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Abstract—Neural networks are shown to be a viable implemen-
tation for joint channel equalisation and symbol detection in a
vehicular network. Experimental results using a hardware-in-the-
loop approach at 5.9GHz validate the efficacy of the proposed
implementation following the 802.11p parameters using orthog-
onal frequency division multiplexing (OFDM). Further results
are obtained using a more spectrally efficient waveform, namely
spectrally efficient frequency division multiplexing (SEFDM), to
show a trade-off between loss of orthogonality, and therefore
bit-error rate (BER) performance, versus increased spectral
efficiency to enable higher data rates or the ability to service more
users. SEFDM is tested with compression factors ranging from
20% up to 60% bandwidth compression. The results show the
neural network is able to achieve an acceptable BER performance
in a highway non-line-of-sight (NLOS) channel which is a well
established harsh and dynamic vehicular channel. This is further
validated via measurements of the error vector magnitude.

Index Terms—Machine Learning, OFDM, SEFDM, V2V

I. INTRODUCTION

Vehicular communication, specifically vehicle-to-vehicle
(V2V) communication, faces many challenges that differenti-
ate it from more classic communication systems. One of these
challenges is the harshness of the communication channel.
Both the transmitter and receiver are at a similar height, which
causes multiple reflections from surroundings that have slight
path length differences, causing fast fading [1], [2]. This is
exacerbated by Doppler effects due to the relative motion
between the vehicles and the fact that the network topology is
changing rapidly [3].

There have been several proposals to overcome these issues
in the literature, one of which is the use of free space optics. In
[4], the authors propose the use of lasers to achieve high speed
communication over several hundred metres. One problem
with this however is that line-of-sight (LOS) is required
between devices which cannot be guaranteed in a vehicular
setting. Another proposal introduced in [5] attempts to predict
Doppler changes to allow for easier compensation of the chan-
nel effects, the results outperform a benchmark least squares
estimation however only simulation results are presented thus
its ability to perform under real world constraints are unknown.
Further proposals include the use of multiple input multiple
output (MIMO) systems [6], cooperative communication [7],
and integration into existing long term evolution (LTE) and
future 5G systems [8]. There have also been several proposals

to use machine learning in the vehicular network, such as in
[9] where they investigate the use of artificial neural networks
(ANNS) to increase throughput in a vehicular ad-hoc network
(VANET) by optimising the medium access control (MAC)
layer of the 802.11p protocol. Again, in [10], the use of
an online machine learning algorithm is proposed for beam
selection in millimetre-wave (mmWave) vehicle-to-anything
(V2X) communication to allow network adaptation to traffic
and LOS blockages, and the authors in [11] propose machine
learning to predict channel state information (CSI). To the
best of the authors knowledge at time of writing, there are
no attempts at the use of machine learning to equalise and
compensate for the vehicular channel.

In this work we will focus on channel compensation using
two physical layer waveforms, namely orthogonal frequency
division multiplexing (OFDM) and spectrally efficient fre-
quency division multiplexing (SEFDM). The former is the
physical layer waveform of choice for the 802.11p standard
and is a method commonly deployed in wireless standards
due to its robustness against frequency selective fading and
relatively simple implementation via the fast Fourier transform
(FFT). The available literature on OFDM is vast, spanning
decades since its original conception. The latter is a more
recent concept first proposed in [12] that utilises the dis-
crete Fourier transform (DFT) to compress the signal in the
frequency domain beyond the orthogonality limit of 1/7,
where 7' is the symbol period. Introducing such a compression
improves spectral usage, which is advantageous, but causes
self-induced deterministic inter-carrier interference (ICI). As a
result of this, over the years, research has been conducted that
has resulted in a compression of 30% at reasonable bit-error
rates (BERs) using 4-level quadrature amplitude modulation
(4-QAM) [13]. The result of the ICI means that complex
receivers are required to recover the symbols at the receiver,
and to date sphere decoders (SDs) are the most popular choice
to take advantage of the newly improved spectral efficiency.
In practical implementations, both OFDM and SEFDM require
the use of channel state information in conjunction with known
pilot symbols as a method of estimating the quality of the
channel [14]. This channel estimate can then be used to ‘undo’
the effects of the channel, before demodulation. In this work,
we move away from the typical SD receiver architecture to
an artificial neural network (ANN) approach, acting as both a
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Fig. 1. Block diagram of the test setup

joint channel equaliser and symbol detector. ANNs outperform
classic receivers such as decision feedback equalisers and other
transversal filters in communications systems [15]. Hence, we
propose to utilise the advantages of SEFDM, namely reduced
bandwidth and/or higher spectral efficiency, and adopt an ANN
as the receiver to increase the performance of vehicular net-
works. Using SEFDM will advantageously enable the network
to either support more users or increase received data rates.
For the proposed neural network model, we use a supervised
learning approach that does not require CSI. The network is
trained on data transmitted over a realistic vehicular channel
model to associate received symbols with those transmitted via
a known header training sequence. We perform this test via
hardware co-simulation, using National Instruments universal
software radio peripheral re-configurable input/outputs (NI
USRP-RIOs), and a Spirent VR5 channel emulator to generate
realistic vehicular channels defined in [16]. We show that
by using the neural network OFDM receiver a performance
of 4.75 rms error vector magnitude (EVM) over a symbol
containing 52 data symbols can be achieved without deviating
from the 802.11p standard, however, SEFDM under the same
conditions results in a performance of 10.8 — 25 rms EVM
as compression factor decreases from o = 0.8 - a = 0.4.

The rest of the paper is organized as follows. Section II
gives some background theory and outlines: in II-A, the ex-
perimental test setup for the OFDM and SEFDM transmitters,
in II-B, the chosen vehicular channels, and in II-C, the neural
network receivers. Section III presents the results, and finally,
Section IV gives some concluding remarks.

II. THEORY AND EXPERIMENTAL TEST SETUP

A. Transmitter

The experimental test setup is illustrated in Fig. 1. The
OFDM and SEFDM signals under test are generated and
transmitted using a “hardware-in-the-loop’ approach and the
transmitter consists of an NI USRP-RIO 2953R controlled
using LabVIEW. First, in each physical frame, 2'6 — 1 bits
are generated and mapped onto the quadrature phase shift
keying (QPSK) constellation. Next, they are passed through a
serial-to-parallel converter to be modulated. SEFDM symbols
can be constructed with N non-orthogonal subcarriers, and
the m™ SEFDM symbol’s n'" subcarrier is modulated by a
complex-valued data symbol s, ,. The overall discrete-time

SEFDM signal z(¢) is modulated using a N-point inverse
discrete Fourier transform (IDFT), given by [13]:
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where T is the period of an SEFDM symbol, N is the total
number of subcarriers, s, is the complex symbol modulated
on the n'" subcarrier in the m™ SEFDM symbol, and o < 1 is
the bandwidth compression factor, which defines the frequency
spacing of the subcarriers. In the OFDM case, o = 1 and
the subcarrier spacing is set to multiples of 1/7. A more
convenient form for z(¢) is in matrix form as follows [13]:
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where X is a P-length vector of the modulated SEFDM
symbols in the time-domain, S = [sg,s1...,Sn-1] is the

input signal in the frequency-domain and ® is an P x N-
sized matrix that signifies the sampled carrier matrix [17]. The
signals are then serialised and a cyclic prefix of length 25% is
added to each symbol before digital-to-analogue conversion.

Considering the carrier matrix ®, if a < 1, the subcarriers
lose orthogonality and overlap, saving bandwidth but causing
ICI. The ICI is deterministic and can be modelled as a
correlation matrix C as follows [17]:
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When o = 1, C clearly reduces to an identity matrix I
as expected in the OFDM case. The signals generated follow
the 802.11p standard, i.e. the IDFT size is 64, the number of
active subcarriers is N = 52 and the signal bandwidth was
10 MHz. The particular specifics are documented further in
Table I, alongside the values used for «.

B. Vehicular Channel Model

In order to test the proposed system in the most realistic
conditions possible, we have opted to use the highway NLOS
vehicular channel model presented in [16] and used a Spirent
VRS channel emulator to generate them at 5.9GHz. This
channel was chosen as it is the most challenging of the five
channel scenarios presented by the authors, having the highest
delays, received multipath powers, and doppler shifts. The



TABLE I
TRANSMISSION PARAMETERS

Parameter Values
Carrier Frequency 5.9GHz
Sampling Frequency 10MSs
Signal Bandwidth 10MHz
Values of a 1 (OFDM), 0.8 : 0.2 : 0.2
FFT/IFFT Size 64 samples
Cyclic Prefix Size 16 samples
Modulation Scheme QPSK

TABLE II
CHANNEL PARAMETERS

Scenario Tap 7712 [dB] 7 [ns]  f; q [Hz] Profile
Highway NLOS  i=1 0 0 0 Static

i=2 -2 200 689 Half BT

i=3 -5 433 -492 Half BT

i=4 -7 700 886 Half BT

main parameters for the channel creation can be found in Table
II. All taps are defined as Rayleigh taps with a specified power
spectral density (PSD) and a channel bandwidth of 10MHz.
This channel model features a half-bathtub shaped Doppler
profile which more accurately reflects vehicles communicating
in a highway scenario as the dominant contributing scatterers
are more densely located directly in front or behind each node
[18]. An example PSD can be seen in Fig. 2, along with an
empirical cumulative distribution function (ECDF) of the tap
realizations in Fig. 3, validating the Rayleigh distribution.

After traversing the signal through the channel using the
Spirent VR5 emulator, the signal is then fed to a receiver
USRP-RIO 2953R. The received signal considering the vehic-
ular channel H, which is also contaminated by the additive
white gaussian noise (AWGN) vector Z may be defined as
follows, using (2) [13]:

R=®"HX+ P Z=P"HPS + "7 “)

where R is the demodulated signal vector estimation of X and
(.)* is the Hermitian transpose operation. Thus, clearly aside
from the usual considerations not listed mathematically here
such as power amplifier non-linearity, the main impediment to
successful demodulation of the signals can be identified as H
and C.

C. Neural Network Receiver

When the channel is non-static and fading such as the
channels used here, finding H and C becomes highly complex.
In general, conventional information theory-based equalisers
such as decision feedback or feedforward equalisers are not
sufficient to calculate this extremely complex relationship.
Thus, due to the advantages of ANNSs, such as the ability to
generalise any input-output sequence, given sufficient neurons
in the hidden layers [19], we select it as the receiver to both
calculate H and C.
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Fig. 4. Block diagram of the neural network

The neural network is designed to be trained on sequences
of received QPSK symbols after transmission using either
OFDM or SEFDM with a given bandwidth compression factor.
A diagram of the model created for this work can be seen
in Fig. 4, along with its more in depth parameters in Table
III. Since the 802.11p standard defines that 52 subcarriers
carry information, the ANN observation vector contains 2N
neurons, which allows for separation and concatenation of
the real and imaginary components of N = 52 subcarriers.
This allows us to avoid using a split-complex approach which
would require two separate ANN models, thus increasing
complexity. The network consists of 3 hidden layers with 4N,
8N and 4N neurons, as shown in Fig. 4. The reason that 3
hidden layers with this neuron configuration was chosen is
inspired from [20] and should be chosen to allow the network
enough processing power to capture the complexities of both
the channel and the self-induced interference. The received
symbols are fed through the network until they reach the
output layer, which also contains 104 neurons, mirroring the



input. The 52 real and 52 imaginary outputs are then combined
to produce an estimate of original transmitted QPSK symbols.

The optimiser used in this work for the gradient descent
algorithm was Nadam [21], a modified version of the Adam
gradient descent algorithm that incorporates Nesterov mo-
mentum. The advantage of this is that Nesterov momentum
has stronger theoretical convergence guarantees for convex
functions [22]. The initial learning rate was set to 10~3 with
a reduction of factor 10~! when the validation loss did not
decrease over a 5 epoch period. The loss was evaluated by the
common mean square error criterion [23]:

1 2N
—_— PR— A, 2
L—2N;<yz 9i) (5)

where NV in this work would represent the number of subcar-
riers, 2N allows for the separation of the real and imaginary

components.
TABLE III
MODEL SUMMARY

Layer Type Output Shape Notes
Input Layer Input 104
Dense Dense 208 -
Leaky ReLU Activation 208 B=0.3
Dense Dense 416
Leaky ReLU Activation 416 B8=0.3
Dense Dense 208 -
Leaky ReLU Activation 208 B =03
Dense Dense 104 No Bias
Output Later Output 104

III. RESULTS
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Fig. 5. BER for varying values of «

In this work, we test the performance of OFDM and
SEFDM with varying levels of bandwidth compression factor
in a realistic 802.11p V2V communication scenario, namely a
fast paced urban NLOS scenario. This is done to understand
and compare how the effects of a more spectrally efficient
waveform may perform if it were introduced as part of the
official 802.11p standard versus its baseline counterpart. The
bit-error rate (BER) can be seen in Fig. 5, noting however that

although they look to have converged, due to the inherent time
implications of using of a practical implementation the lesser
compressed SEFDM and OFDM cases did not produce any
errors beyond 1075, Due to this, to provide a fair comparison
between all the experiments and to inform the reader with
the full data, we also measure the EVM of the received
constellations with reference to the transmitted constellations.
Mathematically, we calculate the EVM as [24]:
N

+ kz::1 <Ik - jk>2 + (Qk - Qk)2
~ (6)
i S aEead

EVM =

Where I, and Q, are the k™ original transmitted in-phase and
quadrature components respectively, and I, and Q), are the k"
observed in-phase and quadrature components respectively.
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Fig. 6 illustrates the measured EVM results at high signal-
to-noise ratio (SNR) (30dB) for the OFDM system following
the defined 802.11p protocol, and the experimental results of



SEFDM with varying bandwidth compression factors. To aid
interpretation, representative received constellations for these
values can be seen in Fig. 7.

By taking the mean value of the EVM to obtain a single
point per SNR (with 95% confidence interval < 0.1%), we
observe the trend displayed in Fig. 8. Starting with OFDM,
we observe that the EVM decreases sharply until it begins
to plateau around 12dB, showing the ANN is quickly able to
equalise the channel until the non-deterministic AWGN noise
becomes the limiting factor. Turning our attention to SEFDM,
with increasing amounts of bandwidth compression we ob-
serve the same trend as OFDM, however the limiting factor
becomes the combination of the interference caused by the
non-orthogonality of the waveform and the non-deterministic
AWGN noise.
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IV. CONCLUSION

A neural network receiver has adequate capabilities to be
deployed within the vehicular network to adapt and overcome
the challenges of the rapidly changing environment. Practical
experiments were undertaken using a hardware-in-the-loop
approach which demonstrated the efficacy of the proposed
method, both conforming to the current 802.11p standard
using OFDM and with the more spectrally efficient waveform
SEFDM. SEFDM is tested with compression factors ranging
from 20% up to 60% bandwidth compression, these spectral
savings could be used in future to improve data rates or service
more users. The results have demonstrated that an acceptable
BER performance can be achieved under the harsh conditions
of a highway NLOS vehicular channel. This was further
validated via measurements of the error vector magnitude.
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