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Abstract—Time Difference of Arrival (TDoA) is currently
viewed as an important technique for the positioning capabilities
in the Internet of Things (IoT). However, in the case of practical
measurement, not all the TDoA values between the gateways
have the same impact on the localization accuracy. In this paper,
a novel TDoA pre-processing methodology for dropping out
the outlier TDoA values is presented, after instrumentalizing a
paired Cramér-Rao lower bound (CRLB). Thus, the proposed
approach is detecting the best TDoA values, which have the
lowest paired CRLB values specifically, in the vicinity of the
guessed node location, based on a robust thresholding method. A
comparison is performed investigating the attainable accuracies
for localizing based on this pre-processing algorithm, on a well-
defined simulation environment. This simulator is based on a
Poisson distribution approach for defining the gateways and
node positions, as well as a noise model for emulating the
timestamp imperfections. In the given results, the feasibility of
the proposed technique is asserted by a drastic improvement over
a wide range of the number of gateways as well as measurement
noise variances. This manifests the robustness of the contributed
method to the outlier TDoA values and its valuable rendering.

Index Terms—IoT, LoRa, Localization, TDoA, CRLB

I. INTRODUCTION

Internet of Things (IoT) has been scaling up over the last
few years as a new paradigm enabling to connect trillions of
devices efficiently [1]. Beyond the traditional voice, video and
data services where data throughput is the main purpose in the
context of the IoT, the focus here is on low-cost deployments
with large coverage areas. For providing this connectivity,
Low Power Wide Area Networks (LPWAN) are considered
the major technology, especially the LoRaWAN whose design
compromises between low energy consumption and a large
communication range of the underlying IoT-enabled devices.
This exhibited in the typical LPWAN devices, which can
cover distances of more than 10 km using a 10mW transmit
powers while maintaining extremely long battery lifetimes at
the scale of up to several years [2].

Due to the very nature of the data collected from
the terminals, positioning is critical for many LPWAN
applications. These usages involve health data, monitoring
of pets or livestock, wildlife or applications for smart cities
using sensors such as temperature or air quality monitoring
in urban environments [3]. This problem could be simply

solved by equipping each sensor with a Global Navigation
Satellite Systems (GNSS) chip, for example, using GPS.
This solution is tempting, however, adding a GPS tracker
to a device will increase both cost and power consumption
[4]. Subsequently, plenty of researches within the domain
of GPS-Free localization in IoT, have investigated methods
based on Received Signal Strength Indicator (RSSI), Angle
of Arrival (AoA), Time of Arrival (ToA), Time Difference
of Arrival (TDoA) and their multiple integrations [5]. These
measurements are utilized by the gateways to determine their
relative position relations with the source for localization.
However, using the RSSI, AoA and ToA techniques
always require a good knowledge of the signal attenuation
model, precise calibration or additional hardware [6], [7].
Therefore, these three kinds of techniques are not so practical.

TDoA is considered the most popular technique for
localization as it does not require the transmitter to be
synchronized with the receivers but only the gateways are
required to have synchronized clocks [8]. This accurate time
synchronization can be achieved, easily and cheaply, by the
use of a GPS receiver at each gateway. Thus, a mobile node
transmits data to the network. Each gateway within reach
records the timestamp of the received packet. The timestamps
of each gateway are then forwarded to the network server
which in turn sends a request to the geolocation solver.
After acquiring the differences between the timestamps of
a transmission, it is considered a multilateration problem
which involves solving a set of hyperbolic functions, and
therefore three gateways are needed to locate the node on
the intersecting hyperbolas. Based on that, the conventional
geolocation for LoRa networks can be based on TDoA
measurements, where hundreds to thousands of meters
accuracy can be achieved. However, in a practical situation,
not all pairs of gateways are equivalent concerning the
amount of extra information they bring to the estimation
problem. Using the entire combinations as the classical TDoA
solving techniques may have an extremely deleterious effect
on the final position accuracy. Thus, it could be advantageous
to define some criteria to select the best combination of
gateways or equivalently the best hyperbolas to resolve the
estimation problem.



In this paper, to tackle this issue, a novel pre-processing
method is proposed by utilizing a paired Cramér-Rao lower
bound (CRLB) as an instrumental tool to detect the mostly
perturbated TDoA values. This capability is due to the relative
position of the node with respect to each pair of gateway
locations which affect the paired CRLB values specifically.
Accordingly, the perturbation probability in each TDoA
value can vary largely. The accuracy and ease of use of this
pre-processing algorithm are evaluated through simulations.
It is shown that the proposed approach effectively reduces
localization errors in a wide range of situations covering
different densities of gateways and measurement noise
variances.

The remainder of this document is organized as follows.
Section II presents the system model and Section III provides
sufficient detail to allow implementation of the proposed
algorithm. Section IV provides guidance on the simulation
model used to evaluate the performance of the algorithm on
the localization accuracy. The results of the simulation are then
presented and commented in Section V. Finally, Section VI is
dedicated for conclusions.

II. SYSTEM MODEL

A set of N gateways are considered with known positions

G =
[
g1, . . . ,gn, . . . ,gN

]
(1)

with
gn = [xn, yn]

T , (2)

while p = [x, y]T is any node position in the plane. Thus,
the timestamp of the transmitted packet from p is measured
on gateway n as:

tn =
dn
c

+ un = τn + un, (3)

where c is the celerity of light and un ∼ N (δ, σ2) is an
additive Gaussian random variable which is accounting for the
departure between the timestamp tn and the node to gateway
time of flight τn. Notice that the standard deviation σ could
be made dependent on the gateway index but this dependency
is here omitted. Moreover, the time offset δ is assumed to be
equal for all gateways, and Line of sight (LoS) conditions are
implicitly assumed while, dn = ‖gn − p‖2 is the distance
between any node position and the gateway n where, ‖.‖2
denotes the 2-norm. Each combination of 2 among N gateways
leads to:

H =

(
N
2

)
=

N !

2!(N − 2)!
=
N(N − 1)

2
(4)

constraints, each being associated with one hyper-
bola. An hyperbola j involves the 2 gateways l(j) and
r(j) while, l =

[
l(1), l(2), . . . , l(H)

]
and r =[

r(1), r(2), . . . , r(H)
]
. Accordingly,

Gr =
[
gr(1), . . . ,gr(H)

]
, (5)

Gl =
[
gl(1), . . . ,gl(H)

]
, (6)

hl(i),r(i) = dl(i) − dr(i), (7)

τl(i),r(i) = tl(i) − tr(i), (8)

h =
[
hl(1),r(1), . . . , hl(H),r(H)

]
(9)

and
δτ =

[
τl(1),r(1), . . . τl(H),r(H)

]
. (10)

In the classical TDoA techniques, the estimated node loca-
tion p̂ = [x̂, ŷ]T is obtained using the conventional algorithms
such as the Least Squares (LS) or under Gaussianity assump-
tion by Maximum Likelihood estimation (ML) [9]:

p̂ML = argmin
x,y

((h− cδτ )TR−1(h− cδτ )) (11)

with the associated H ×H covariance matrix:

R =


2σ2 σ2|0 . . . . . .
σ2|0 2σ2 . . . . . .

...
...

. . .
...

...
... . . . 2σ2

 , (12)

where the notation σ2|0 means that each off-diagonal term
of R is either equal to σ2 or 0 provided that the two couples of
gateways i.e., involved in that term, share respectively either
one gateway or none.

III. PAIRED CRLB PRE-PROCESSING

The Cramér-Rao lower bound (CRLB) is a lower bound
on the covariance of any unbiased estimation algorithm based
on the measurement [10]. This is calculated for the whole
TDoA combinations from the inverse of the Fisher Information
Matrix (FIM) J as :

E[(p̂− pt)(p̂− pt)
T ] ≥ J−1, (13)

where E[·] determines the expectation value and pt is the
true node position.

On the other hand, when dealing with a rather large num-
ber of gateway combinations, not all relative configurations
with respect to the unknown node position are equivalent.
Therefore, the proposed method invokes the paired CRLB
information applied on each combination of 2 gateways to
detect these most suitable hyperbolas associated with the best
configurations. Thus, the node is localized after removing the
combinations which have the highest paired CRLB values at
an initial guess location po = [xo, yo]

T rather than, using the
whole combinations including the ones whose configurations
are less favorable and have been observed to introduce large
errors. This algorithm is achieved using the following two
steps:



a) Estimating the paired CRLB values: is done sepa-
rately for each combination by assuming a constant standard
deviation σ for all the gateways. Thus, the covariance matrix at
each pair of gateways is reduced to the scalar value R = 2σ2.
Accordingly, the Jacobian of the measurement function for a
given pair of gateways i evaluated at position po is calculated
as:

foi =
∂hl(i),r(i)

∂p

∣∣∣
p=po

(14)

=
[
∂hl(i),r(i)

∂x

∣∣∣
p=po

,
∂hl(i),r(i)

∂y

∣∣∣
p=po

]
(15)

=
[
xo−xl(i)

do
l(i)

− xo−xr(i)

do
r(i)

,
yo−yl(i)
do
l(i)

− yo−yr(i)
do
r(i)

]
,(16)

with dol(i) = ‖gl(i) − po‖2 and dor(i) = ‖gr(i) − po‖2.

Hence, the computation of the Fisher Information Matrix
follows as:

Joi =
1

2σ2
foi
T foi , (17)

thus, the paired CRLB value is calculated from the inverse
of the FIM Joi then, calculating the square root of its trace as:

coi =

√
tr(Joi

−1), (18)

b) Determining the outliers: from all the determined
paired CRLB values Co =

[
co1, . . . , c

o
H

]
, which are shown in

Figure 1, by observing that the high peak at any combination
index is considered as an outlier combination, while the
low peaks are the proper combinations to be utilized for
the localization. Thus, several thresholding methods have
been investigated, which all try to separate the outliers
from the regular paired CRLB values without other a priori
knowledge. These investigated thresholding techniques are
mainly based on analyzing the variance of the paired CRLB
values since it is observed that the regular values have
amplitudes close to one another. Subsequently, all these
methods assume that the combinations have two classes:
ordinary paired CRLB value class and outlier class which are
below and above the shown threshold in Figure 1, respectively.

In this paper, the proposed thresholding technique is based
on Median Absolute Deviation (MAD) which is a robust
measure of how spread out a set of data is [11]. Hence,
the classical standard deviation estimator could also measure
the spread, but it is more affected by the extremely high or
extremely low values and non-normality due to the presence
of outliers. Accordingly, this threshold is computed as:

γ = median(Co) + 3 · σ̂MAD (19)

with
σ̂MAD = b ·median(|Co −median(Co)|), (20)

where 3 has been heuristically chosen and the normalization
factor b is set to 1.4826 in order to be consistent for the
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Fig. 1: The CRLB values of all the combinations (H = 6).

standard deviation at the normal Gaussian distribution i.e.,
usually the region of interest.

After labeling the outlier CRLB values by this threshold
technique, the node is localized without these combinations.
As shown in Figure 2b, the CRLB values are reduced in
the vicinity of the node location after removing the outlier
combinations in comparison to the scenario in Figure 2a
without filtering. Such a strategy reduces the probability of
the error in the estimated position.

IV. SIMULATION MODEL

Two main aspects shape the simulator model which allows
for a dynamic study of the system performance. These are
the distributions of the gateway locations with respect to the
node location and the choice of convenient uncertainty in the
timestamps, to be closer to the real measurements as detailed
in the following subsections.

A. Gateway locations

The gateway locations are produced by the Poisson disk
distributions algorithm which has been introduced in [12]. This
is considered as a fast 2-dimensional blue noise sampler, easily
implemented in arbitrary dimensions and it is guaranteed to
take O(M) time to generate M Poisson disk samples. To
start the process, this algorithm takes as input the length
len and width wid of the samples domain in R2, and the
minimum distance ρ between the samples. First, it initializes
a 2-dimensional background grid for storing samples and
accelerating the spatial searches. Then, it selects the initial
sample randomly chosen uniformly from the domain and
inserts it into a cell in the background grid. The cell size is
picked to be bounded by ρ√

2
, so that each grid cell will contain

at most one sample. In the next iteration, the neighboring point
is chosen uniformly from the spherical annulus between radius
ρ and 2ρ around the previous sample. This linear algorithm
is done recursively until all the M samples are generated.
At this point, the node location is chosen randomly from the
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(a) Without paired CRLB pre-processing.
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(b) With paired CRLB pre-processing.

Fig. 2: CRLB plot using the full combinations.

samples, while maintaining N extracted samples to be the
gateway positions. Notice that generating the node location
out of the dense M samples set, forbid the node location to
be less than ρ meter from any gateway.

B. Timestamp perturbation model

For the sake of simplicity, only the thermal noise us-
ing a normal Gaussian distribution is considered. Thus, the
timestamp is individually calculated as in Equation 3 while
assuming a zero mean of the uncertainty term un ∼ N (0, σ2).

V. SIMULATION RESULTS

In the previous section, the simulation framework is pro-
vided including the location distributions and the chosen noise
model. In this section, the simulation results are presented,
using the Euclidean distance error between the true position
of the node and the estimated location, as a measure of
performance for the localization methods. This is measured

by Monte Carlo simulations after utilizing the parametric
TDoA technique i.e., introduced in [13], with and without
paired CRLB pre-processing for comparison. Moreover, the
two main parameters which shape the simulation scenarios are
the magnitude of the thermal noise variance and the number
of gateways as detailed in the following subsections.

A. Impact of the noise variance

The robustness of the system against the outlier
combinations is checked by changing the thermal noise
standard deviation σ in Equation 3 to be in the range
from 0.1 µs to 1 µs (≈ 30m to 300m), while maintaining
the number of gateways to be N = 7 which are chosen
randomly from a fixed location distribution. For this gateway
locations configuration, the length len and width wid of the
map are fixed to 5 km and 10 km, respectively, while the
minimum distance ρ between the M samples is fixed to 100m.

As shown in Figure 3a, the simulation result shows a
noticeable reduction in the localization error medians when
using the paired CRLB pre-processing algorithm. Accordingly
as shown in Figure 3b, the CDF curves obtained for all the
noise values preserve the same performance rank over the
whole simulations with 50% of the error values less than
200m and 230m, while turning the proposed algorithm ON
and OFF, respectively. This indicates that the proposed method
is robust to the high noise variances.

B. Impact of the number of gateways

The localization performance assessment for various
number of gateways is studied by utilizing the same gateway
locations configuration i.e., introduced in the previous
subsection, while choosing randomly from them particular
number of gateways N to be in the range from 3 to 15.
Moreover in all the results, the thermal noise standard
deviation σ is assumed to be equal to 0.1 µs (≈ 30m).

As shown in Figure 4a, it is clear that all the medians of the
proposed method are drastically the lowest values for all the
network densities, especially for the large number of gateways
(> 3) i.e., a realistic value in the near future. Thus, it is clear
in the lower network density that the number of hyperbolas
decreases (≈ 3) accordingly, only one hyperbola might be
dropped resulting in a tiny or almost no gain. Nevertheless
as shown in Figure 4b, the CDF curves obtained for all
number of gateways range still confirm the prevalence of the
proposed method over most of the simulations with 95% of
the error values less than 1600m and 1940m, while turning
the proposed algorithm ON and OFF, respectively.

VI. CONCLUSIONS

In this article, a novel TDoA pre-processing method for
IoT localization is presented. This technique improves the
accuracy of positioning in the presence of outlier hyperbolas
by choosing only the best hyperbolic constraint sets for
estimating the node location based on their low paired



29.98 83.94 137.9 191.87 245.83 299.79
Noise standard deviation [m]

10 1

100

101

102

103

Er
ro

r [
m

]

Without CRLB pre-processing
With CRLB pre-processing

(a) Errors at each value of the noise standard deviation.

(b) The whole simulation results of σ ranging from 30m to 300m.

Fig. 3: Euclidean distance error and CDF while changing noise
standard deviation σ.

CRLB values. Thus, the principle is based on dropping the
combinations, whose paired CRLB values are high in the
proximity of the node location, using a robust thresholding
technique. For performance assessment of this algorithm, a
simulator has been developed. It uses a Poisson distribution
approach parameterized for setting the location of gateways
and nodes as close as possible of the realistic situations.
The used simulator also emulates the proper disturbance in
the timestamp values. Simulation results demonstrate the
high performance of our pre-processing algorithm over a
wide range of noise standard deviations and network densities.

In future work, an optimum technique for outliers detection
could be investigated rather than using a thresholding method.
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