
CSAI: Open-Source Cellular Radio Access Network
Security Analysis Instrument

Thomas Byrd and Vuk Marojevic
Dept. of Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS

{tkb140, vuk.marojevic}@msstate.edu

Roger Piqueras Jover∗
Bloomberg LP
New York, NY

rpiquerasjov@bloomberg.net

Abstract—This paper presents our methodology and toolbox
that allows analyzing the radio access network security of
laboratory and commercial 4G and future 5G cellular networks.
We leverage a free open-source software suite that implements
the LTE UE and eNB enabling real-time signaling using software
radio peripherals. We modify the UE software processing stack
to act as an LTE packet collection and examination tool. This
is possible because of the openness of the 3GPP specifications.
Hence, we are able to receive and decode LTE downlink messages
for the purpose of analyzing potential security problems of
the standard. This paper shows how to rapidly prototype LTE
tools and build a software-defined radio access network (RAN)
analysis instrument for research and education. Using CSAI, the
Cellular RAN Security Analysis Instrument, a researcher can
analyze broadcast and paging messages of cellular networks.
CSAI is also able to test networks to aid in the identification
of vulnerabilities and verify functionality post-remediation. Ad-
ditionally, we found that it can crash an eNB which motivates
equivalent analyses of commercial network equipment and its
robustness against denial of service attacks.

Index Terms—open-source LTE, SDR, paging, radio access
network signaling, analysis, wireless security

I. INTRODUCTION

The Long Term Evolution (LTE) is a cellular communica-
tions standard developed by the 3rd Generation Partnership
Project (3GPP). LTE was finalized in 3GPP Release 8 in
December 2008, and LTE-Advanced followed in 3GPP Re-
lease 10. Only recently has there been significant enough
open source software development efforts for producing stable
implementations of the LTE and LTE-A specifications to allow
for rapid prototyping and testing of 4G networks by the
broader research community.

Next generation 5G networks promise a huge leap from 4G.
The reality however is that the initial 5G releases leverage
LTE networks in many regards: New Radio (NR) initially
implements a similar radio access network (RAN) and hooks
to the LTE evolved packet core (EPC). 5G generally allows
more flexible waveform and protocol configurations, trans-
mission in sub 6 GHz and millimeter wave bands, and higher
bandwidths than LTE. The signaling will initially be OFDM,
for example, where the 5G signaling frame will carry data
and control information. Starting in 3GPP Release 15, 5G

∗Author did not contribute to source code. Code published to accompany
this paper was written by Mr. Thomas Byrd and Dr. Vuk Marojevic.

frames, channels, and signals are specified in the standards
specifications.

There is a huge need for research and development tools
that enable cellular signaling analysis for a multitude of
purposes. It can help understand the limitations of current
implementations and guide the evolution of the standard.
They can also be effectively used for education and training.
Security is another important aspect where RAN signaling
analysis is needed. It has been shown that the LTE control
signaling suffers from targeted interference that an adversary
can exploit, easily and cheaply [1]. We therefore propose a
flexible signal analysis tool for analyzing commercial and
experimental cellular communication systems, assisting in the
detection of potential vulnerabilities, and evaluating correc-
tive measures which will pave the path to secure wireless
networks.

This paper leverages open-source software implementations
of LTE and develops a free open-source cellular RAN security
analysis instrument, CSAI. CSAI is lightweight and can
process data in real time. It interfaces with common software
radio front ends, such as Ettus Research USRPs, and can
capture LTE control messages and be easily extended to
capture 5G NR signals. It can emulate an eNodeB (eNB) or
user equipment (UE) and implement specific processes to test
the behavior of the UE or eNB. It also allows testing larger
RANs which involve multiple UEs or multiple eNBs. For
example, in commercial networks that have dozens of UEs, or
more, that rotate between serving cells, this tool will be able
to monitor paging traffic in a particular cell and identify new
UEs as they are paged for the purpose of signaling analysis.

It is very important to be able to analyze protocol edge
cases and understand their implications in terms of RAN
security. Not only can it be used for analyzing the standard
specifications of a modern cellular standard, but this tool can
also test vendor specific implementations. Additionally, it is
a benchmarking tool for stress testing 4G and 5G networks
and can be adapted to fit different use cases. For instance, if
a vendor needs an automated tool to determine the limits of
their Radio Resource Control (RRC) buffers, this instrument
will be able to facilitate that.

The remainder of this paper is organized as follows. Section
II briefly outlines other work in the area of capturing LTE

ar
X

iv
:1

90
5.

07
61

7v
1 

 [
cs

.C
R

] 
 1

8 
M

ay
 2

01
9



messages and performing LTE security analyses. Section
III describes the important LTE signaling over the RAN.
This allows for better comprehension of Section IV, which
introduces our software instrument for analyzing broadcast
and paging messages. Section V discusses experiments and
data collected from commercial networks. Section VI focuses
on the security implications of our initial results, and Section
VII concludes the paper.

II. RELATED WORK

Security research of cellular communications standards has
a long history and helped evolve systems to the current 4G
and emerging 5G networks [2]. The insecure 2G systems
are still used today and whenever 4G or 3G coverage is
not available, handsets look for 2G networks. 4G systems
introduce network and user authentication, where a user can
authenticate the network it connects to. However, certain
4G security vulnerabilities were identified that 5G networks
intend to fix.

With the emergence of software radios, increasing pro-
cessing power of general-purpose computers, and software
implementations of cellular standards, experimental LTE se-
curity research took off [3]. Researchers dissected the entire
LTE signaling frame looking for vulnerabilities of the system
when specific subsystems are interfered with. Two types of
attacks were examined, physical control channel jamming and
spoofing, and mitigation mechanisms were proposed in [4]
and [5]. Other research groups have more recently tested LTEs
higher layer signaling protocols and published their findings
in open literature [6].

While there exist many commercial tools that perform
LTE traffic capture and decoding, to our knowledge, there
is no open source software that will accomplish this. Papers
that have been published regarding LTE security require the
use of commercial LTE capture tools or the development of
custom tools as observed in [7] and [8]. The relevance of
this subject is apparent from the availability of professional
test instruments, offered by various hardware and software
companies. But their high cost limits their widespread use in
research and education. Our goal is to provide a framework
for making cellular RAN signaling analysis accessible to all,
enable wireless security research, increase the transparency
and visibility of RAN operations, and allow easy adoption by
industry and standardization bodies.

III. BACKGROUND

This section provides the necessary background on how
LTE UEs register to the network and get notified by the
network of incoming messages or calls. When a UE powers
on, it first needs to receive and decode the Primary and
Secondary Synchronization Signals (PSS/SSS) [9]. Together,
these two signals allow the UE to synchronize on a slot and
frame level basis, respectively, as well as correct for frequency
and phase offsets between the eNB and UE oscillators Now
that the UE is synchronized with the eNB, it needs to know
more information before it can initiate an attach request.

It needs to decode the the Master and System Information
Blocks (MIB/SIBs). These blocks are transmitted in the clear
by the eNB on a regular basis to ensure that UEs have the
necessary information needed to attach. This is the initial
cell search that each UE performs when turned on or when
returning out of coverage and is part of the information that
our tool can capture and analyze.

Fig. 1. Life cycle of an LTE UE.

Once a UE knows the network configuration details that are
provided in the MIB/SIBs, it can then use its Random Access
Radio Network Temporary Identity (RA-RNTI) to initiate a
RRC connection with an eNB. After a UE has established
an RRC connection, the UE will communicate to the EPC
through the eNB over the Non-Access Stratum (NAS) protocol
layer. Fig. 1 illustrates this attachment process.

In order to identify itself with the network, UEs utilize the
International Mobile Subscriber Identity (IMSI). This secret
identifier can be leveraged in a number of privacy-invading
attacks [10] and, as such, should always be kept private.
However, the UE will authenticate with the EPCs Home
Subscriber Server (HSS) transmitting its IMSI in the clear
if the UE has no history with the network.

Once all of the NAS and RRC connections are established,
the UE will enter an Idle state and deactivate the radio link
between itself and the eNB. If the EPC needs to deliver a
message to an idle UE, it is the job of the eNB to wake-up
the idle device and re-establish a physical connection [11].
This is done by sending out a paging message to all UEs
in the operational area of the eNB. These paging messages
use a specific Paging RNTI (P-RNTI) [12] to indicate the
broadcast nature of paging and UEs are required to respond
if their IMSI or SAE Temporary Mobile Subscriber Identity
(S-TMSI) is being paged. The S-TMSI is a combination of
MME Code and the Mobile TMSI (m-TMSI), herein both are
simply referred to as the TMSI. Our tool is able to capture
and decode the SIBs and Paging messages for specified eNBs
which enables RAN Security analysis.

IV. CSAI: CELLULAR RAN SECURITY ANALYSIS
INSTRUMENT

There are various open source software applications that
implement different parts of the LTE specifications. We chose
srsLTE [13] for its simplicity and applicability toward captur-
ing and decoding broadcast and paging messages.



srsLTE specifically implements 3GPP Release 8 with cer-
tain components of Release 9 integrated into its software. It
is a licensed under the GNU Affero General Public License
for free use for non-commercial purposes, such as research
and education. The srsLTE software suite is compatible with
software defined radio (SDR) hardware to build LTE radio
access networks. As the names suggest, srsUE implements
the LTE UE and srsENB the LTE eNB. To accompany these,
Software Radio Systems (SRS) has also published srsEPC
which provides an Evolved Packet Core (EPC) that is needed
for a fully working LTE network with one or several eNBs
serving one or several UEs. At the time of writing, we are
using the most current version of srsLTE, version 18.12.0
based on commit 3cc4ca85 from the master branch [14].

There are two primary ways that a message capture program
can be implemented using the srsLTE software suite. The first
method has been used in many different research papers and
uses one of srsLTEs example binaries which requires little
modification but significant external processing to generate
useful data. The second method requires more modification
to srsUE, but automatically decodes data and presents it in an
easily readable format.

A. Method 1

Method 1 involves using one of the example binaries.
The one we are focusing on is pdsch_ue which is one of
many example programs provided for LTE network testing. Its
companion program is pdsch_enodeb which can generate
PSS/SSS and MIB/SIBs. These blocks can be transmitted over
a physical radio frequency (RF) interface or written to a file.
The UE application is able to decode the synchronization
signals as well as the information blocks. It also has the
capability to listen for a specific RNTI and only decode blocks
addressed to that RNTI. As defined in the Medium Access
Control (MAC) protocol specifications [12], P-RNTIs have
the fixed value 0xFFFE, and we can instruct pdsch_ue to
only listen for this specific paging channel RNTI. The only
modification we need to make to pdsch_ue is one to get
the raw information blocks and paging messages from the
program.

In order to achieve this, an additional line of code is needed
after the application decodes the PDSCH to print the frame
received from an RF interface or input file. For the data to
be written to a file, the necessary configuration code must be
added before the program enters the main loop that continually
receives and decodes PDSCH frames.

The main problem with this approach is that additional
work is required to decode the output data using an ASN.1
message decoder. An example output is shown in Figure 2.
While there exist online tutorials and LTE message decoders,
they either add unnecessary complication to the workflow or
are inadequate for the amount of processing required for real
time operations. While this is a valid method to capture paging
traffic, we did not want to hinder large-scale analysis and
choose Method 2 for our tool.

Fig. 2. Output from ASN.1 Decoding

B. Method 2

The second method involves directly modifying the srsUE
source to achieve the desired capabilities. Specifically, we
modify the code that implements the RRC protocol. The RRC
protocol is primarily responsible for connection establishment
and release as well as handling paging messages. In the
connection_request function, send_con_request
is called which is responsible for sending the RRC connection
request message to the lower layers that is transmitted to the
eNB. If we comment this function and replace it with a call to
rrc_conection_release, we instruct the UE to remain
disconnected and not communicate with an eNB. This alone
allows capturing the SIBs transmitted by the eNB, but is not
enough to capture paging messages as well.

In order to capture paging messages, we add an additional
line after the connection release call to update the RRC state
to reflect a successful connection. The other layers of srsUE
will now look for paging messages and they are automatically
captured and logged if configured to.

Finally, the capture flag must be enabled. This is achieved
by editing the ue.conf file to enable PCAP logging and set
debug level logging for the MAC and RRC layers. The log file
will display all decoded SIBs and paging messages, but they
are also available in the generated pcap file. We can view the
capture in Wireshark by making an entry in the DLT USER
encapsulation table. The required DLT settings are listed in
configuration files. After making all necessary modifications
and rebuilding the software, outputs as shown in Figures 3
and 4 can be obtained for analysis. The next section describes
some of the statistics we derived from using CSAI.

V. EXPERIMENTATION

In order to benchmark CSAI, we capture commercial
network traffic and provide masked statistics to show the
effectiveness of the tool. Two USRP B210s with the modifi-
cations detailed in Section IV were used to capture SIBs and
paging traffic on an Ubuntu 18.04.02 machine. Similarly to
[15] and [16], only SIB and paging messages were acquired;



Fig. 3. Wireshark analysis of paging messages.

Fig. 4. Log output of paging message.

careful consideration was taken to ensure that no user data
was captured or retained despite being encrypted.

A. Short-Term Persistence

Table I shows the data that we obtained from three net-
works. We measured the amount of total paging traffic over
a six-hour time frame of two network operators the first day,
and repeated the same capture for the third operator on the
following day. By inspecting the paging information to see
whether IMSIs were used to page users, we found that all
pages used S-TMSIs to identify a UE as opposed to revealing
the IMSI, which is an encouraging result.

The last row in Table I shows the longest observed TMSI
in minutes which matches the length of the experiment. In
all three cases, TMSIs were observed throughout the capture,
but the majority of TMSIs were either a single occurrence, or
were used for a short time.

Figure 5 shows the histograms of the lifespans of the
observed TMSIs. Most TMSIs are very short lived, whereas
some are observed for the entire duration of 6 hours. Our
measurements were taken at a single location and we had no
control of the UEs in the area. Due to the mobility of users, it
is likely that the average TMSI lifespan is longer than shown
here.

TABLE I
NETWORK STATISTICS

Network Operators
Metrics Operator 1 Operator 2 Operator 3

Total Pages 586701 280795 156311
Unique TMSIs 31654 36544 49076

Longest active TMSI in minutes 361.25 361.04 288.15

Operator 1 has a significant number of long-lasting TMSIs.
This implies that many UEs attached to this cell did not hand-
off connectivity during our experiements. This is displayed
in Fig. 5 which shows a higher number of TMSIs at the
maximum observed time for operator 1 when compared to
the other two operators.

B. Long-Term Persistence

Next, we examine the persistence of TMSIs across different
days. To test this, we use two commercial UEs and CSAI to
monitor its operating band. We initiated communication to
the UE in attempts to capture the paging messages. This was
accomplished by sending numerous messages from one UE to
the other with ample time between messages so that the RRC
connection is released due to UE inactivity between messages.
The next day we repeated a similar communication pattern to
generate more paging messages to our UE.

We review the log files to see if our TMSI from day one
persisted on the following day. While the test was limited in
scope, we did not observe any of the TMSIs from day one in
the day two capture. This is a particularly encouraging result,
as it implies that this network operator rotates TMSIs at least
every twenty-two hours, which was the time window between
our test captures.

VI. SECURITY IMPLICATIONS

A. Potential Attacks

CSAI takes advantage of the inherent nature of pre-
authentication and broadcast signaling in LTE. While paging
messages do not inherently contain sensitive information, it is
possible to map a TMSI to a RNTI if you monitor subsequent
RRC connection setup requests. Once a mapping is obtained,
an attack as described in [17] could allow for statistical traffic
analysis even though the contents of the NAS messages are
encrypted and reflects a privacy concern.

Lichtman et al. outline attacks in [1] that discuss jamming
of the LTE signals. Once the MIB/SIBs are decoded, it is
possible to target jamming efforts towards a specific eNB.
Combined with the aforementioned TMSI to RNTI mapping,
it would be possible to extend the attack and jam one or
several UE’s data and control plane traffic.

Most network operators will page a UE using a TMSI; how-
ever, 3GPP standards allow eNBs to page a UE using its IMSI
in cases where a UE does not respond to three subsequent
paging attempts using a TMSI. This presents a significant
security issue as many follow-on attacks are capable once
a UEs IMSI is known and include down bidding attacks or



(a) Operator 1

(b) Operator 2

(c) Operator 3

Fig. 5. Time distribution of observed Paging messages.

man in the middle style interceptions as demonstrated in [7]
and [8]. Our instrument enables research on security analysis
and system hardening. Researchers will benefit from CSAI
as they test modifications to 4G and 5G protocols to prevent
the exploitation of preauthentication messages as surveyed in
[18].

B. Crashing a Software eNB

Another interesting behavior that we observed in the course
of developing CSAI was the potential for a straightforward
Denial of Service attack against an SDR eNB through active

RF attacks that mimic older Transmission Control Protocol
(TCP) SYN Flood attacks. A SYN Flood attack exploits
the inherit trust in TCP where a client floods a server with
TCP SYN messages in the first stage of the TCP three
way handshake. The server will allocate resources for the
connection and reply to the client with a TCP SYN ACK
message. Instead of completing the handshake with an ACK
message, the client will disregard the server’s SYN ACK
and continue opening connections with the server. This will
eventually consume all resources on the server leading to a
system crash or denying connectivity to legitimate clients.

In modifying the rrc.cc file, if one sends an RRC
Connection Request to an eNB and immediately calls the
RRC Connection Release process, the UE will not respond to
the eNBs request for RRC Connection Setup. The eNB will
allocate resources for the UE in expectance that the UE will
reply with an RRC Connection Setup Complete; however, the
UE has already begun the process of releasing the connection.
This leaves the base station in a half open state waiting for the
UE to finish the RRC handshake. Since the UE was instructed
to release, after a short delay it will attempt to reconnect to
the eNB further exhausting its resources. An even faster way
to perform this attack would be to have a fake UE enter a
while loop that constantly requests and immediately releases
RRC Connections.

In performing this attack against a SDR eNB, we were able
to crash it with high success. In our investigation, the eNB
crashed due to automated buffer overflow protections enabled
by default when using the GNU C Compiler. An example of
this crash is shown in Fig. 6.

While more testing is required to determine the scope of this
active attack, one potential mitigation may be similar to SYN
cookies as detailed in [19] where the eNB would only allocate
resources for RRC Connections after the UE responds with
the full Setup Complete message. In the case of performing
this attack without the while loop, the eNB occasionally took
minutes before it crashed. It is possible to modify CSAI be
modified to include a delay that ensures the eNB does not
crash, but rather denies service to legitimate UEs that are
connected or are trying to connect. This finding exemplifies
the potential of fuzzing analysis against the cellular network
infrastructure. In the case of the analysis presented in this
manuscript, a software radio-based UE successfully crashed
an open-source LTE network. However, the same could occur
against a commercial eNB. We are currently investigating
this further and impact on commercial femtocells and their
protection against the attacks demonstrated in [20].

Fig. 6. Crash of a software eNB



VII. CONCLUSION

This paper describes how a SDR LTE implementation of a
cellular RAN can be repurposed for analyzing the security of
the wireless network. Our example is for 4G LTE, but similar
principles can be applied to other cellular communications
protocols. Using method two described in Section IV, SIBs
and paging messages are able to be passively recorded from
test or commercial LTE networks; we also discovered another
modification to allow for DoS attacks against eNBs. When 5G
specifications are frozen and NR begins to deploy, this tool
will be extended to capture those messages as well because
the signaling in NR is similar to that of LTE/LTE-A.

We will release our code so that the community can
utilize this instrument for ongoing investigations on RAN
security. In continuing research, we are using CSAI as we
investigate practical attacks and remediations for UE and
eNB implementations. These include base station/small-cell
fuzzing, location leakage, and UE denial of service attacks
and their countermeasures.

REFERENCES

[1] M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and J. H.
Reed, “Lte/lte-a jamming, spoofing, and sniffing: threat assessment and
mitigation,” IEEE Communications Magazine, vol. 54, no. 4, pp. 54–61,
2016.

[2] R. P. Jover and V. Marojevic, “Security and protocol exploit analysis of
the 5g specifications,” IEEE Access, vol. 7, pp. 24 956–24 963, 2019.

[3] R. M. Rao, S. Ha, V. Marojevic, and J. H. Reed, “Lte phy layer vulner-
ability analysis and testing using open-source sdr tools,” in MILCOM
2017-2017 IEEE Military Communications Conference (MILCOM).
IEEE, 2017, pp. 744–749.

[4] V. Marojevic, R. M. Rao, S. Ha, and J. H. Reed, “Performance analysis
of a mission-critical portable lte system in targeted rf interference,” in
2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). IEEE,
2017, pp. 1–6.

[5] M. Labib, V. Marojevic, J. H. Reed, and A. I. Zaghloul, “Enhancing the
robustness of lte systems: analysis and evolution of the cell selection
process,” IEEE Communications Magazine, vol. 55, no. 2, pp. 208–215,
2017.

[6] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspector:
A systematic approach for adversarial testing of 4g lte,” in Network and
Distributed Systems Security (NDSS) Symposium 2018, 2018.

[7] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert,
“Practical attacks against privacy and availability in 4g/lte mobile
communication systems,” arXiv preprint arXiv:1510.07563, 2015.

[8] R. P. Jover, “Lte security, protocol exploits and location track-
ing experimentation with low-cost software radio,” arXiv preprint
arXiv:1607.05171, 2016.

[9] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical channels and modulation,” 3rd Generation Partnership Project
(3GPP), Technical Specification (TS) 36.211, 03 2013, version
10.7.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetai\ls.aspx?specificationId=2425

[10] T. Engel, “Locating mobile phones using signalling system 7,” in 25th
Chaos communication congress, 2008.

[11] A. Shrut, “Lte for layman (part 3) - the complete picture!” 2016,
[Online; posted 15-June-2016].

[12] 3GPP, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Medium Access Control (MAC); Protocol specifica-
tion,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 36.321, 04 2019, version 15.5.0. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetai\ls.aspx?specificationId=2437

[13] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srslte: an open-source platform for lte
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization. ACM, 2016, pp. 25–32.

[14] S. R. Systems, “srslte,” https://github.com/srsLTE/srsLTE/tree/
3cc4ca85\1a18b15234d849a5a4a8f9bf0768d30f, 2019.

[15] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino,
“Privacy attacks to the 4g and 5g cellular paging protocols using side
channel information,” 2019.

[16] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper, “Lte security
disabled misconfiguration in commercial networks,” in Proceedings
of the 12th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, ser. WiSec ’19, 2019.

[17] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Breaking lte on layer
two,” in IEEE Symposium on Security & Privacy (SP), 2019.

[18] M. A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, and H. Janicke,
“Security for 4g and 5g cellular networks: A survey of existing
authentication and privacy-preserving schemes,” Journal of Network and
Computer Applications, vol. 101, pp. 55–82, 2018.

[19] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach (7th Edition), 7th ed. Pearson, 2016.

[20] H. Kim, J. Lee, L. Eunkyu, and Y. Kim, “Touching the Untouchables:
Dynamic Security Analysis of the LTE Control Plane,” in Proceedings
of the IEEE Symposium on Security & Privacy (SP). IEEE, May 2019.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai\ls.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai\ls.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai\ls.aspx?specificationId=2437
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetai\ls.aspx?specificationId=2437
https://github.com/srsLTE/srsLTE/tree/3cc4ca85\1a18b15234d849a5a4a8f9bf0768d30f
https://github.com/srsLTE/srsLTE/tree/3cc4ca85\1a18b15234d849a5a4a8f9bf0768d30f

	I Introduction
	II Related Work
	III Background
	IV CSAI: Cellular RAN Security Analysis Instrument
	IV-A Method 1
	IV-B Method 2

	V Experimentation
	V-A Short-Term Persistence
	V-B Long-Term Persistence

	VI Security Implications
	VI-A Potential Attacks
	VI-B Crashing a Software eNB

	VII Conclusion
	References

