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Abstract—In this paper, we propose a new nonlinear detector
with improved interference suppression in Multi-User Multiple In-
put, Multiple Output (MU-MIMO) system. The proposed detector
is a combination of the following parts: QR decomposition (QRD),
low complexity users sorting before QRD, sorting-reduced (SR)
K-best method and minimum mean square error (MMSE) pre-
processing. Our method outperforms a linear interference rejec-
tion combining (IRC, i.e. MMSE naturally) method significantly
in both strong interference and additive white noise scenarios
with both ideal and real channel estimations. This result has wide
application importance for scenarios with strong interference, i.e.
when co-located users utilize the internet in stadium, highway,
shopping center, etc. Simulation results are presented for the non-
line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16
highly correlated single-antenna users with QAM16 modulation
in 64 antennas of Massive MIMO system. The performance was
compared with MMSE and other detection approaches.

Index Terms—Massive MIMO; MIMO Detection; Interference
Cancellation; Multi-User MIMO

I. INTRODUCTION

The fifth generation (5G) of wireless systems will demand
more users with a much higher overall capacity [1]. In recent
years, multi-user Massive Multiple Input, Multiple Output
(MU-MIMO) and massive MIMO have been adopted as the
key technologies to address the capacity requirements of en-
hanced Mobile Broadband (eMBB) in 5G [1], [2]. MIMO
detection [3] is a method of antennas digital signal processing
to extract user signals in an uplink channel of a base station.
Compared to conventional MIMO systems, which have already
reached their throughput limits, massive MIMO has become
the most promising candidates to increase transmission data
rate over wireless networks. In massive MIMO systems, each
base station is equipped with tens or hundreds of antennas
dedicated to serving tens of users. It has been proved [2] that
a massive MIMO system can increase the spectrum efficiency
of a wireless channel by several times. Spatially multiplexed
MIMO systems can support several independent data streams,
resulting in a significant increase of the system throughput [1],
[2] due to multiple spectrum reuse. In this context, a great
deal of effort has been made in the development of multi-user
Massive MIMO detection method, which is robust to unknown
interference from users of other (neighbour) cells [4].
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A. ML detector

The maximum likelihood (ML) detector performs an exhaus-
tive search by calculating the Euclidean distance for every
possible symbol vector candidate. The number of candidate
symbol vectors grows exponentially with the number of users
and the number of bits per constellation point [5], [6], [7].
Thus, with high order constellations (QAM64 or higher) in MU-
MIMO mode, ML detection becomes computationally heavy.
The ML estimation is given in the frequency domain by [3]:

y = Hx+ n+ i, (1)

xML = arg
x

min ‖y −Hx‖ ,

where y is the frequency domain received signal vector of size
N ; N is the number of RX antennas; H is the channel matrix
of size [N ×M ], x is the TX vector of size M ; M is the
number of single-antenna users in the uplink channel; n is the
white noise; i is the interference (unknown); xML is the ML
estimation of vector x.

B. Single user MMSE detector

Linear detection methods [3], [8] consider the input-output
relation of a MIMO system as an unconstrained linear estima-
tion problem, which can be solved by using minimum mean
square error (MMSE) method. The resulting unconstrained
estimate ignores the fact that the transmitted symbols are from
a limited set of constellation points. Let us describe the baseline
MMSE detector for one single antenna user and N = 3
receiving antennas of the base station. Define h as a vector
of frequency domain channel estimations for one subcarrier:

h =
[
ĥ1 ĥ2 ĥ3

]T
Define (interference + noise) signal as follows:

uk = nk + ik,

where k is the antenna index. Define (interference + noise)
covariance matrix as:

Ruu = E

 u1
u2
u3

 [ u∗1 u∗2 u∗3
] (2)

Ruu =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 (3)
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Assume interference + noise matrix Ruu has the same value
inside each resource block. This assumption is quite valid since
the interference power from other cells is also approximately
the same inside each resource block in frequency domain
and the same inside time transmission interval in the time
domain. Therefore, in case of smooth channel response inside
the mentioned time and frequency unit, element of Ruu matrix
in equation (2) can be estimated as:

R̂uu(j, k) = E(uju∗k),

where j, k are antenna indexes; u∗ is the complex conjugate of
u. In practice, uk can be estimated with reference signals as:

ûk = yk − ĥkx

The MMSE detection algorithm is intended to minimize e2 =
|x− x̂|2 and can be obtained as a frequency domain Wiener
filter [9], as expressed by the classical equations:

x̂ = wy

w = R−1
yy h

H , (4)

where w is the weight vector, h is the channel estimation vector
as described in [10] and [11], y =

[
y1 y2 y3

]T
, covari-

ance matrix Ryy of the received signal is defined similarly to
(2). The matrix Ryy can also be calculated as:

Ryy = Ruu + hhH (5)

From equations (4) and (5) using the Sherman–Morrison for-
mula we can derive the MMSE estimation as:

w =
hHR−1

uu

1 + hHR−1
uuh

(6)

In equation (5) the matrix Ruu is an interference plus noise
matrix, which is responsible for interference suppression, i.e.
interference rejection combining (IRC). It focuses null of the
w pattern to the interference sources to suppress it, while
h focuses the main beam to the user, i.e. Maximum Ratio
Combining (MRC).

C. Multi-user MMSE detector

Assume we have M single antenna users per subcarrier. In
this case the MMSE detector is given by:

x̂ = Wy,

W = (σ2
nI +HHR−1

uuH)
−1

HHR−1
uu , (7)

where x̂ is the linear estimation of the frequency domain vector
x; W is the weight matrix of size [N ×M ]; σ2

n is the RX
antennas noise power; I is the identity matrix of size [M ×M ].
In case of i = 0, equation (7) represents the MRC detector:

W = (σ2
nI +HHH)

−1
HH (8)

Linear detection schemes are simple, but unfortunately, they
do not consider the lattice structure of the transmitted complex
amplitudes x, and, therefore, do not provide good enough per-
formance, especially when the channel matrix is near singular.

D. MMSE OSIC detector

MMSE with ordered successive interference cancellation
(MMSE-OSIC) detection is performed with QR decomposition
(QRD) of the permuted channel matrix Hperm, which is
defined as in [9], [12] and [13]:

yext = Hpermxperm + n+ i,

xperm = Px,

Hperm = PHext, (9)

Hext =
[
HT

√
σ2
n + σ2

i I
]T
,

yext =
[
yT 0

]T
,

where σ2
i is the RX antennas interference power, P is the

permutation matrix, xperm is the permuted version of x, and
Hext matrix is utilized instead of H for the regularization rea-
son. MMSE with ordered successive interference cancellation
(OSIC) detector is based on QR factorization of the channel
matrix as shown in [12]:

Hperm = QR,

QHyext =
(
QHQ

)
Rxperm +QH(n+ i),

QHyext = Rxperm +QH(n+ i), (10)

where R is the [(N +M)×M ] upper triangular matrix; P
is the permutation matrix. Detection starts with xperm (M)
amplitude detection and stops after xperm (1) calculation ac-
cording to the upper triangle matrix R structure. Therefore, the
initial vector x can be derived as x = P Txperm. The MMSE-
OSIC method demonstrates better performance in comparison
with the MMSE detection, but the gain is limited due to error
propagation, caused by non-ideal user sorting before QRD, high
correlation among layers and imperfect channel estimation. The
users sorting is intended to reorder diagonal elements of the
upper triangular matrix R in ascending order to prevent error
propagation in MU-MIMO scenario.

Using only MMSE-OSIC doesn’t achieve the best perfor-
mance in multi-user scenarios of 16 × 64 MIMO system.
Therefore, a post-processing K-best algorithm should be used to
enhance performance in acceptable complexity, as described in
[5], [6], [7]. Sorting reduced K-best (SR-K-best in [5]) is a ver-
sion of the K-best with low sorting complexity. Sorting the best
K survivors from KM candidates, where M = 4, is reduced to
sorting the best S from much less number of candidates, while
the residual K − S survivors are defined as ”most expected”
and taken from the full candidates set of size KM before
the sorting according to a special selection algorithm. The
paper [5] proposes SR-K-best with parameters (K,S,p). The
vector p means the positions of the ”most expected” candidates.
Unfortunately, the SR-K-best with (K,S,p) parameters also
results in performance losses in high correlated scenarios.
Therefore, we utilize a new flexible structure (K,S,p,v, q)
of SR-K-best algorithm [6], [7]. The vector v defines a set of



sorting child nodes (i.e. a set for S sorted candidates search);
while the vector q defines the location of S sorted candidates in
the final composed list of K candidates for the next detection
iteration.

Finally, MMSE-OSIC with the optimized user sorting and
the SR-K-best demonstrates performance close to the maximum
likelihood algorithm in the additive white noise channel, i.e. in
case of i = 0 in (10). However, the mentioned MMSE-OSIC
is quite sensitive to external interference from unknown users
(when i 6= 0), while the basic MMSE algorithm is robust to
the correlated noise due to the IRC algorithm with the matrix
Ruu. To overcome the interference suppression problem, we
propose a new pre-processing algorithm.

II. SIMULATION TOOL

QuaDRiGa, short for ”QUAsi Deterministic RadIo channel
GenerAtor” [14], is mainly used to generate realistic radio
channel responses for use in system-level simulations of 5G
mobile networks. We test our algorithms in high correlated 3D-
UMa, BERLIN-UMa and DRESDEN-UMa non-line of sight
(NLOS) models of MIMO 16 × 64 scenario for users with a
speed of 5 km/h. The number of users = 16 is chosen as the
max number of active users per subcarrier in a cross-polarized
64 RX antennas system according to 5G standard [2]. The
antenna array is mounted on 25 meters high and consists of
2 co-located rectangle subarrays with 32 antennas each. The
carrier frequency is 3.5GHz, a maximum distance to the user
is 500 meters. The interference is given by 4 unknown users
with QAM16 modulation and approximately the same power
as target users. A short 3D fragment of the channel magnitude
spectrum is shown in Fig. 1.

Fig. 1: Magnitude spectrum of QuaDRiGa channel

III. SR-K-BEST DETECTOR

A functional scheme of the QRD-based detection approach
is shown in Fig. 2. It consists of pre-processing and post-
processing parts [5], [6]. Pre-processing is required to calculate
sorted QRD in two steps.

Step 1: QRD interpolation, as described in [15].
For QRD calculation in the MIMO system, we have to per-

form the QRD for each subcarrier. In practice, the interpolation-
based QRD only computes the Q and R matrixes for the pilot
subcarriers to reduce computational complexity. Then, the Q

and R of the data subcarriers are interpolated from those of
the pilot subcarriers.
Step 2: users sorting (strings permutation in Hext) is

required to achieve the permutation matrix P in equation (9).
Users sorting problem is well-known, for example, a post-

sorting algorithm and pre-sorting solution are analyzed in [12].
We take P matrix from QRD of the pilot symbols as the first
step of P matrix calculation for the data symbol to realize
sorting track as proposed in [6]. The P matrix changes very
slowly from one symbol to another, and a low sorting complex-
ity is required to update it. Loss function L = L{diag (R)} of
diagonal entries of interpolated R matrix is used to guarantee
the least number of matrix P updates.

Fig. 2: Detector scheme

Post-Processing part is represented by SR-K-best detec-
tion. The (K,S,p,v, q) parameters were optimized in [6] for
QuaDRiGa channel of 16×64 MIMO system and given by:

(K,S) = (16, 4),

p= [2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0],

v= [2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2],

q = [2 4 6 8] . (11)

Simulation results for Lattice Reduction Aided (LRA) OSIC
detector [5], MMSE, ML and some other state-of-the-art detec-
ton algorithms are presented in additive white noise (AWGN)
channel in Fig. 3 for 16 target users, bit error rate (BER) is
given for uncoded case [6]. The SR-K-best detector of type
(K,S,p,v, q) with (K,S) = (16, 4) parameters demonstrates
performance, close to ML. In Fig. 4 and Fig. 5 simulation re-
sults are presented for the same 16 coded users in scenario with
low-density parity-check (LDPC) decoder with (144, 288) code
in the MIMO receiver for ideal and real channel estimations
(DFT-based channel estimation from [10] was implemented).
The min-sum decoding algorithm was utilized as described in
[16]. The SR-K-best detector outperforms the MMSE detector
in the AWGN channel for both ideal and real channel estima-
tion. Therefore, the SR-K-best detector with (K,S) = (16, 4)
parameters is a good choice for the 5G receiver.

IV. ROBUST SR-K-BEST DETECTOR

Simulation results of SR-K-best detector with parameters
(11) are shown in Fig. 6 and Fig. 7 for 16 target users with
both ideal and realistic channel estimation in an interference



Fig. 3: Uncoded BER in AWGN channel with ideal CE

Fig. 4: Coded BER in AWGN channel with ideal CE

environment with 4 unknown users. It is clear that a common
SR-K-best detector demonstrates the gain in AWGN channel
only and does not detect users at the presence of interference,
while the MMSE detector (7) is quite stable. It happens because
the SR-K-best detector does not consider matrix Ruu. To
overcome this problem, let us modify the SR-K-best pre- and
post-processing algorithms. Equation (1) is given by:

y = Hx+ u, (12)

where u = i + n is the interference + noise signal. To avoid
correlation between antennas in signal u we multiply (12) by√
R−1

uu as follows:√
R−1

uuy =
√
R−1

uuHx+
√
R−1

uuu, (13)

y1 = H1x+ u1, (14)

Fig. 5: Coded BER in AWGN channel with real CE

where y1 =
√
R−1

uuy, H1 =
√
R−1

uuH and u1 =
√
R−1

uuu.
Autocorrelation matrix of vector u1 can be calculated as:

E(u1u
H
1 ) = E

(√
R−1

uuuu
H
√
R−1

uu

)
=
√

R−1
uuE

(
uuH

)√
R−1

uu

=
√
R−1

uuRuu

√
R−1

uu

= I,

therefore, signal u1 represents uncorrelated noise. After apply-
ing QR decomposition to matrix H1 we achieve the equation:

y1 = Q1R1x+ u1 (15)

The result of multiplying (15) by QH
1 is given by:

QH
1 y1 = QH

1 Q1R1x+QH
1 u1

y2 = R1x+ u2 (16)

where y2 = QH
1 y1 is the modified input vector and u2 =

QH
1 u1 is the new white noise signal. In fact, the users sorting

can be used with matrix H1 in (14) and further applying SR-K-
best algorithm on (16) to achieve a fine detection performance.
However, performance will be improved if we apply the MMSE
detection to get x̂ from (16). Remember, that u2 is a white
noise with the variance of σ2 = 1, therefore, linear MRC
detector (8) can be utilized to (16) to calculate x̂ as follows:

x̂ = (I +RH
1 R1)

−1
RH

1 y2. (17)

RH
1 y2 = (I +RH

1 R1)x̂+ u3,

y2 = ((RH
1 )−1 +R1)x̂+ (RH

1 )−1u3,

where u3 is the leftover noise after MMSE. Finally, we achieve
the equation:

y2 = H2x̂+ u4, (18)



where H2 = ((RH
1 )−1 + R1) and noise u4 = (RH

1 )−1u3.
Then we again apply QR decomposition to matrix H2 to
achieve the following equation:

y2 = Q2R2x̂+ u4 (19)

The result of multiplying (19) by QH
2 is given by:

QH
2 y2 = QH

2 Q2R2x̂+QH
2 u4

y3 = R2x̂+ u5, (20)

where y3 = QH
2 y2 and white noise is defined as u5 = QH

2 u4.
Finally, equations (18) and (20) are the best choice for SR-
K-best detection according to out simulations and defines
as Robust SR-K-best detector. Users sorting and permutation
matrix P calculation should be used with matrix H2, while
post-processing is implemented on the upper triangular matrix
R2. Simulation results are presented in Fig. 6 and Fig. 7
for the Robust SR-K-best with parameters of (11) in the
interference scenario. It should be noticed, that the developed
nonlinear algorithm is robust to both interference and channel
estimation errors (DFT-based channel estimation from [10] was
implemented) and outperforms the linear MMSE.

Fig. 6: Performance in interference channel with ideal CE

V. CONCLUSION

We proposed a new pre-processing for the nonlinear detector
structure, which demonstrates significant performance gain
compared to the MMSE detector in scenarios with unknown
interference. Moreover, the achieved detector is robust to chan-
nel estimation errors. Simulation results show that the proposed
algorithm is quite stable with non-ideal channel estimation
in both AWGN and interference channels, while the MMSE
detector demonstrates BER saturation after the LDPC decoder.
Traditionally, the linear detector is known to be the best solution
for unknown interference scenarios or non-ideal channel esti-
mation, but our results say that even in these cases performance
can be enhanced due to nonlinear detector nature. Simulation
results with modulation QAM16 and LDPC(144,288) decoder
are provided for the co-located scenario with 64 antennas of

Fig. 7: Performance in interference channel with real CE

Massive MIMO: 16 single antenna target users and 4 interferers
in the 3D-UMa model of 5G QuaDRiGa 2.0 channel.
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