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Abstract — This paper demonstrates the time-variant (TV) Doppler power

characteristics of human activities using measured channel state information (CSI).

We model the measured CSI as a complex channel transfer function corresponding

to a 3D non-stationary multipath fading channel consisting of a fixed transmitter,

a fixed receiver, fixed scatterers representing fixed objects, and a cluster of moving

scatterers representing a moving person performing some human activities. We

demonstrate the relationship between the TV Doppler frequency caused by each

moving scatterer and the rate of change of its corresponding TV propagation

delay. Furthermore, we express the TV mean Doppler shift in terms of the path

gains of the fixed scatterers, the TV path gains, and the TV Doppler frequencies

of the moving scatterers. To provide an insight into the TV Doppler power

characteristics of the measured calibrated CSI, we employ the spectrogram from

which we derive the TV mean Doppler shift. Finally, we present the spectrograms

and the TV mean Doppler shifts of the measured calibrated CSI for different

human activities. The results show the possibility of designing human activity

recognition systems using commercial Wi-Fi devices by employing deep learning

or machine learning algorithms.

Index Terms — Non-stationary, spectrogram, complex channel transfer function,

TV Doppler power characteristics, CSI, human activity recognition.





D.1 Introduction

According to the statistics in [1], 28.7 % of the adults above 65 years have fall incidents. An 
increase in mortality and healthcare costs is a consequence of these fall incidents, especially 
for people aged 75 years or older. According to the United Nations’ World Ageing Report [2], 
the number of adults over 60 is increasing. The number of adults over 80 is expected to rise 
from 137 million to 425 million between 2017 and 2050. As a result, it is expected that the 
demand for indoor human activity recognition (HAR) systems will increase. The main role of 
HAR systems is to distinguish between normal activities and dangerous activities such as 
falls. One of the types of HAR systems are radio-frequency-based (RF-based) non-wearable 
systems [3]. Such systems track human activities by using frequency-modulated carrier waves 
scattered by the major body segments, such as wrists, head, torso, and legs. These scattered 
waves contain the micro-Doppler characteristics caused by the moving body segments.

The time-variant (TV) compound Doppler effect caused by moving body segments (mod-

elled for simplicity as a cluster of moving scatterers) has been incorporated in 3D channel 
models by taking into account the TV azimuth angle of motion (AAOM), the elevation angle 
of motion (EAOM), the azimuth angle of departure (AAOD), the elevation angle of departure 
(EAOD), the azimuth angle of arrival (AAOA), and the elevation angle of arrival (EAOA) 
in fixed-to-fixed (F2F) channel mo dels. Such a phenomenon opened up  the opportunity for 
many applications such as HAR [3, 4], detection of gait asymmetry [5], fall detection [6, 7], 
distinguishing between armed and unarmed humans for security [8], and gesture recognition [9]. 
Most of these applications are based on applying different machine learning, deep learning, 
or detection algorithms to the spectrograms of the measured multi-component radar signals. 
By employing the concept of the spectrogram, which is a time-frequency distribution, an 
insight into the TV Doppler power characteristics influenced by the moving body segments is 
revealed.

The authors of [10] introduced a software tool that can capture the channel state informa-

tion (CSI). Such a tool operates according to the IEEE 802.11n standard [11] and collects 
data over 30 subcarriers operating in orthogonal-frequency-division-multiplexing (OFDM) 
mode. When it comes to processing the complex CSI data collected by this tool, one of the 
main challenges is that the transmitter and the receiver are not clock synchronized [12–14]. 
Consequently, the phases of the complex CSI data are highly distorted, which makes it 
impossibile to explore the spectrograms of the complex CSI data. Attempts to overcome this 
issue have been proposed in [15, 16] by utilizing the principle component analysis or applying 
linear transformations on the distorted phases. However, these techniques do not contribute to 
the study of the true TV Doppler characteristics, since they partially or completely eliminate 
the true phases containing the Doppler shifts caused by the moving scatterers. The authors 
of [17] successfully eliminated the TV phase distortions by calibrating the transmitter and the 
receiver stations using a back-to-back (B2B) connection between them. They validated the
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proposed method by measurements from a vector network analyzer. They tested the procedure

by exploring the TV Doppler power characteristics of a simple hand gesture experiment and

validated the results by simulation.

To the best of the authors’ knowledge, no one has yet researched the TV Doppler power

characteristics of measured calibrated CSI with B2B connection for human activities, such as

walking, falling, etc. All the studies in the literature regarding the CSI were either on the

amplitude or the distortion-eliminated phases through linear transformations. The main goal

of this paper is to present some measurement results of calibrated CSI with B2B connection

for some human activities. First, we model the channel transfer function (CTF) of a 3D

non-stationary F2F channel and the TV Doppler frequencies caused by the moving scatterers.

We elaborate on the relationship between the TV Doppler frequencies and the TV propagation

delays. Then, we discuss the spectrogram of the presented channel model associated with

each subcarrier and illustrate how the TV mean Doppler shift can be obtained from the

spectrogram. Finally, we explore the spectrogram and the TV mean Doppler shift of the

measured calibrated CSI for some human activities. The results of this paper are important

for getting a better understanding of the influence of the channel parameters on the spectral

characteristics of the channels in the presence of a moving person.

The rest of this paper is divided as follows. Section D.2 presents a model for the complex

CTF and the TV Doppler shift caused by human activities. The spectrogram of the presented

model and the computation of the TV mean Doppler shift from the spectrogram are discussed

in Section D.3. Section D.4 demonstrates the measurement scenario, processing the CSI, the

spectrogram of the measured CSI, and the analysis of the measured TV mean Doppler shift.

Section D.5 gives concluding remarks and directions for future work.

D.2 Modelling the CTF

In this paper, we consider the scenario depicted in Fig. D.1. We have a fixed Wi-Fi transmitter

Tx and a fixed Wi-Fi receiver Rx located at (xT , yT , zT ) and (xR, yR, zR), respectively. The

scenario shows a moving person whose major body segments are modelled for simplicity

by a cluster of N moving point scatterers SM,n for n = 1, 2, . . . , N . The fixed point

scatterers SF,m ( m = 1, 2, . . . , M) in Fig. D.1 simply represent M fixed objects such as

walls, furniture, etc. Each moving point scatterer is characterized by its TV displacement

(xM,n(t), (yM,n(t), (zM,n(t)). The TV Euclidean distance between Tx (Rx) and the nth moving

scatterer is denoted by dTM,n(t) (d
R
M,n(t)). Single-bounce scattering is assumed, i.e., each wave

launched from the Tx is scattered only once by either a fixed scatterer SF,m or a moving

scatterer SM,n before arriving at the Rx.

The TV Euclidean distance dTM,n(t) between the transmitter Tx and the nth moving

scatterer SM,n is expressed in terms of the TV position of SM,n and the fixed position of Tx by

dTM,n(t) =

√
(xM,n(t)− xT )2 + (yM,n(t)− yT )2 + (zM,n(t)− zT )2. (D.1)
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Figure D.1: Propagation scenario consisting of a fixed transmitter Tx, fixed receiver Rx, a

moving person modelled by a cluster of N moving scatterers SM,n, and M fixed scatterers

SF,m.

Similarly, the Euclidean distance dRM,n(t) between the receiver Rx and the nth moving scatterer

SM,n is given by

dRM,n(t) =

√
(xM,n(t)− xR)2 + (yM,n(t)− yR)2 + (zM,n(t)− zR)2. (D.2)

Using the expressions in (D.1) and (D.2), the total TV propagation delay τM,n(t) of the wave

travelled from Tx via SM,n to Rx is determined by

τM,n(t) =
dTM,n(t) + dRM,n(t)

c0
(D.3)

where the parameter c0 indicates the speed of light.

The complex TV CTF of the 3D non-stationary F2F channel model can be expressed as

H
(
t,∆f (q)

)
=

N∑
n=1

c
(q)
M,n(t) e

j[θM,n−2π(f0+∆f (q))τM,n(t)] +
M∑

m=1

cF,m ej[θF,m−2π(f0+∆f (q))τF,m]. (D.4)

The parameter ∆f (q) in (D.4) denotes the subcarrier frequency, which is associated with the

qth subcarrier according to

∆f (q) = q ·∆ (D.5)
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for q = −28, −26, . . . , −2, −1, 1, 3, . . . , 27, 28. The parameter ∆ in (D.5) designates the

difference between the subcarrier frequencies, which has a constant value of 312.5 kHz [11].

The first term in (D.4) denotes the sum of multipath components corresponding to the N
moving scatterers. Each component of the first term in (D.4) is characterized by a constant

phase shift θM,n, a TV propagation delay τM,n(t), and a TV path gain c
(q)
M,n(t), which are

associated with the nth moving scatterer SM,n. The TV path gain c
(q)
M,n(t) depends on the gains

of Tx and Rx antennas, the propagation distances dTM,n(t) and dRM,n(t), the transmission power,

the wavelength of the qth subcarrier c0/(f0 + ∆f (q)) [18], and the radar cross-section [19].

The second term in (D.4) denotes the sum of multipath components of the M fixed scatterers.

Each component corresponding to the mth fixed scatterer is characterized by a path gain cF,m
and a phase shift θF,m due to the interaction with the fixed scatterer. In the simulation, the

phases θM,n and θF,m are the outcomes of identically and independently distributed random

variables with a uniform distribution over −π and π [20, P. 36].

The Doppler shift f
(q)
n (t) associated with the qth subcarrier caused by the nth moving

scatterers can be expressed using the relationship f
(q)
n (t) = −(f0 +∆f (q))τ̇M,n(t), which can

be found in [21, Eq. (22)] as

f (q)
n (t) = −f (q)

n,max(t)γn (t) . (D.6)

The function f
(q)
n,max(t) denotes the maximum Doppler shift of the qth subcarrier.

f (q)
n,max(t) =

(
f0 +∆f (q)

)
vn (t)

c0
(D.7)

and γn(t) is given by

γn(t) = cos (βvn (t))
[
cos
(
βT
n (t)

)
cos
(
αT
n (t)− αvn (t)

)
+ cos

(
βR
n (t)

)
cos
(
αvn (t)− αR

n (t)
) ]

+ sin (βvn (t))
[
sin
(
βT
n (t)

)
+ sin

(
βR
n (t)

) ]
. (D.8)

The functions vn(t), βvn(t), αvn(t), α
T
n (t), β

T
n (t), α

R
n (t), and βR

n (t) in (D.7) and (D.8) designate

the TV speed of the nth moving scatterer, the TV elevation angle of motion (EAOM), the

TV azimuth angle of motion (AAOM), the TV azimuth angle of departure (AAOD), the TV

elevation angle of departure (EAOD), the TV azimuth angle of arrival (AAOA), and the

TV elevation angle of arrival (EAOA), respectively. More details about these expressions

can be found in [22]. The proof of the relationship between the Doppler frequency f
(q)
n (t)

and the propagation delay τM,n(t) can be found in [21]. Note that the function γn(t) scales

the maximum Doppler shift fn,max(t). The function can be positive or negative depending

on the movement of the moving scatterer SM,n relative to the Tx and Rx. If the moving

scatterer SM,n moves away from Tx and Rx, its corresponding TV propagation delay τM,n(t)

increases, i.e., its rate of change with respect to time τ̇M,n(t) and γn(t) have positive values.
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Hence, according to (D.6), the Doppler frequency f
(q)
n (t) has negative values. If the moving

scatterer SM,n moves towards Tx and Rx, its corresponding TV propagation delay τM,n(t)

decreases, and thus, its rate of change with respect to time τ̇M,n(t) and γn(t) have negative

values. Hence, according to (D.6), the Doppler frequency f
(q)
n (t) is larger than zero. The

TV mean Doppler shift B
(1)

f (q)(t) of the presented model in (D.4), associated with the qth

subcarrier, can be computed in terms of the path gains c
(q)
M,n(t) and cF,m, and the Doppler

frequency f
(q)
n (t) as [21]

B
(1)

f (q)(t) =

N∑
n=1

(
c
(q)
M,n(t)

)2
f
(q)
n (t)

N∑
n=1

(
c
(q)
M,n(t)

)2
+

M∑
m=1

c2F,m

. (D.9)

The expression in (D.9) is the first-order spectral moment which provides the average Doppler

shift of the model presented in (D.4) as a sum of the Doppler shifts f
(q)
n (t) caused by the

moving scatterers SM,n multiplied by their corresponding path gains c
(q)
M,n(t) and normalized

by the sum of the squared path gains of the fixed and moving scatterers. Note that the

mean Doppler shift B
(1)

f (q)(t) in (D.9) is influenced by the path gains of the moving scatterers

c
(q)
M,n(t) and those corresponding to the fixed scatterers cF,m. If the path gains of the fixed

scatterers cF,m have high values in comparison to those of the moving scatterers c
(q)
M,n(t), the

TV mean Doppler shift B
(1)

f (q)(t) in (D.9) has small values that approach zero. This can happen

in practice if the person moves too far from Tx/Rx. For measured channels, the expression

in (D.9) cannot be used, but there is an alternative to estimate it by utilizing the spectrogram,

which will be discussed in the next section.

D.3 Spectrogram of the CTF

To compute the spectrogram, an even and positive window function is needed. In this paper,

we used the Gaussian window function w(t) given by

w(t) =
1√

σw

√
π
e
− t2

2σ2
w (D.10)

where σw denotes the Gaussian window spread parameter. Choosing the value of such a

parameter is a trade-off between the frequency resolution and the time localization. If the

window spread σw is large, the frequency resolution is high, but the time localization is low,

and vice versa. Note that the window function has normalized energy, i.e.,
∫∞
−∞w2(t) = 1.

After choosing the window function, the spectrogram can be computed in three steps.

The first step is to compute the short-time CTF x(q)(t′, t) which is obtained by multiplying
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the sliding window w(t′ − t) with the CTF H(t′,∆f (q)), i.e.,

x(q)(t′, t) = H
(
t′,∆f (q)

)
w (t′ − t) (D.11)

where the parameters t′ and t designate the running time and the local time, respectively. The

second step is to compute the short-time Fourier-transform (STFT) X(q)(f, t) by transforming

the running time t′ to frequency f . The STFT of H(t′,∆f (q)) associated with the qth

subcarrier is given by

X(q)(f, t) =

∞∫
−∞

x(t′, t)e−j2πft′dt′ =
N∑
n=1

X
(q)
M,n(f, t) +

M∑
m=1

X
(q)
F,m. (D.12)

The first and second terms in (D.12) denote the sum of the STFTs corresponding to the

N moving scatterers and the sum of the STFTs corresponding to the M fixed scatterers,

respectively. The last step is to compute the spectrogram SH(q)(f, t) associated with the qth

subcarrier by multiplying the STFT in (D.12) with its complex conjugate, which results in

SH(q)(f, t) = |X(q)(f, t)|2 = S
(a)

H(q)(f, t) + S
(c)

H(q)(f, t) (D.13)

where the functions S
(a)

H(q)(f, t) and S
(c)

H(q)(f, t) indicate the auto-term and the cross-term of

the spectrogram, respectively. The auto-term S
(a)

H(q)(f, t) provides insight into the true TV

Doppler power characteristics. It is determined by

S
(a)

H(q)(f, t) =
N∑
n=1

∣∣∣X(q)
M,n(f, t)

∣∣∣2 + M∑
m=1

∣∣∣X(q)
F,m

∣∣∣2 . (D.14)

The first term in (D.14) denotes the superposition of the auto-terms caused by the N
moving scatterers, whereas the second term in (D.14) designates the sum of the auto-terms

corresponding to the M fixed scatterers, i.e., the auto-term consists of N +M components.

Each component of the first (second) term in (D.14) has the Doppler power characteristics

corresponding to the nth moving (mth fixed) scatterer SM,n (SF,m). The cross-term S
(c)

H(q)(f, t)

is expressed by (D.15), which can be found at the top of the next page. This term consists of

(N +M)(N +M− 1)/2 components. The operators {·}∗ and ℜ{·} represent the conjugate

and the real value operators, respectively. This cross-term in (D.15) represents the undesired

spectral interference components that reduce the resolution of the spectrogram. The first term

of the cross-term S
(c)

H(q)(f, t) represents the sum of the spectral interference terms between

two different moving scatterers, whereas the second term consists of the sum of the spectral

interference terms between two different fixed scatterers. The last term in (D.15) denotes the

sum of the spectral interference terms between moving and fixed scatterers. An approximate

solution of the spectrogram SH(q)(f, t) of the channel model when using a Gaussian window

can be found in [22] by approximating the Doppler frequencies f
(q)
n (t) into linear piecewise
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S
(c)

H(q)(f, t) = 2ℜ
[N−1∑

n=1

N∑
i=n+1

X
(q)
M,n(f, t)X

∗(q)
M,i (f, t) +

M−1∑
m=1

M∑
i=m+1

X
(q)
F,mX

∗(q)
F,i

+
N∑
n=1

M∑
i=1

X
(q)
M,n(f, t)X

∗(q)
F,i

]
(D.15)

functions. In theory, the cross-term can be eliminated by averaging the spectrogram SH(q)(f, t)

over the random phases θM,n and θF,m, i.e., E{SH(q)(f, t)}|θM,n, θF,m
= S

(a)

H(q)(f, t). In practice,

however, the cross-term cannot be removed because of the limited number of available snapshot

measurements.

From the spectrogram SH(q)(f, t), the TV mean Doppler shift can be computed as

B
(1)

H(q)(t) =

∞∫
−∞

fSH(q)(f, t)df

∞∫
−∞

SH(q)(f, t)df

. (D.16)

The expression in (D.16) can be applied to both, simulation and measurements. Note that

the expression in (D.16) is influenced by the cross-term SH(q)(f, t). If the auto-term S
(a)

H(q)(f, t)

is used in the simulation instead of the spectrogram SH(q)(f, t), then the TV mean Doppler

shifts B
(1)

H(q)(t) and B
(1)

f (q)(t) become equal [23] when computing the TV mean Doppler shift

in (D.16).

D.4 Experimental Results

In this section, the spectrograms of the measured CSI for different human activities, and their

corresponding TV mean Doppler shifts will be explored. The measurement scenario will be

discussed first. Then, the steps for calibrating and processing the CSI data will be described.

Finally, the measurement results will be discussed.

D.4.1 Measurement Scenario

A pair of horn antennas YE572113-30SMAM from Laird� were used as Tx and Rx antenna.

They had the same location and the same height, which was 0.8 m. A 22-year-old male

candidate with a height of 1.8 m and a weight of 76 kg, was asked to perform some activities

while collecting the CSI data. Fig. D.2 illustrates the measurement scenario and the locations

corresponding to the activities done by the candidate. The candidate was asked to carry out

the following activities:
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– Falling away : The candidate stood 4 m away from the Tx and Rx and fell in their

opposite direction onto a 15 cm high mattress.

– Falling towards: The candidate stood 4 m away from the Tx and Rx and fell in the

direction towards them onto a 15 cm high mattress.

– Walking away : The candidate stood a few centimeters away from the Tx and Rx and

walked 4 m away from them.

– Walking towards: The candidate stood 4 m away from the Tx and Rx and walked

towards them until they were reached.

– Sitting : The candidate stood 4 m away from the Tx and Rx, facing them and then sat

down on a chair.

– Bending and straightening : The candidate stood 4 m away from the Tx and Rx, facing

them and then bent forward towards them picking an imaginary object from the floor

and then straightening up again.

The candidate did not move after finishing each activity.

Figure D.2: CSI measurement scenario.
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D.4.2 Processing CSI Data

In order to collect RF data, we used two HP Elitebook 6930p laptops equipped with Intel

NIC5300. Both laptops had Ubuntu 14.04 LTS operating system, and CSI tool [10] installed.

One of the laptops was connected to the Tx antenna, while the other was connected to the Rx

antenna. The Tx laptop was working in injector mode, and the Rx laptop was working in

monitor mode. Channel 149 was used for recording the CSI data, i.e., the carrier frequency

f0 was chosen to be 5.745 GHz. The bandwidth was set to 20 MHz. The sampling frequency

fs was set to 1 kHz. To overcome the TV phase distortions due to the clock-asynchronization

between the Tx and the Rx stations, a B2B connection was employed as illustrated in [17]. To

setup the B2B connection, an RF power splitter ZFSC-2-10G+ with one input and two output

ports, 4 RF cables 141-1MSM+, and a 30 dB attenuator from Mini-Circuits® were utilized.

The transmission port of the Tx laptop was connected to the input port of the splitter via an

RF cable. For the two output ports of the splitter, one of them was connected to the Tx horn

antenna and the other was connected to the attenuator, and then, to one of the RF ports of

the Rx laptop using an RF cable. One of the remaining ports of the Rx laptop was used to

connect to the Rx horn antenna through an RF cable.

The captured CSI data were stored on two matrices. One of them contained the CTF

corresponding to the B2B connection. This matrix had the TV phase distortions. The other

matrix contained the CTF corresponding to the Rx antenna and the TV phase distortions.

This matrix had channel characteristics and the TV phase distortions. MATLAB 2019b

was used for processing the CSI data. The matrix corresponding to the Rx antenna was

divided by the matrix corresponding to the B2B connection in elementwise form and stored

in a new matrix. This new matrix contained the true micro-Doppler (TV Doppler power)

characteristics of the recorded CSI.

Before computing the spectrogram, the CSI matrix containing the true TV Doppler power

characteristics was filtered by using a highpass equiripple filter to reduce the effect of the

fixed scatterers. Then, we took the sum of the CTF over the subcarriers as follows:

µ(t) =
∑
q

H
(
t,∆f (q)

)
. (D.16)

This was done for better visualization as it reduces the background noise of the spectrogram.

Finally, we computed the spectrogram Sµ(f, t) of µ(t), using the same steps as in Section D.3.

The window spread parameter σw was set to 0.05 s.

D.4.3 Demonstration of the Results

Figs. D.3(a)–D.3(f) exhibit the spectrograms Sµ(f, t) corresponding to the falling away, falling

towards, walking away, walking towards, sitting, and bending and straightening activities of

the candidate. For the spectrogram Sµ(f, t) of the falling away activity shown in Fig. D.3(a),
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the Doppler frequency is negative as the candidate moves away from the Tx and Rx. Hence,

the propagation delay τM,n(t) increases and its rate of change τ̇M,n(t) is positive (see (D.3)

and (D.6)). The Doppler shift caused by the falling activity of the candidate keeps decreasing

until it reaches a value around -120 Hz in Fig. D.3(a). Then, it returns to zero value.

Fig. D.3(b) depicts the spectrogram Sµ(f, t) corresponding to the falling towards activity of

the candidate. The Doppler frequency caused by the activity is positive since the candidate

moves towards the Tx and Rx, thus the propagation delay τM,n(t) decreases and its rate of

change τ̇M,n(t) is negative. The Doppler shift corresponding to the falling activity increases

until it reaches a value around 100 Hz, then the value drops to zero as the candidate is not

moving after the fall. Note that the fall activities depicted in Figs. D.3(a)–D.3(b) include

short time intervals up to 2 s. Figs. D.3(c)–D.3(d) exhibit the spectrogram corresponding to

the walking away and walking towards activities of the candidate. These activities consume

almost 10 s time intervals. The Doppler shift corresponding to the walking away and walking

towards activities reach -40 Hz and 40 Hz, respectively.

Fig. D.3(e) shows the spectrogram corresponding to the sitting activity of the candidate.

It is shown that the sitting activity lasts for almost 3 s. The pattern of the spectrogram

shown in Fig. D.3(e) is quite similar to that in Fig. D.3(a), but the Doppler shift reaches

almost -40 Hz unlike the Doppler shift in Fig. D.3(a), which reaches almost -120 Hz. The

spectrogram, which corresponds to bending and straightening, is shown in Fig. D.3(f). During

the first interval from t = 0 s and t = 2 s, the Doppler shift reaches almost 20 Hz as when the

candidate bends the back, the head gets closer to the Tx and Rx. Thus, the propagation delay

τM,n(t) decreases and the Doppler shift is positive. In the second interval, from t = 2 s to

t ≈ 3 s, the Doppler shift has almost zero value as the person pauses. Thus, the corresponding

propagation delay is time-invariant. During the interval from t ≈ 3 s to t = 5 s, the candidate

is straightens the back, the propagation delay increases and the Doppler shift is negative as

shown in Fig. D.3(f).

Figs. D.4(a)-D.4(f) depict the TV mean Doppler shifts B(1)(t) corresponding to the falling

away, falling towards, walking away, walking towards, sitting, and bending and straightening

activities of the candidate. These TV mean Doppler shifts were computed by substituting

Sµ(f, t) in (D.16) instead of SH(q)(f, t). The TV mean Doppler shifts exhibited in Figs. D.4(a)-

D.4(f) provide similar patterns to the Doppler frequencies shown in the spectrograms depicted

in Figs. D.3(a)–D.3(f), but with different values. This is due to the effect of the fixed

scatterers, which is not completely eliminated by the highpass filter, the background noise in

the spectrogram, and having multiple moving scatterers (see the definition of the TV mean

Doppler shift in Section D.2).
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D.5 Conclusion

In this paper, we modelled of the CTF of 3D non-stationary F2F channels and the TV Doppler

frequency caused by the moving scatterer in terms of the TV speed, the TV AAOM, the TV

EAOM, the TV AAOA, the TV EAOA, the TV AAOD, and the TV AAOA. We demonstrated

the relationship between the Doppler frequency and the TV propagation delay corresponding

to the moving scatterer. We provided the expressions of the spectrogram of the CTF, which

consists of the auto-term and the cross-term. We expressed the TV mean Doppler shift by

means of the spectrogram. We presented the results of the spectrograms and the TV mean

Doppler shifts of the calibrated measured CSI for six human activities. The measurement

results showed the possibility of applying deep learning or machine learning algorithms for

HAR to the spectrograms or the TV mean Doppler shift of the measured calibrated CSI,

which can be collected by using commercial devices. For future work, we recommend the

development of a channel simulator fed with realistic trajectories of human activities. Such a

simulator will contribute to the development simulation-based HAR systems.
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: Spectrograms Sµ(f, t) of calibrated measured CSI corresponding to the following

6 different human activities (a) falling away, (b) falling towards, (c) walking away, (d) walking

towards, (e) sitting, and (f) bending and straightening.
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Figure D.4: TV mean Doppler shifts B(1)(t) of the measured calibrated CSI corresponding

to (a) falling away, (b) falling towards, (c) walking away, (d) walking towards, (e) sitting,

and (f) bending and straightening activities.
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