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Abstract—Learning the channel occupancy patterns to reuse
the underutilised spectrum frequencies without interfering with
the incumbent is a promising approach to overcome the spectrum
limitations. In this work we proposed a Deep Learning (DL)
approach to learn the channel occupancy model and predict its
availability in the next time slots. Our results show that the
proposed DL approach outperforms existing works by 5%. We
also show that our proposed DL approach predicts the availability
of channels accurately for more than one time slot.

Index Terms—Cognitive radio, deep learning, channel occu-
pancy models

I. INTRODUCTION

Spectrum limitations have always been one of the challenges
of wireless and cellular communications. To overcome this
challenge, different approaches and technologies have been
proposed and used in different communication standards.
Some considered using higher frequencies, e.g. using mil-
limeter Wave (mmWave) in 5G [1], while others focused
on techniques for more efficiently using the spectrum, e.g.
network densification and Multiple Input Multiple Output
(MIMO) has been used in Long Term Evolution (LTE), and
using massive MIMO in 5G. All these technique are very
useful; however, they have their own challenges. For instance
mmWave and densification (small cell) can only cover short
ranges, and MIMO-based techniques need more complex
transmitters using more power. These challenges make these
techniques unsuitable for applications like Internet of Things
(IoT).

Dynamic Spectrum Access (DSA) and Cognitive Radio
(CR) have been investigated as methods for enhancing spec-
trum usage efficiency by enabling spectrum sharing. Among
different forms of DSA, multi-level (hierarchical) spectrum
exploitation has attracted more attention, specifically for the
use in 5G in the form of cognitive and cooperative spectrum
sharing [2]. In [3] the authors provide a long list of CR-
based spectrum sharing applications for 5G, including Device-
to-Device (D2D) and unlicensed LTE. In all these spectrum
sharing approaches awareness of the environment is a key
issue in which Machine Learning (ML) plays an important
role.

One of the main challenges of hierarchical spectrum sharing
is finding the transmission opportunities in the shared spectrum
when the licensed user (a.k.a Primary User (PU)) is not active.
Different approaches like spectrum sensing and querying a
spectrum occupancy data base [4] have been proposed in the
literature.

To find the underlying structure and patterns in spectrum
usage that can be used to predict the availability of frequency

channels well in advance in time, various ML and deep learn-
ing based techniques have been proposed. However, most ML-
based works on hierarchical spectrum sharing have focused
on and studied channel occupancy models then and used ML-
approaches to predict the availability of the spectrum in next
time slot. Ding et al. in [5] provide a comprehensive survey
of the aforementioned approaches.

In [6], the authors compare the performance of multiple
supervised and unsupervised learning algorithms in terms
of classification accuracy. The authors also propose a new
algorithm by combining support vector machines and the
firefly algorithm. The algorithms have been compared over
8 channels with different power levels. A periodic pattern
mining approach has been proposed in [7] to predict spectrum
availability. The authors tested their proposed method on WiFi
and personal communication service data sets. The authors of
[8] used multi-armed bandit aggregation learning techniques
to deal with the learning of multiple spectrum channels’
activities. The authors compared their approach with different
multi-arm bandit approaches in the literature and on different
distributions for PU activities.

We proposed a Markov-based learning model to select a
channel with the highest probability of being unoccupied
in [9]. Our results in comparison with neural networks and
conventional hidden Markov models showed that the proposed
method performs equally with those, while being much less
computationally intensive. A version of the proposed learning
technique has been implemented in [10] on Ettus Research1

Universal Software Radio Platforms (USRPs).
In [11] and [12] we proposed a theoretical limit for the

predictability of channel occupancy, and evaluated the perfor-
mance of our Markov-based and reinforcement learning algo-
rithms. Moving a step forward in [13], we used the spectrum
predictability limit and duty cycle to allocate fungible sets of
channels to unlicensed users. This two step learning approach
provides a level of fairness among Secondary Users (SUs)
and gives them the freedom of choosing their own learning
approach.

In recent years, the deep learning paradigm has become
one of the dominant forms of machine learning for computer
vision and natural language processing tasks, consistently
outperforming other techniques on a wide range of problems
[14], [15]. A key benefit of deep learning algorithms over
conventional machine learning algorithms is that they can learn
features of importance from the data rather than relying on

1www.ettus.com



complex feature engineering steps. DL has attracted attention
of the wireless communications community and has been used
in CR networks for spectrum sharing and management. In [16],
the authors propose a DL-based message passing algorithm to
solve an NP-hard energy and spectral efficiency maximization
problem in underlying CR networks. Automatic modulation
detection in CR networks is another application of DL which
has been investigated in [17].

Spectrum availability prediction has also benefited from DL.
In [18], the authors preform channel availability prediction
for cognitive aerospace communications. They used a three
layer DL model on spectrum sensing data collected by the
Shared Spectrum company2 in New York City and Vienna to
predict the presence/absence of PUs in 26 channels. Piasana
et al. in [19] and [20] used DL for prediction of spectrum
availability in the IEEE DySPAN spectrum challenge. The
system that they have implemented on Ettus Research USRPs
achieved high data rate transmission and low interference
with PUs over 4 × 2.5MHz channels. A DL approach with
long short-term memory has been proposed in [21] to predict
spectrum availability directly from the power spectral density.
The authors tested their proposed method on terrestrial and
satellite communication data.

All the aforementioned approaches try to predict only one
step ahead and do not consider the effect of channel occupancy
on future time slots. In this paper we will focus on this feature.
Being able to predict how long a channel will be available
reduces channel switching costs and helps the CR to select
the channel more efficiently.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, similar to most of the existing works in
the literature, we consider K channels in our wireless band.
Depending on the sensing and transmission time frame [22],
the time is quantised into timeslots with a fixed length. In each
of the channels and at each timeslot, the presence of the PU
is denoted with a 1 and its absence is denoted with a 0. We
assume that the sensing is ideal, meaning that the effects of
noise, missed detection, and false alarms are considered to be
negligible.

We consider that the K channels are licensed to one
network (PU) and only one unlicensed network (SU) observes
these channels for opportunistic use. The SU observes and
learns each of these channels individually. Our proposed DL
approach learns the activities on each channel and predicts the
availability of the channel for the next time slot. The SU then
selects the channel with the highest probability of being free
at the next time slot. Furthermore, our DL approach predicts
the availability of the channels in the time slots after next. In
this case, if the accuracy is high enough, the SU will be able
to reduce the sensing frequency and in some cases select the
channel with the highest probability of being free in the next
t time slots.

A. Impact of licensed network behaviour
As mentioned in [11] and [13] the behaviour of PU has a

significant impact in predictability of each channel. Addition-
ally, as considered in many previous works, the usage level

2http://www.sharedspectrum.com/

of the channel a.k.a the Duty Cycle (DC) plays a significant
role. Basically if the channel is only used 30% of the time,
a random guess of channel being free (i.e. only predicting
the channel being free) has an accuracy level of 0.7. In other
words, the level of random chance will be 70% and therefore
the learning algorithm must have an accuracy higher than that
70%.

In various DCs, the behaviour of the user can be completely
random or have a pattern. The more random the behaviour
becomes, the less predictable it will be. Let’s say that we show
the behaviour of the PU on each channel as a two state Markov
Chain where pij denotes the probability of moving from state
i to state j; here i, j ∈ {1, 2}. This two state Markov chain
(X) will have a stationary distribution denoted by δ = [δ0δ1].
The predictability/randomness of the PU’s behaviour can be
quantified using the normalized Lempel-Ziv (LZ) complexity
[11] which for an ergodic source equals the entropy rate of
the source [11].

h(X) = −
∑
ij

δipij log pij . (1)

In our analysis we study the performance of the algorithms
and compare them based on their performance on channels
with different DC and LZ complexity values. As we showed
in [11], LZ complexity of real measurement data can also be
accurately measured when there are more than 1000 samples.
Therefore, both DC and LZ complexity can be used for
synthetic and real measurement data.

III. DEEP LEARNING

Over the last five years deep learning has seen rapid
development and successful adoption across a wide range of
computer vision and natural language processing tasks due
to consistently outperforming other methods [14], [15]. A
key advantage of deep learning approaches such as convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs) is their capability for end-to-end learning without the
need for complex feature extraction steps.

More recently there has been increasing interest in the
ability of deep learning models - particularly RNNs - to
model and learn from sequence data [23]. Unlike traditional
machine learning approaches, which assume that the input
variables comprising a sequence are independent of each other,
RNNs can capture the dynamic temporal behaviour of an
input sequence by retaining and utilising information about
what has happened in previous time-steps. This allows them
to “remember” information about the entire input sequence.

A prime factor limiting the application of vanilla RNN
models has been the increasing difficulty in training such
model as the temporal span of the input sequence increases.
This is due to the gradients of the weights either decaying
or exploding as errors are backpropagated through time [24].
However, the Long Short Term Memory (LSTM) recurrent
neural network architecture introduced in [25] overcomes
many of these difficulties in training networks by providing
a direct path through the network known as the memory state.
This joins multiple LSTM cells that are processing data from
different time-steps whilst controlling how much information



Fig. 1. LSTM architecture

is added to and retained by the memory state using a gating
mechanism. Figure 1 shows this LSTM architecture.

This gating mechanism consists of three gates that the
regulate the addition or removal of information from the
memory state of the LSTM network:

1) The forget gate which controls how much of the previ-
ous state the LSTM should remember.

2) The input gate which controls how much new informa-
tion the LSTM should add to it’s memory.

3) The output gate which controls how much of the
memory we are going to use in the output of the state
at the current time step.

LSTM based network architectures have recently seen in-
creasing use in time-series forecasting applications [26] and
often outperform conventional methods such as Autoregres-
sive Moving Average (ARMA) and Nonlinear Autoregressive
Exogeneous (NARX) models due to their ability to capture the
nonlinear dynamics of a system in the presence of complex,
noisy, and high dimensional data sets [27]. In this work, we
propose using an LSTM based model to forecast channel
occupancy in a opportunistic channel access scenario. Using
this approach we can make accurate predictions under a range
of operating loads for not only the next time-slot, but for
several time-slots ahead.

IV. SIMULATION RESULTS AND DISCUSSIONS

In our simulations we use synthetic and real data sets. The
synthetic data is generated using a two-stage Markov chain
with known DC and LZ complexity. We test our proposed
method over exactly the same type of generated data in [11].
In figure 2 we compare the prediction accuracy of DL with
[11] over channels with stationary distribution of δ = [0.50.5],
having the probability of being free pf = 1 − 0.5K . Here K
is the number of channels. As mentioned channels with same
DC can have different complexities. The blue line in the figure

is where the channels are completely random (h(X) = 1), and
basically no prediction can be made. For the other two tests we
used channels with lower complexity and created data for red
and green results using

(
0.8 0.2
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)
and

(
0.95 0.05
0.05 0.95

)
, respectively.
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Fig. 2. Probability of success of the proposed DL approach versus the
Hidden Markov Model process-based learning algorithm as a function of the
number of channels. Each curve refers to combinations of different numbers
of channels characterized by the same DC and different values of entropy rate
h.

In Figure 2 we compared the performance of our proposed
DL with the presented Markov chain-based approach in [9]
and show that the proposed DL clearly outperforms the
Markov chain-based approach.

In addition to better performance, our proposed DL is able
to accurately predict multiple future steps. This means that the
decision making algorithm can also consider minimizing the
channel switching when there is a cost on that. An example of



that would be switching to an idle channel on another band.
This knowledge can also be used when there are multiple
CRs and choosing which channel to test and occupy first is
important.

In figures 3 and 4 we present the accuracy of the proposed
DL in predicting the availability of a channel for more than one
time slot ahead. Figure 3 presents the scenario where all the
channels have the LZ complexity of 0.72 (first matrix, red line
in figure 2). As expected the prediction of more steps ahead
have lower accuracy; however, the probability of selecting an
idle channel two step ahead is more than 70% and for up to
five steps ahead is above 60%.
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Fig. 3. Probability of success beyond one time slot of the proposed DL
approach as a function of the number of channels. Each curve refers to
probability of success for a number of time slots ahead. The channels are
characterized by the same DC and entropy rate of h = 0.72.

In figure 4 we present the future steps channel selection
results for channels with lower complexity. In this figure the
DCs of the channels are still 50%, but their complexity is
lower, i.e. h = 0.28 (second matrix, green line in figure 2).
The results show that the probability of success in selecting
an idle channel reaches 90% for two steps ahead and 80%
in sets of 4 channels, respectively. These results show that
the proposed DL is capable of accurately selecting the idle
channels in the scenarios with synthetic data.

We also tested our proposed algorithm over real data too.
Following similar works in the literature, we run our DL over
the Rheinisch-Westfalische Technische Hochschule (RWTH)
Aachen University data set [28]. In this data set, the power
spectral density (PSD) is recorded across several bands. In
this work, similar to [9], we use the data collected over the
2.4-GHz ISM and GSM 1800 bands. Moreover, we consider
all the channels with DC∈ [0.3, 0.8]. In our simulations we
created bundles of K = 4 channels and the DL algorithm
selects the channel that it believes will be free with the
highest probability. We show its success rate with probability
of success Psuc.

Our results over 2.4 GHz ISM and GSM 1800 bands, figures
5 and 6, show that our proposed DL approach improves the
probability of success (on average) by 5% (with worst case
3% and best case 7%) compared to existing methods in the
literature [9].
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Fig. 4. Probability of success beyond one time slot of the proposed DL
approach as a function of the number of channels. Each curve refers to
probability of success for a number of time slots ahead. The channels are
characterized by the same DC and entropy rate of h = 0.28.
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Fig. 5. Probability of success of the proposed DL algorithm as a function
of the average LZ complexity and the probability of at least one free channel
existing. Each point represents a particular instance of the DL applied to
K = 4 channels of 2.4-GHz ISM band.

V. CONCLUSIONS

In this paper we presented a DL approach to learning
channel activities and selecting a channel for transmission.
Our results on synthetic and real data shows that our pro-
posed approach outperforms the literature. Moreover, unlike
existing techniques, our proposed DL can accurately select a
free channel for more than one time slot ahead. Our results
show that the selection accuracy is above 80% for up to 5
timeslots in low complexity channels, and above 70% for high
complexity channels. The knowledge of future time slots will
help us with the channel selection specifically for the cases
that channel hopping has tuning costs. In our future works we
will study this.
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