer 200
Number of output nodes N = 16
Activation function Relu
Optimizer Adam [10]
Loss function Mean Squared Error (MSE)
Size of training sets 18000
Size of test sets 2000
Batch size 128
Number of epochs 450
Algorithm 1 implementation Python + TensorFlow
B&B, SA, and CG algorithms Python + Gurobi

0.1 0.01 0.001 0.0001 0.00001
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Figure 4. Optimality gaps between P1 and P0 with respect to Tslot

time of the proposed DBO is dramatically reduced compared
with the iterative optimization algorithms.

Table III
COMPARISON IN COMPUTATIONAL TIME

Beams B&B for P0 SA for P1 CG for P1 DBO
N = 10 15.094 0.91 0.56 0.025
N = 16 563 3.142 2.028 0.076
N = 20 >3600 181.4 125.3 0.084
N = 21 >3600 412.5 189.4 0.135
N = 22 >3600 2318 1303 0.203
N = 25 >3600 >3600 >3600 0.391

Fig. 5 shows the prediction accuracy of the FC-DNN in
DBO. The metric “prediction accuracy” is derived by com-
paring the predicted vector v from FC-DNN with the optimal
vector v∗ from optimal algorithms. The y-axis value stands
for the ratio of how many elements in v consistent with the
optimum. The prediction accuracy is able to be improved when
more training sets are adopted. When training is sufficient, the
OCDR values between DBO and the optimum are close, with
the average gap around 5%. In contrast, we use an illustrative
example in Fig. 6 to show the performance in classical end-to-
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Figure 5. Predict accuracy with respect to training set size

end learning approach. The same FC-DNN is adopted, but the
feature vector becomes [t1, . . . , tG]. The OCDR values in the
optimal solution and the end-to-end learning (ETEL) method
are compared in 500 test sets. From the results, the solutions
derived by end-to-end leaning are infeasible in almost all
the instances due to the imperfect prediction in DNN. In
addition, the optimality gaps are considerably large, merely
achieving around 50% of the optimal value in average. The
choice of which features to be learned is critical for the
prediction performance. The results also confirm the necessity
of designing learnable features. Lastly, in Fig. 7, we show that

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

Optimal OCDR
ETEL

Test samples

OCDR

Figure 6. Performance comparison between optimum and end-to-end learning

the accuracy performance can be scaled by parameter α. The
accuracy performance can be improved by adopting small α to
round the fractional values in DNN’s output to binary. DBO
is able to approach to the optimum when an appropriate α
adopted.
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Figure 7. Predict accuracy with respect to parameter α

VI. CONCLUSION

In this paper, we have applied DL technique to solve
an optimization problem in BH illumination pattern design.
A DL-based optimization algorithm is proposed to reap the
benefits of learning and optimization. We have showed that it
is of importance to design a proper learning feature in order to
come up with a good prediction in DL. Numerical results have
showed that the proposed algorithm can be used to limit the
search space of optimization problems, and therefore speed-
up the process of obtaining near-optimal solution. In this way,
the efficient computations of DL is combined with the high-
quality and feasible solution of the optimization approach.
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