
ar
X

iv
:1

91
1.

07
65

3v
1 

 [
cs

.N
I]

  1
5 

N
ov

 2
01

9
1

Resource Awareness in Unmanned Aerial

Vehicle-Assisted Mobile-Edge Computing Systems
Xianfu Chen∗, Tao Chen∗, Zhifeng Zhao†, Honggang Zhang‡, Mehdi Bennis§, and Yusheng Ji¶

∗VTT Technical Research Centre of Finland Ltd, Finland
†Research Center for Intelligent Networks, Zhejiang Lab, Hangzhou, China

‡College of Information Science and Electronic Engineering, Zhejiang University, China
§Centre for Wireless Communications, University of Oulu, Finland

¶Information Systems Architecture Research Division, National Institute of Informatics, Tokyo, Japan

Abstract—This paper investigates an unmanned aerial vehicle
(UAV)-assisted mobile-edge computing (MEC) system, in which
the UAV provides complementary computation resource to the
terrestrial MEC system. The UAV processes the received com-
putation tasks from the mobile users (MUs) by creating the
corresponding virtual machines. Due to finite shared I/O resource
of the UAV in the MEC system, each MU competes to schedule
local as well as remote task computations across the decision
epochs, aiming to maximize the expected long-term computation
performance. The non-cooperative interactions among the MUs
are modeled as a stochastic game, in which the decision makings
of a MU depend on the global state statistics and the task
scheduling policies of all MUs are coupled. To approximate the
Nash equilibrium solutions, we propose a proactive scheme based
on the long short-term memory and deep reinforcement learning
(DRL) techniques. A digital twin of the MEC system is established
to train the proactive DRL scheme offline. Using the proposed
scheme, each MU makes task scheduling decisions only with
its own information. Numerical experiments show a significant
performance gain from the scheme in terms of average utility
per MU across the decision epochs.

Index Terms—Mobile-edge computing, unmanned aerial vehi-
cle, resource awareness, deep reinforcement learning, long short-
term memory, digital twin.

I. INTRODUCTION

Mobile-edge computing (MEC), which provides computing

capabilities within the radio access networks (RANs) in close

proximity to the mobile users (MUs), is a promising paradigm

to address the tension between computation-intensive applica-

tions and resource-constrained mobile devices [1]. By offload-

ing computation tasks to the resource-rich MEC cloud, not

only the computation qualities of service and experience can

be greatly improved, but also the capability of a mobile device

can be augmented for running a variety of resource-demanding

applications. Recently, there are a number of related works

on designing computation offloading schemes. For example,

in [2], Wang et al. proposed a Lagrangian duality method

to minimize the total energy consumption in a computation

latency constrained wireless powered multiuser MEC system.

In [3], Liu et al. studied the power-delay tradeoff for a MEC

system using the Lyapunov optimization technique. In our

priori work [4], the infinite time-horizon Markov decision

This work has been submitted to the IEEE for possible publication.
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process (MDP) framework was used to model the problem of

computation offloading for a MU in an ultra-dense RAN and to

solve the optimal policies, we proposed the deep reinforcement

learning (DRL) based schemes.

Offloading the input data of a task from the mobile device of

a MU to the MEC cloud requires wireless transmissions, which

account for the dynamics from the surrounding environment.

Particularly, the time-varying channel qualities due to the

MU mobility in turn limits the computation performance

[5]. Because of among others, the low deployment cost, the

flexibility and the line-of-sight (LOS) connections, unmanned

aerial vehicles (UAVs) are expected to play a significant role

in advancing the future wireless networks [6]. Leveraging

the UAV technology in a MEC system has been shown to

be substantial. In [7], Hu et al. put forward an alternating

algorithm to minimize the weighted sum energy consumption

for a UAV-assisted MEC system. In [8], Zhou et al. inves-

tigated a UAV-enabled wireless-powered MEC system and

derived alternating algorithms to solve the computation rate

maximization problems under both the partial and the binary

computation offloading modes. However, most of the existing

literature is basically based on a finite time-horizon.

In this paper, we concentrate on a three-dimensional UAV-

assisted MEC system, in which a UAV is implemented as a

complementary computing server flying in the air. That is,

in addition to local computation execution, each MU in the

system can also offload a computation task to the UAV or

to the MEC cloud via one of the base stations (BSs) in the

RAN. The UAV can co-execute the computation tasks of the

MUs by creating isolated virtual machines (VMs) [9]. Sharing

the same physical UAV platform causes I/O interference,

leading to computation rate reduction for each VM. Under this

context, the MUs compete to schedule local and remote task

computations with the awareness of environmental dynamics.

The aim of each MU is to maximize the expected long-term

computation performance. The non-cooperative interactions

among the MUs are modeled as a stochastic game. Solving a

Nash equilibrium (NE) of the stochastic game needs complete

information exchange among the MUs, which is practically

overwhelming. Motivated by recent advances in recurrent and

deep neural networks, we propose a proactive DRL scheme,

enabling each MU to behave at an approximated NE only

with local information [10], [11]. Furthermore, we establish

a digital twin of the MEC system to get over the hurdle

http://arxiv.org/abs/1911.07653v1
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Fig. 1. Illustration of an unmanned aerial vehicle (UAV)-assisted mobile-edge
computing system (VM: virtual machine.).

of training the neural networks [12]. To the best of our

knowledge, there does not exist a comprehensive study on

stochastic resource awareness among the non-cooperative MUs

in a UAV-assisted MEC system.

II. SYSTEM DESCRIPTIONS AND ASSUMPTIONS

As illustrated in Fig. 1, we focus on a three-dimensional

scenario, in which a terrestrial MEC system is assisted by

a UAV. The UAV hovers in the air at a fixed altitude of H
(in meters) 1. The terrestrial MEC system consists of a set

B = {1, · · · , B} of BSs, which are connected via wired links

to the computing cloud at the edge. To ease analysis, we use a

common finite set L of locations (i.e., small two-dimensional

non-overlapping areas)2 to denote both the terrestrial service

region covered by the BSs and the region of the UAV mapped

vertically from the air to the ground. In the system, a set K
of MUs coexist and generate sporadic computation tasks over

the infinite time-horizon, which is discretized into decision

epochs. Each epoch is assumed to be of equal duration δ (in

seconds) and indexed by an integer j ∈ N+.

A. Mobility Model

We apply the smooth-turn mobility model with a reflecting

boundary to simulate the UAV trajectory [14]. In this model,

the UAV maintains a constant forward speed but randomly

changes the centripetal acceleration. Let Lj

(UAV) ∈ L be the

mapped terrestrial location of the UAV during a decision

epoch j. With regards to the MUs, their movements are

modelled using a boundary Gauss-Markov mobility model

[15]. Specifically, the location Lj

(MU),k ∈ L of each MU

k ∈ K during each decision epoch j is determined by both

the location Lj−1
(MU),k at epoch j − 1 and the velocity during

epoch j, while the velocity of a MU during a decision epoch

depends on the velocity during the previous epoch only.

B. Task Model

The computation task arrivals at the MUs are assumed to be

independent and identically distributed sequences of Bernoulli

1This work assumes that the power of the UAV is supplied by laser charging
[13]. Hence the UAV is able to operate over the long run.

2Each location or small area can be characterized by uniform wireless
communication conditions [5].

random variables with a common parameter λ ∈ [0, 1]. More

specifically, we choose Aj
k ∈ {0, 1} to be the task arrival

indicator for a MU k ∈ K, that is, Aj
k = 1 if a computation

task is generated at MU k in the end of epoch j and otherwise,

Aj
k = 0. Then, P(Aj

k = 1) = 1 − P(Aj
k = 0) = λ, ∀k ∈ K,

where P(·) denotes the probability of the occurrence of an

event. We let µ (in bits) and ϑ represent, respectively, the

input data size and the number of CPU cycles required to

accomplish one input bit of a computation task. The arrived

but not processed tasks will be queued at the buffer of a MU. A

computation task can be either computed locally at the device

of the MU or executed remotely (at the UAV or the MEC

cloud). We let Xj
k ∈ {0, 1} and F j

k ∈ B ∪ {0, B + 1} denote

the local and remote computation task scheduling decisions

of MU k at each decision epoch j. That is, Xj
k = 1 if MU

k sends a computation task to the local CPU and otherwise,

Xj
k = 0, while if MU k offloads the computation task to the

UAV, F j
k = B + 1, or to the MEC cloud via one of the BSs,

F j
k = b (b ∈ B) and otherwise, F j

k = 0. Hence the task queue

dynamics of MU k can be expressed as

Qj+1
k = max

{

Qj
k −Xj

k − 1{F j

k
>0}, 0

}

+Aj
k, (1)

where Qj
k is the number of computation tasks in the task buffer

of MU k at the beginning of decision epoch j and 1{·} is an

indicator function that equals 1 if the condition is satisfied and

0, otherwise. In this work, we assume a large enough buffer

capacity for a MU to avoid the buffer overflows.

C. Computation Model

The UAV complements the terrestrial MEC system with the

computation resource from the air. By strategically offloading

the computation tasks to the UAV or the MEC cloud via

one of the BSs for remote execution, the MUs can expect

a significantly improved computation experience.
1) Local Computation: When a computation task is sched-

uled for processing locally at the mobile device of a MU k ∈ K
during a decision epoch j, i.e., Xj

k = 1, the number of needed

epochs can be calculated as ∆ = ⌈(µ · ϑ)/(ρ · δ)⌉, where ⌈·⌉
means the ceiling function and we assume that the local CPU

of a MU operates at frequency ρ (in Hz). We describe the local

processing state Sj

(MU),k ∈ {0, 1, · · · ,∆} at a decision epoch

j using the number Sj

(MU),k of remaining epochs to finish the

computation task. For local computation during an epoch j,

the processing delay experienced by MU k is given by

Dj

(MU),k =



















0, if Sj

(MU),k = 0;

µ · ϑ− (∆− 1) · δ · ρ

ρ
, if Sj

(MU),k = 1;

δ, if Sj

(MU),k > 1,

(2)

and the resulted energy consumed by the mobile device of MU

k then is

Ej

(MU),k =














0, if Sj

(MU),k = 0;

τ · (µ · ϑ− (∆− 1) · δ · ρ) · (ρ)2 , if Sj

(MU),k = 1;

τ · δ · (ρ)3 , if Sj

(MU),k > 1,

(3)
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where τ is the effective switched capacitance that depends on

the chip architecture of a mobile device [16].

2) Remote Execution: For remote computation execution, a

MU has to be first associated with a BS or the UAV until the

task is accomplished. Let Ijk ∈ B∪{B+1} be the association

state of each MU k ∈ K during a decision epoch j, namely,

Ijk = b ∈ B if MU k is associated with a BS b and if MU k
is associated with the UAV, Ijk = B + 1. Then

Ijk = i · 1{{F j

k
=i}

∨
{{F j

k
=0}

∧
{Ij−1

k
=i}}}, (4)

where i ∈ B∪{B+1}, while ∨ and ∧ mean, respectively, logic

OR and logic AND. When Ijk 6= Ij−1
k , which may happen only

when F j
k > 03, a handover among the BSs and the UAV is

hence triggered [4]. We assume that the energy consumption

during the occurrence of one handover is negligible at MU

k but the incurred delay is ζ (in seconds). During a decision

epoch j, MU k experiences the average channel power gains

Gj
b,k = g(BS)(L

j

(MU),k, L(BS),b) for the link between MU k

and BS b and Gj

(UAV),k = g(UAV)(L
j

(MU),k, L
j

(UAV), H) for

the link between MU k and the UAV, which are determined

by the physical distances.

At the beginning of a decision epoch j, if a MU k ∈ K
lets the MEC cloud execute a computation task, all input data

needs to be offloaded via a BS F j
k = b ∈ B, for which the

achievable data rate can be written as Rj
b,k = W · log2(1 +

(Gj
b,k · Pk)/(W · σ2)), where W is the frequency bandwidth

exclusively allocated to a MU, Pk is the transmit power and

σ2 is the noise power spectral density. We use T j

(BS),k ∈ [0, µ]
to denote the local transmission state of MU k at the beginning

of a decision epoch j, which indicates the remaining amount

of input data to be transmitted for the task. Hence the trans-

mission delay4 and the energy consumption during epoch j are

calculated as Y j

(BS),k = min{T j

(BS),k/R
j
b,k+ζ ·1{Ij

k
6=I

j−1
k

}, δ}

and Ej

(BS),k = Pk · (Y j
b,k − ζ · 1{Ij

k
6=I

j−1
k

}). In this paper, we

assume that the BSs are connected using the wired links to the

MEC cloud, which is of rich computation resource. We ignore

the round-trip delay between the BSs and the MEC cloud as

well as the time consumed for processing a computation task

at the MEC cloud. Further, the time consumed by the selected

BS (or the UAV in the following) to send back the computation

result is negligible due to the fact that the size is much smaller

than the input data of a computation task [17].

Similarly, if a MU k ∈ K offloads a computation task to the

UAV for processing at a decision epoch j, namely, F j
k = B+1,

the time5 and the energy consumed during each decision epoch

j turn to be Y j

(UAV),k = δ ·1{T j

(UAV),k
>0} and Ej

(UAV),k = Pk ·

(min{T j

(UAV),k/R
j

(UAV),k+ζ ·1{Ij

k
6=I

j−1
k

}, δ}−ζ ·1{Ij

k
6=I

j−1
k

}),

respectively, where Rj

(UAV),k = W · log2(1 + (Gj

(UAV),k ·

Pk)/(W · σ2)) is the achievable data rate, while T j

(UAV),k ∈

3If a MU k ∈ K does not offload a task at the beginning of a decision

epoch j, the association state remains unchanged, i.e., I
j

k
= I

j−1

k
. In this

case, no handover will be triggered.
4The transmission delay includes the delay during the handover procedure.
5After receiving all the input data of a computation task during a current

decision epoch, the UAV starts to process from the subsequent decision epoch
since the VMs are created at the beginning of an epoch [9].

[0, µ] denotes the transmission state at a decision epoch j.

Let Kj ⊆ K represent the subset of MUs, whose computation

tasks are being simultaneously processed by the corresponding

VMs at the UAV during a decision epoch j. Denote by C0 the

computation service rate of a VM at the UAV given that the

task is run in isolation, the degraded computation rate of each

MU k ∈ Kj is modeled as Cj = C0 · (1 + ϕ)1−|Kj |, where

| · | means the cardinality of a set and ϕ ∈ R+ is a factor

specifying the percentage of reduction in the computation rate

of a VM when multiplexed with another VM. Accordingly, we

obtain the remote processing delay of MU k during decision

epoch j as Dj

(UAV),k = min{Sj

(UAV),k/C
j , δ} with the remote

processing state Sj

(UAV),k ∈ [0, µ] showing the amount of input

data to be processed at the beginning of an epoch j.

III. PROBLEM FORMULATION AND GAME-THEORETIC

SOLUTION

During each decision epoch j, the local state of a MU k ∈ K
can be described by ξ

j
k = (Lj

(MU),k, L
j

(UAV), Q
j
k, I

j
k, S

j

(MU),k,

Sj

(UAV),k, T
j

(BS),k, T
j

(UAV),k) ∈ Z , where Z is a common finite

state space for all MUs. We use ξj = (ξjk, ξ
j
−k) ∈ Z |K| to

represent the global system state with −k denoting all the

other MUs in K without the presence of a MU k. Let πk

be the stationary task scheduling policy employed by MU k.

When deploying πk, MU k observes ξj at the beginning of

a decision epoch j and accordingly, makes local as well as

remote task scheduling decisions, that is, πk(ξ
j) = (Xj

k, F
j
k ).

We define an immediate utility function6

uk

(

ξj ,
(

Xj
k, F

j
k

))

= exp
(

−Dj
k

)

+ η · exp
(

−Ej
k

)

, (5)

to measure the satisfaction of experienced delay and consumed

energy for each MU k during each epoch j, where η ∈ R+ is

the weighting constant, Dj
k = Dj

(MU),k+Dj

(UAV),k+Y j

(BS),k+

Y j

(UAV),k+δ ·max{Qj
k−Xj

k−1{F j

k
>0}, 0} is composed of not

only the processing and transmission delay but also the task

queueing delay, while Ej
k = Ej

(MU),k + Ej

(BS),k + Ej

(UAV),k
constitutes the total local energy consumption.

Along with the discussions, it can be easily verified that the

randomness lying in a sequence of the global system states

over the time horizon {ξj : j ∈ N+} is Markovian. Given a

stationary task scheduling policy πk by each MU k ∈ K and

an initial global state ξ1 = ξ ∈ Z |K|, we express the expected

long-term discounted utility function Vk(ξ, (πk,π−k)) of MU

k as

Vk(ξ, (πk,π−k)) = (6)

(1− γ) · E(πk,π−k)





∞
∑

j=1

(γ)j−1 · uk

(

ξj ,
(

Xj
k, F

j
k

))

|ξ1 = ξ



,

where γ ∈ [0, 1) is the discount factor and the expectation

E(πk,,π−k)[·] is taken over different decision makings under

different global system states following a joint task schedul-

ing policy (πk,π−k) across the decision epochs. When γ

6To stabilize the training process of the proactive algorithm designed in this
work, we choose an exponential function for the definition of an immediate
utility, whose value does not dramatically diverge.
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approaches 1, (6) approximates the expected long-term un-

discounted utility as well [18]. Vk(ξ, (πk,π−k)) is also termed

as the state value function in a global system state ξ under a

joint task scheduling policy (πk, ,π−k) [20].

Due to the shared I/O resource at the UAV and the dynamic

nature in networking environment, we formulate the problem

of resource awareness among multiple MUs across the deci-

sion epochs as a non-cooperative stochastic game, in which the

MUs are the players and there are a set Z |K| of global system

states and a collection of task scheduling policies {πk : ∀k ∈
K}. The aim of each MU k is to device a best-response policy

π∗
k that maximizes Vk(ξ, (πk,π−k)), which can be formally

formulated as π∗
k = argmaxπk

Vk(ξ, (πk,π−k)), ∀ξ ∈ Z |K|.

A NE, which is a best-response task scheduling policy profile

(π∗
k : k ∈ K), describes the rational behaviours of the MUs

in a stochastic game [19]. In order to operate the NE, a MU

has to know the complete global system dynamics, which is

prohibited in a non-cooperative networking environment [5].

Define Vk(ξ) = Vk(ξ, (π
∗
k,π

∗
−k)) as the optimal state-value

function.

IV. PROACTIVE DRL WITH LOCAL OBSERVATIONS

In this section, we shall develop a proactive DRL algorithm

to approach the NE task scheduling policy.

A. Approximation from Local Observations

During the competitive interactions with other MUs in the

stochastic game, it is challenging for a MU to obtain the global

system state information. There still exists the possibility for

each MU k ∈ K to acquire the side information, which is the

partial observation Oj
k, of ξ

j
−k during a decision epoch j. In

this work, the partial observation of MU k at the beginning of

a decision epoch j indicates the remote processing delay at the

UAV from the previous epoch j−1, namely, Oj
k = Dj−1

(UAV),k.

Therefore, (6) can be approximated by (7), where O1
k is the

initial partial observation of ξ−k. Each MU k then switches

to solve the following single-agent MDP,

π∗
k = argmax

πk

Vk((ξk, Ok) , (πk,π−k)) , ∀(ξk, Ok). (8)

A dynamic programming approach to (8) based on the value

or policy iteration requires complete a priori knowledge of

the local state and observation transition statistics [20]. The

Q-learning enables each MU k to learn π∗
k in an unknown

MEC system. Define

Qk((ξk, Ok), (Xk, Fk)) = (1− γ) · uk(ξ, (Xk, Fk))+

γ ·
∑

ξk,Ok

P((ξ′k, O
′
k)|(ξk, Ok), (Xk, Fk)) ·Vk(ξ

′
k, O

′
k), (9)

as the Q-function, where Xk and Fk are the decision makings

at a current decision epoch, ξ′k and O′
k are the local state

and the partial observation at the subsequent epoch, while

Vk(ξ
′
k, O

′
k) = Vk((ξk, Ok), (π

∗
k,π

∗
−k)). In turn, Vk(ξk, Ok)

can be straightforwardly obtained from

Vk(ξk, Ok) = max
Xk,Fk

Qk((ξk, Ok), (Xk, Fk)). (10)

By substituting (10) back into (9), we get (11), with X ′
k and

F ′
k denoting the local and remote computation task scheduling

decisions under (ξ′k, O
′
k).

During the process of Q-learning, each MU k ∈ K in

the network first observes (ξk, Ok) = (ξjk, O
j
k), (Xk, Fk) =

(Xj
k, F

j
k ), uk(ξ, Xk, Fk) at a current decision epoch j as well

as (ξ′k, O
′
k) = (ξj+1

k , Oj+1
k ) at the next epoch j+1, and then

updates the Q-function iteratively as in (12), where αj ∈ [0, 1)
is the learning rate. It has been well established that if: 1) the

global system state transition probability under (π∗
k,π

∗
−k) is

time-invariant; 2)
∑∞

j=1 α
j is infinite and

∑∞
j=1(α

j)2 is finite;

and 3) all ((ξk, Ok), (Xk, Fk))-pairs are visited infinitely

often, the learning process converges towards π∗
k [20].

B. Proactive DRL for NE Control Policy

We can easily find that for the system model being investi-

gated in this paper, the joint space of local states and partial

observations faced by each MU is extremely huge. The tabular

nature in representing the Q-function values makes the Q-

learning impractical. Inspired by the widespread success of a

deep neural network [22], we adopt a double deep Q-network

(DQN) to model the Q-function of a MU [23]. However, the

accuracy of (8), which is based on partial observations of other

MUs in the MEC system, can be, in general, arbitrarily bad. In

order to overcome such a challenge from partial observability,

we propose a slight modification to the DQN architecture. That

is, we replace the first fully-connected layer of the DQN with

a long short-term memory (LSTM) layer [24], resulting in a

deep recurrent Q-network (DRQN) [10], [25].

More specifically, for each MU k ∈ K in the MEC system,

Qk((ξk, Ok), (Xk, Fk)) is replaced by Qk(nk, (Xk, Fk); θk),
where θk contains a vector of parameters associated with the

DRQN while nk = n
j
k consists of the N most recent local

states and partial observations up to a current decision epoch

j, namely,

n
j
k =

((

ξ
j−n+1
k , Oj−n+1

k

)

: n = N,N − 1, · · · , 1
)

. (13)

It is worth mentioning that nk is taken as an input to the LSTM

layer of the DRQN of MU k for a proactive and more precise

prediction of the current global system state ξ. Eventually, a

MU leans the parameters of a DRQN, instead of finding the

Q-function according to the rule in (12).

C. Offline Training by Digital Twin

Simply being equipped with an independent DRQN at each

MU raises two new technical challenges:

1) the possibly asynchronous training of DRQNs at the

MUs constrains the overall system performance; and

2) in practice, the limited computation capability at the

mobile device of a MU hinders the feasibility of training

a DRQN locally.

As a promising alternative, we set up a digital twin of the MEC

system to offline train the DRQNs, the parameters of which

can be preloaded to a MU during the network initiation. From

the assumptions made in this paper and the definition of an

identical utility function structure as in (5), the homogeneous

behaviours in all MUs provide an opportunity for the digital
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Vk((ξk, Ok) , (πk,π−k)) = (1− γ) · E(πk,π−k)





∞
∑

j=1

(γ)j−1 · uk

(

ξj ,
(

Xj
k, F

j
k

))

|
(

ξ1k, O
1
k

)

= (ξk, Ok)



 (7)

Qk((ξk, Ok), (Xk, Fk)) = (1− γ) · uk(ξ, (Xk, Fk))

+ γ ·
∑

ξk,Ok

P((ξ′k, O
′
k)|(ξk, Ok), (Xk, Fk)) · max

X′

k
,F ′

k

Qk((ξ
′
k, O

′
k), (X

′
k, F

′
k)) (11)

Q
j+1
k ((ξk, Ok), (Xk, Fk)) =

(

1− αj
)

·Qj
k((ξk, Ok), (Xk, Fk))

+ αj ·

(

(1− γ) · uk(ξ, (Xk, Fk)) + γ · max
X′

k
,F ′

k

Q
j+1
k ((ξk, Ok), (X

′
k, F

′
k))

)

(12)

twin to train a common DRQN with parameters θ. In other

words, we derive for each MU k ∈ K, Qk(nk, (Xk, Fk); θk) =
Q(nk, (Xk, Fk); θ).

To implement the DRQN offline training at the digital twin,

we maintain a replay memory Mj to store the most recent

M experiences {mj−M+1, · · · ,mj} up to the beginning of

each decision epoch j, where an experience m
j−m+1 (m ∈

{1, · · · ,M}) is given as (14). Meanwhile, a pool N j = {nj
k :

k ∈ K} of N latest local states and partial observations is kept

to predict the global system state ξj for task scheduling policy

evaluation at epoch j. Both Mj and N j are refreshed over

the decision epochs. We first randomly sample a mini-batch

M̃j = {M̆j1 , · · · ,M̆jM̃ } of size M̃ from Mj , where each

M̆jm̃ * Mj (m̃ ∈ {1, · · · , M̃}) is given by (15). Then the

set θj of parameters at epoch j is updated by minimizing the

accumulative loss function, which is defined as in (16), where

θ
j
− is the set of parameters of the target DRQN at a certain

previous decision epoch before epoch j.

V. NUMERICAL EXPERIMENTS

In order to quantify the performance gain from the proposed

proactive DRL scheme in a UAV-assisted MEC system, nu-

merical experiments based on TensorFlow [21] are conducted.

For experimental purpose, we build up a terrestrial MEC

system, which is with B = 4 BSs in a 0.4× 0.4 Km2 square

area. The BSs are placed at equal distance apart, and the

square area is divided into |L| = 1600 locations with each

representing a small area of 10× 10 m2. The channel model

in [5] and the LOS model in [26] are assumed, respectively,

for Gj
b,k and Gj

(UAV),k, ∀k ∈ K, ∀b ∈ B and ∀j. We use the

mobility configurations as in [15] for the MUs and the UAV.

Regarding the DRQN, we design two fully connected layers

after the LSTM layer with each of the three layers containing

32 neurons. ReLU is selected as the activation function [27]

and Adam as the optimizer [28]. Other parameter values are

listed in Table I.

For the performance comparisons, we design the following

four baseline schemes as well.

1) Local Computation – Each MU processes locally all

arriving computation tasks.

TABLE I
PARAMETER VALUES IN EXPERIMENTS.

Parameter Value Parameter Value

µ 500 Kbits ϑ 1300

H 100 meters W 1 MHz

σ2 −174 dBm/Hz δ 10
−2 second

Pk 3 Watt, ∀k η 3

ρ 2 GHz ϕ 0.1

ζ 10−3 second C0 2 · 107 bits/second

τ 2.5 · 10−28 N 50

M 5000 M̆ 200

2) Cloud Execution – All arriving computation tasks at the

MUs are offloaded to the MEC cloud for execution via

the BS with the best channel gain.

3) UAV Execution – All queued computation tasks from the

MUs are processed by the VMs at the UAV.

4) Greedy Processing – Each MU schedules the local task

computation or offloads the computation to the UAV or

the MEC cloud whenever possible.

In the experiments, the priority is to demonstrate the average

utility performance per MU across the decision epochs from

the proposed proactive DRL scheme and the four baselines

under various computation task arrival probabilities. We as-

sume |K| = 12 MUs in the MEC system. The results are

depicted in Fig. 2. It can be observed from the curves that the

average utility performance from the proposed scheme, the

local computation, the cloud execution, the UAV execution

and the greedy processing deceases as the computation task

arrival probability λ increases, which is in accordance with our

intuition lying in the surge of per-MU task queue length. Due

to the LOS wireless transmissions between the MUs and the

UAV, the UAV execution scheme achieves better average utility

performance than the cloud execution scheme. As λ increases,

more task computations are offloaded for UAV execution under

the greedy processing scheme to avoid the possible handover

delay, though the cloud execution scheme outperforms the

local computation scheme. Among the four baselines, the

greedy processing scheme exhibits the best performance under
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m
j−m+1 =

(((

ξ
j−m
k , Oj−m

k

)

,
(

Xj−m
k , F j−m

k

)

, uk

(

ξj−m,
(

Xj−m
k , F j−m

k

))

,
(

ξ
j−m+1
k , Oj−m+1

k

))

: k ∈ K
)

(14)

M̆jm̃ =
{(

n
jm̃
k ,
(
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k , F jm̃

k

)

, uk

(

ξjm̃ ,
(

Xjm̃
k , F jm̃

k

))

,njm̃+1
k

)

: k ∈ K
}
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Fig. 2. Average utility performance per MU across the decision epochs versus
computation task arrival probability λ.

large values of λ. Last but not least, the results clearly show

that the proposed scheme provides a significant performance

gain, compared with the four baselines.

VI. CONCLUSIONS

In this work, our focus is to study the design of a stochastic

local and remote computation scheduling policy for each MU

in a UAV-assisted MEC system, which takes into account the

system dynamics originated from the UAV and the MU mobil-

ities as well as the time-varying computation task arrivals. The

non-cooperative interactions among the MUs across the deci-

sion epochs are formulated as a stochastic game. To approach

the NE, we derive a proactive DRL scheme, with which each

MU schedules local and remote computations using only the

local information. The homogeneity in the behaviours of MUs

facilitates the use of a digital twin to offline train the proposed

scheme. From numerical experiments, we find that compared

with the four baselines, the proposed proactive DRL scheme

achieves the best average utility performance.
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