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Abstract—Multi-channel optimisation relies on accurate chan-
nel state information (CSI) estimation. Error distributions in
CSI can propagate through optimisation algorithms to cause
undesirable uncertainty in the solution space. The transformation
of uncertainty distributions differs between classic heuristic and
Neural Network (NN) algorithms. Here, we investigate how
CSI uncertainty transforms from an additive Gaussian error
in CSI into different power allocation distributions in a multi-
channel system. We offer theoretical insight into the uncertainty
propagation for both Water-filling (WF) power allocation in com-
parison to diverse NN algorithms. We use the Kullback–Leibler
divergence to quantify uncertainty deviation from the trusted WF
algorithm and offer some insight into the role of NN structure
and activation functions on the uncertainty divergence, where we
found that the activation function choice is more important than
the size of the neural network.

Index Terms—machine learning; deep learning; XAI; wireless;

I. INTRODUCTION

Multi-channel optimisation of radio resources is crucial to

current 4G-5G systems and beyond. Traditional optimisation

relies on heuristic algorithms which are often formulated as

either convex optimisation (e.g. Lagrangian) or non-convex

problems (e.g. Genetic algorithm, Mean-field games, Markov

Decision Processes, reinforcement learning...etc.). As the scale

of the complexity increases, neural networks (NN) [1]–[4]

have been proposed to automate and accelerate the mapping

between inputs (e.g. CSI, user demand) and output solutions

(e.g. transmit power allocation) [5], [6]. One open challenge

is the propagation of uncertainty from input to output via

an optimisation algorithm. Classic uncertainty quantification

(UQ) techniques such as Polynomial Chaos Expansion (PCE)

cannot be readily applied due to the complex nature of the

algorithms.

A. Uncertainty Propagation in Decision Modules

Here, we start by studying how uncertainty in CSI can

propagate through a classic MIMO Water-filling (WF) power

allocation algorithm (IEEE 802.xx series, OFDM systems)

versus its contemporary NN accelerated versions [7], which

offer equivalent accelerated real-time solutions [8], [9]. Other

power allocation employ DRL, which adds a learning agent

[10], [11]. The essential UQ problem is to quantify the

distribution over the output y for: y = f(x + n;λ), where

inputs x ∈ R
n×1 (e.g. channel gains) have a noise n due to

All authors are with Cranfield University. Acknowledge EC H2020 grant
778305.

mis-estimation, and map to an output y ∈ R
n×1 (e.g. power

allocation) via a model f(·).
In classic WF, the Lagrangian optimisation produces an

iterative solution; and in NNs an approximate non-linear

mapping can achieve effective power allocation without iter-

ative search for λ (WF level). Direct probability analysis or

Bayesian inference can be used to understand the brittleness of

classic and heuristic algorithms [12]. Other analytical methods

include polynomial chaos expansion, which are more suited

to dynamical systems [13]. Currently, black-box NNs cannot

explain the essential mapping it performs. There are also legal

requirements (e.g. GDPR) for AI to explain its reasoning. As

such, there is the need to develop a range of explainable AI

(XAI) solutions that attempt to quantify NN mappings [14],

[15]. These XAI techniques range from visualising key hidden

layer features to localised linear models (LIME) [16], [17].

B. Novelty

In this seminal initial results paper on robustness of NNs

for wireless power control, we outline statistical results

on how different NN architectures and activation functions

transform CSI uncertainty into power allocation solutions.

Our novelties in this paper include: (1) deriving a theoretical

uncertainty transformation for WF power allocation, (2)

provide the statistical results for uncertainty transformation

for a range of NNs and measure their KL divergence from

the theoretical distribution.

II. SYSTEM SETUP

A. WF Power Allocation

We consider a classical wireless parallel channel power

allocation problem comprised of N channels with independent

Rayleigh fading characteristics. WF power allocation is well-

established and we will not detail it here. Suffice to say, under

the Shannon capacity assumption and a total power budget, the

solution form for power in channel n ∈ N is of:

p(n) = f [h(n);λ] =

(

1

λ
− N0

|h(n)|2
)+

, (1)

where N0 is the AWGN power, h(n) is the fading gain, and

the parameter λ is the Lagrangian multiplier (WF level). We

implement this WF algorithm for N parallel Rayleigh fading

channels with an iterative search solution for parameter λ, so

that to achieve power allocation p(n) by f(h;λ).
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Fig. 1. Uncertainty Propagation in Parallel Channel Power Allocation: a) WF solution via iterative Lagrangian optimisation, b) NN implementation, c)
uncertainty in power allocations, and d) PDF and CDF for uncertainty transformation from CSI into power solutions for WF and NNs.

B. NN Power Allocation

We reduce the WF heuristic search time by implementing

a multi-layer NN with a number of neurons per layer. The

input are the channel states and the output is the Lagrangian

multiplier λ. The Lagrangian parameter in turn gives the

power allocation output (λ → p(n)). The implementation

parameters are given in Table I. The training data is based

on the conventional iterative WF solution, and the training

results for different NN architectures is given in Fig. 2.

C. CSI Uncertainty and Theoretical Transformation

In both the WF and NN cases, we set up Gaussian dis-

tributed additive CSI uncertainty in just one of the multiple

channels and examine its impact on the power allocation

TABLE I
SYSTEM SETUP

Parameter Value

Channel 2.4GHz 3GPP Micro, Rayleigh

Wireless System 5 OFDMA channels, 40W budget

Iterative WF Monte-Carlo Loops 5e4

CSI Noise Gaussian in Channel 1

Neurons per Layer 5-15

Activation Function Sigmoid (s) or ReLU (p)

Training Random division, ≤1e3 epochs

solution for all the channels. We treat WF as a trusted and

reliable benchmark - familiar to engineers and used widely in

society.
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NN 10s NN 15s NN 5p-5s NN 10s-10s

NN 10p NN 15p NN 5p-5s NN 10p-10s

Fig. 2. NN training & testing statistics for different NN architectures.

The theoretical transformation via WF solution in Eq.(1) can

be found as follows. We perturb one of the multiple channels

with a Gaussian noise due to CSI mis-estimation: channel

fading is x ∼ N (µ, σ2), where µ is the accurate channel

fading value and σ2 is the input uncertainty variance due to

CSI mis-estimation. We then find the uncertainty cascade for

the perturbed channel under the split conditions of:

1) x <
√

N0/λ, y = 0,

2) x ≥
√

N0/λ, y = ( 1λ − N0

x2 ).

Using the standard probability Jacobian transformation ap-

proach, we arrive at:

P (y = 0) = P (x1 <
√

N0/λ) Part 1

fY (y) =
( b
a−y )

3/2

2bσ
√
2π

exp(−
(
√

b
a−y − µ)2

2σ2
) Part 2

(2)

where a, b are numerical values based on λ,N0 for a given

set of fading channels.

Given WF’s theoretical uncertainty in Eq.(2) and that we

trust its transparent nature, we now compare how the NN’s

uncertainty differs.

III. UNCERTAINTY PROPAGATION RESULTS

A. Power Allocation Uncertainty

We demonstrate that the PDF and CDF results for un-

certainty transformation from CSI mis-estimation into power

solutions’ uncertainty for both WF and NNs in Fig. 1. We can

observe that compared to the theoretical WF distribution, the

NN solutions have two attributes. If no post-hoc (·)+ operator

is used, then the NN produces negative power allocation

solutions of diverse nature. If the operator is used (as is in

WF), then solutions are similar (see Fig. 1d-ii/-iii). In the other

channels of Fig. 1c, we can see the power distribution from

both WF and an example NN. It is clear that the impact on

other channels can also be large and should be investigated in

future.

TABLE II
UNCERTAINTY PROPAGATION DEVIATION FROM WF BASELINE

NN Module (Xz-Ys) KL Div. NN Module (Xz) KL Div.

NN 10s-10s 0.009 NN 15s 0.013

NN 10p-10s 0.031 NN 15p 0.032

NN 5p-5s 0.028 NN 10s 0.01

NN 5s-5s 0.037 NN 10p 0.13

B. KL Divergence in Different NN Architectures

Using WF heuristic as a benchmark (novel theoretical bound

derived in Eq. (2)), we examine the uncertainty transfor-

mations’ KL divergence in Table II. The NN architectures

experimented are labeled as Xz-Ys, where X stands for the

number of neurons in the first layer, Y stands for the number

of neurons in the second layer (if present), and z stands for the

activation function in the first layer (s is sigmoid, y is ReLU),

and the second layer activation is always sigmoid (s).

We show the results in descending architecture complexity

from a multi-layer 10-10 to a single layer 10 structure. In

general, the more sophisticated architectures offer a lower

KL divergence (as expected), and we also see that the

sigmoid function (s) offers a vastly superior performance in

all cases (10z-10s, 15s, 10s) and a similar performance in the

(5z-5s) case. We can conclude that indeed more sophisticated

activation functions offer a more robust performance (by

being closer to the original WF solution), whilst accelerating

the algorithm speed by avoiding the search for λ.
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IV. CONCLUSIONS & FUTURE WORK

Multi-channel optimisation relies on accurate channel state

information (CSI) estimation. Error distributions in CSI can

propagate through optimisation algorithms to cause undesir-

able uncertainty in the solution space. The transformation

of uncertainty distributions differs between classic heuristic

and Neural Network (NN) algorithms. Here, we examined

uncertainty propagation in both classic heuristic Water-Filling

(WF) power allocation and different Neural Network (NN)

accelerated implementations. We derived a theoretical uncer-

tainty distribution for WF and used KL divergence to measure

the difference between different NN architectures against WF.

Generally the activation function choice is more important than

the size of the neural network, which will inform the design

priority of future NNs.

Our future work will aim to quantify the reason for this

finding via other supporting XAI features such as LIME [14].
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