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Abstract—This paper studies the performance of a user po-
sitioning system using Channel State Information (CSI) of a
Massive MIMO (MaMIMO) system. To infer the position of the
user from the CSI, a Convolutional Neural Network is designed
and evaluated through a novel dataset. This dataset contains in-
door MaMIMO CSI measurements using three different antenna
topologies, covering a 2.5 m by 2.5 m indoor area. We show that
we can train a Convolutional Neural Network (CNN) model to
estimate the position of a user inside this area with a mean
error of less than half a wavelength. Moreover, once the model
is trained on a given scenario and antenna topology, Transfer
Learning is used to repurpose the acquired knowledge towards
another scenario with significantly different antenna topology and
configuration. Our results show that it is possible to further train
the CNN using only a small amount of extra labelled samples
for the new topology. This transfer learning approach is able to
reach accurate results, paving the road to a practical CSI-based
positioning system powered by CNNs.

Index Terms—Massive MIMO, Positioning, CSI, Deep Learn-
ing, Transfer Learning

I. INTRODUCTION

Massive MIMO (MaMIMO) is a emerging technology used
in 5G communication networks to greatly enhance the spectral
efficiency of our wireless systems [1]. It does so by combining
a large number of Base Station (BS) antennas with signal
processing based on measured Channel State Information
(CSI). This CSI is estimated using pilot sequences during
up-link transmission. The combination of a large number
of antennas and accurate CSI allows the BS to multiplex
the users in the spatial domain. Theory shows that, as the
number of base station antennas increases, the performance of
the system is only bounded by the accuracy of the channel
state information. If such accurate channel state information
is available, the question arises if that information can be used
to infer other context information about the environment.

CSI contains spatial information which is used by the BS
to multiplex users in the spatial domain. Consequently, it can
be extracted and used to localise the users in space. Localisa-
tion of wireless terminals has many interesting applications
for both indoor as outdoor networks. For example, indoor
navigation systems can be used to navigate users through
buildings, and autonomous driving is enabled in covered areas
where no GPS signals can be detected [2]. Furthermore, the
CSI is already needed by the MaMIMO system in order to
communicate, so there is no extra cost in using the CSI to
localise the users.

Savic and Larsson introduced the notice for fingerprint-
based position services in MaMIMO systems [3]. They pro-
pose several positioning methods based on classical machine
learning algorithms (κ Nearest Neighbours, Support Vector
Machines, and Gaussian Process Regression). As input to these
learning algorithms a vector containing the received signal
strength values is used. However, this approach uses only a
small part of the information available in a MaMIMO system.

In a paper by Vieira et al. [5], the ability of using
Convolutional Neural Networks (CNN) to extract the spatial
information in the CSI of MaMIMO systems was studied.
The CSI gives access to more information in comparison to
a received signal strength vector, while the CNN provides an
efficient way to process this data. They found that their model
could reach below wavelength accuracy on a simulated test set
of MaMIMO CSI samples. They evaluate their method with
CSI samples generated by the COST 2100 MIMO model [6],
giving them access to an infinite amount of perfectly labelled
data. With this set-up, the authors reach a performance of
around 0.6 wavelengths. The real challenge, however, lies in
gathering real-life labelled data.

In [7], Arnold et al. present a novel channel sounder archi-
tecture to address this lack of measured MaMIMO CSI. They
apply the dataset acquired by the proposed channel sounder
with 64 antennas on the problem of indoor localisation.
However, their results only reach an accuracy of around 75 cm,
which is significantly less accurate than the proposed accuracy
of Vieira [5]. This lower accuracy can be attributed to the
low accuracy of the provided labels, which is suggested to be
around 10 cm.

Relaxing the need for highly-accurate labelled data will be
the key for a practical deployment of a CNN-based localisation
system. In current studies, each new scenario needs a vast
amount of labelled data to train the CNN. The cost of gathering
these amounts of data is too high to make fingerprint-based
positioning techniques viable. For example, for a fully dis-
tributed MaMIMO architecture, the topology of the antennas
will differ in function of the location where it is deployed. If
for each new deployment a very large amount of labelled data
is needed, this method will never reach a practical state.

This work will focus on gathering highly-accurate labelled
measured data and minimising the need for this data when a
new scenario is encountered. The main contributions of this
paper are:
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• The creation of a highly-accurate spatially labelled CSI
dataset of a state-of-the-art MaMIMO system which has
been made publicly available,

• The application of CNNs to infer the location of the user,
based on the measured CSI dataset,

• The transfer of knowledge between two scenarios with a
different antenna topology to minimise the need for new
labelled samples,

• State-of-the-art localisation abilities using the CSI of a
MaMIMO system, reaching a mean accuracy of 23.92
mm, corresponing to 0.209 λ. This is an error 65% lower
than the accuracy reported by Vieira [5].

II. DATASET

For the purpose of this study, a novel dataset was created.
The dataset contains the CSI measured by the KU Leuven
Massive MIMO testbed for many user positions. The Base
Station (BS) is equipped with 64 antennas, which can transmit
or receive simultaneously. These 64 antennas are used to
receive a predefined pilot signal from each user. The CSI is
estimated based on these pilot signals. The pilot tone consists
of 100 subcarriers, evenly spaced in frequency. Therefore, the
measured CSI can be represented by the matrix H ∈ CN×K

with N being the number of antennas at the BS and K the
number of subcarriers. For more details about the system, the
National Instruments Massive MIMO Application Framework
documentation [8] can be consulted.

During the measurements, four single-antenna users were
positioned indoor in an office. They were moved by CNC XY-
tables [9] along a predefined route. By using these XY-tables
the error on the positional label is less than 1 mm. This route
went along a grid spanning a 1.25 m by 1.25 m area for each
user. All routes were fully in Line-of-Sight (LoS). Using this
set-up, the area was scanned with 5 mm intervals, resulting in a
dataset containing 252004 CSI samples with location accuracy
of less than 1 mm.

Furthermore, the testbed’s BS is designed to be very flexible
in the deployment of the antenna array. This allowed for the
creation of three different datasets, each with a unique antenna
deployment. First, a Uniform Rectangular Array (URA) of 8
by 8 antennas was deployed. Second, Uniform Linear Array
(ULA) of 64 antennas on one line was deployed. Finally, the
antennas were distributed over the room in pairs of eight,
making up the distributed scenario. To the best of our knowl-
edge, the resulting dataset is the largest indoor MaMIMO CSI
dataset with spatial labels.

The different deployments can be seen in Figure 1. In all
cases, the antennas are placed 1 m from the XY-tables. The
green rectangles on the figure depict the 1.3 m by 1.3 m
areas where the XY-tables are able to move the users in. To
mitigate errors during the measurements, the centre 1.25 m by
1.25 m areas are used. The spacing in between the XY-tables
is dictated by the space needed for the motors powering the
movements and the cables connecting them to the controllers.
These tables were synchronised over Ethernet with the BS to
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Fig. 1. The three measurement scenarios. The antennas are spaced around
the users using a scenario specific topology. The users are positioned inside
the green areas. All measurements on the Figure are in mm.

ensure the sampled H has a correct spatial label, enabling a
highly accurate dataset.

During the measurements, the BS was configured to use as
centre frequency fc of 2.61 GHz, giving a wavelength λ of
114.56 mm. The system used a bandwidth of 20 MHz. The
spacing between adjacent antenna elements was 70 mm and
the lowest antenna elements were located 93 cm above the
floor. The user’s antenna was placed 20 cm above the floor.
The origin of the space was defined as the middle of the URA.
From this point in space, the x- and y-positions of the users
were measured. A picture of the distributed scenario can be
seen on Figure 2.

Publicly available datasets containing spatially labelled
MaMIMO CSI samples are very valuable to test and bench-
mark different MaMIMO CSI-based positioning methods. Fur-
thermore, these datasets can be used for many more applica-
tions and studies exceeding the localisation problem. However,
the amount of these kind of datasets is very limited. Therefore,
to encourage further research, this dataset is made publicly
available1.

III. CONVOLUTIONAL NEURAL NETWORK MODEL

Convolutional Neural Networks (CNNs) have lately revolu-
tionised the image classification field. They prove to be very
efficient in learning relevant features in structured data to clas-
sify the data’s content. The obtained MaMIMO CSI contains
large amounts of structured data, as a result, CNNs make a
good candidate technology to process these CSI samples and

1https://homes.esat.kuleuven.be/∼sdebast/

https://homes.esat.kuleuven.be/~sdebast/


Fig. 2. The measurement environment during the distributed Massive MIMO
experiments. In the middle, the four XY-tables are shown, surrounded by the
eight distributed antenna arrays.

infer their spatial information. This section handles how the
CNN for this specific task was designed. First, we evaluate
how domain specific knowledge can be exploited to help the
CNN extract useful features. Second, the architecture of the
model is discussed and the Python code for the CNN is open-
sourced.

A. Domain specific knowledge

While implementing the CNN for this task, domain specific
knowledge can be used to help the network learn useful
features. First of all, the dataset contains complex valued num-
bers. To help the CNN access this information, these complex
valued numbers were converted to the polar domain. In this
domain, the amplitude and the phase shift of the different
subcarriers can easily be extracted, helping the CNN learn
useful features. Second, since the information is presented in
the frequency domain, we perform an Inverse Fast Fourier
Transform on the data to reveal features in the time domain.
Afterwards, these three different sets of features (raw features,
polar features, and time-domain features) are concatenated
before they are presented at the input of the CNN. This
preprocessing results in an input matrix I ∈ R[N×K×6].

When designing CNNs, the size of the convolutions can
be chosen freely, this size is called the kernel size. When
training a CNN for an image classification task, this size
is often chosen as (3, 3) or something similar. However,
since this data is very different from image data and domain
knowledge is available, the kernel sizes should be adjusted
accordingly. Therefore, in the higher layers of our CNN, the
kernel sizes are designed to perform a 1D convolution over
the data. This way, the neural network first extracts relevant
features out of the data for each antenna. The lower layers
perform convolutions in the other dimensions to combine the
features from multiple antennas. Designing the kernel sizes
with domain specific knowledge can reduce the number of
trainable parameters, which makes the CNN faster to train
and less prone to overfitting.

B. Architecture

The full CNN contains 13 convolutional layers, improved
with skip connections [10] and drop-out layers, and three fully
connected layers at the end. The total amount of trainable
parameters depends on the number of antennas used in the
model. For 64 antennas, the number of trainable parameters is
217, 378, which is only 1.36% of the weights used by Arnold
et al. [7].

Previous work on CSI-based positioning using CNNs did
not include a detailed description of the applied Deep Learning
techniques. Therefore, it is impossible to compare the learning
efficiency of our method to others. To mitigate this problem
in the future, and for more details on the implementation, the
code has been published on-line. The CNN was implemented
using Keras and TensorFlow and the source code for this
research can be found at GitHub2.

IV. PERFORMANCE EVALUATION

This section explores the various factors influencing the
positioning-ability of the aforementioned CNN. First, the per-
formance is evaluated for training the CNN on the positioning
task in the three different scenarios. Second, the influence of
the number of antennas used at the BS is studied. Afterwards,
the ability to use transfer learning to migrate knowledge from
one scenario to another is explored. All results are computed
on the testset, which is 5% of the total dataset.

A. Performance differences due to antenna topology

The used antenna topology influences the accuracy of the
positioning system. Therefore, three different antenna topolo-
gies are evaluated. Figure 3 shows the CDF of positioning
error of the three different antenna topologies. The model was
trained on 85% of the datasets, leaving 10% for validation.
The results show that the CNN is able to infer the spatial
information for all three scenarios, with the URA and ULA
scenario having the highest accuracy.

In the used dataset, the user are all placed at the same height
above the floor. Therefore, the model does not need to infer
the height of the users. However, the ability to infer the height
information might be dependent on the antenna topology.
Therefore, to further investigate the topology-dependence of
the positioning performance, a dataset containing samples with
varying height of the user is needed.

B. Influence of the number of Antennas

The number of antennas used in the BS also largely in-
fluences the accuracy. The authors of [4] suggest that in a
CSI-based positioning system, the accuracy of the system will
rise with the amount of used antennas. This is exactly what
we see when we evaluate the proposed model with subsets of
the dataset. Here, we subsample the dataset so we only use
the data provided by a specific amount of antennas. When the
number of antennas is increased from 8 to 64, the accuracy of
the system improves 58% to 76%, depending on the topology.

2https://github.com/sibrendebast/MaMIMO CSI with CNN positioning

https://github.com/sibrendebast/MaMIMO_CSI_with_CNN_positioning
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Fig. 3. A CDF of positioning error on the three different scenarios

Table I shows the Mean Error (ME) on the testset in function
of the number of used antennas for the three scenarios. The
ME is calculated as following:

ME = E{|p− p̂|},

where p is the measured position (x, y) of the user and p̂
the estimated position. The results are both shown in absolute
accuracy, using millimetre as unit, and in relative accuracy,
using one wavelength λ as the unit. This allows to compare
the results independently from the used carrier frequency.

TABLE I
MEAN ERROR THE POSITIONING PERFORMANCE OF THE PROPOSED

SYSTEM, MEASURED ON THE TESTSET OF THE DIFFERENT SCENARIOS.

URA 8 antennas 16 antennas 32 antennas 64 antennas
ME [mm] 230.08 120.73 85.19 55.35
ME [λ] 2.008 1.053 0.744 0.483

ULA 8 antennas 16 antennas 32 antennas 64 antennas
ME [mm] 244.80 132.87 77.87 59.05
ME [λ] 2.137 1.160 0.680 0.515

DIS 8 antennas 16 antennas 32 antennas 64 antennas
ME [mm] 197.62 152.37 130.64 82.30
ME [λ] 1.725 1.33 1.14 0.718

The results show that the accuracy of the system indeed
improves with the amount of antennas used. When using 64
antennas an accuracy of around 1

2λ is reached for the URA
and ULA topology. Now, the main question is to what extent
the learned model can generalise over different contexts, such
as different antenna topologies.

C. Transfer Learning

Using Transfer Learning [11], knowledge gathered during
training for a previous task can be used to accelerate training
on a similar new task. Furthermore, the number of necessary
training samples to train the model for the new task is greatly
reduced. This technique is often used for image classification,

where the weights of the first layers in the CNN are reused
in a new network. These first layers contain filters for low
level features and they are quite generally applicable on
similar tasks. In this way, the CNN already starts with a basic
knowledge.

In this paper, the ability to transfer knowledge between
two scenarios with a different antenna topology is studied.
Specifically, the knowledge transfer for the URA scenario to
the ULA scenario with 64 antennas is evaluated. The main
idea is that the first layers of the CNN contain knowledge
how to infere spatial relevant features from the raw data. This
can then be reused, no matter which antenna topology is used.
The lower layers than combine the separate spatial features to
estimate the position of the user. Therefore, only the lower
layers need to be retrained, which enables a faster training
with a lower need for samples.
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Fig. 4. CDF of the mean error using a varying amount of training samples
to perform transfer learning.

Figure 4 shows how we can achieve similar or even higher
performance with a lower amount of training samples.With
only 5000 samples of the ULA training set, the CNN achieves
a performance similar to the network trained on the full ULA
training set without using transfer learning. Moreover, when
100000 samples are used for training, the system reaches a
higher performance than the case when all ULA samples were
used, but no transfer learning was applied. This is explained
by the model having access to more samples to learn from
than the case without transfer learning. This allows the model
to further fine-tune the general statistics of the samples, while
also learning the mechanics of the new scenario.

TABLE II
MEAN ERROR WHEN USING TRANSFER LEARNING IN FUNCTION OF THE

NUMBER OF USED TRAINING SAMPLES.

# samples 500 1000 5000 10000 50000 100000
ME [mm] 253.5 132.0 60.90 42.79 27.89 23.92
ME [λ] 2.21 1.15 0.53 0.37 0.243 0.209
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Fig. 5. A visualisation example to show the performance of our proposed
model. The model was first trained on the full URA training set, afterwards,
using transfer learning, it was retrained with 100000 samples of the ULA
training set. The visualisation was created using the ULA dataset.

Table II shows the mean positioning error when using
transfer learning from the URA to the ULA scenario. It
demonstrates that transfer learning can reach a higher posi-
tioning performance than the case where only information of
one specific scenario is used. The proposed technique reaches
a ME of 23.92 mm, which corresponds to 0.209 λ.

To visualise the performance of our proposed model, the
letters our university’s name were converted to coordinates
inside the areas of the XY-tables. The measured CSI at
these locations was was used by the model to predict the
corresponding locations. The model’s predictions spell our
univesity’s name “KU Leuven” with a ME of 23.97 mm (0.21
λ) and are shown in Figure 5.

V. FUTURE WORK

The first next step towards a practical implementation of the
proposed techniques would be to evaluate different environ-
ments. Up until now, the scenario was changed by deploying
the antennas in a different topology. However, the impact of
transferring the system to another environment, e.g. another
room, has to be studied as well. This will give extra insight
into how the system infers the spatial information and how
much data has to be gathered in a new environment to retrain
the CNN using transfer learning.

Furthermore, recent advancements in semi-supervised learn-
ing allow for training a model with data that is only par-
tially labelled. Since acquiring spatially-labelled data in new
environments is very costly while gathering unlabelled data
is very easy, reducing the need to label the gathered data,
will reduce the deployment cost of the proposed positioning
system. The main idea behind semi-supervised learning is that
the model learns the statistics of the task using the unlabelled
data, while the labelled data takes care of mapping this

gathered knowledge to a useful output. Therefore, applying
semi-supervised learning on this task can really push this
techniques from research to a practical solution.

VI. CONCLUSION

We investigated the ability of convolutional neural networks
to infer the position of a user in a Massive MIMO com-
munication system. The spatial information of the user was
extracted from the channel state information gathered by the
Base Station. To train the CNN a novel dataset of measured
indoor MaMIMO CSI was created and published. To our
knowledge, this dataset is the largest publicly available dataset
with spatial labels, it consists of three different scenarios with
each 252,004 CSI samples.

This dataset, together with a state-of-the-art CNN architec-
ture, enabled us to infer the position of a user with an accuracy
of 55.35 mm, which relates to 0.483 λ. This result outperforms
any results found in literature. Furthermore, we studied the
ability to use transfer learning to lower the amount data needed
when the system is deployed with a different antenna topology.
We show that the amount of labelled data needed to reach a
similar performance, is reduces 20-fold in comparison to not
using knowledge transfer. Furthermore, when more labelled
data of the new scenario is available, this techniques can even
reach a higher performance of 23.92 mm or 0.209 λ.
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