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Abstract—We address the problem of static clutter removal
in Wi-Fi-based passive bistatic radars. Our goal is to detect
slowly moving targets in highly cluttered indoor environments,
using Orthogonal Frequency-Division Multiplexing signals from
the 802.11n and 802.11ac Wi-Fi standards as sources of oppor-
tunity. We propose alternatives to the commonly used Extended
Cancellation Algorithm (ECA) clutter removal method. Those
alternatives are compared to ECA with simulations using an
innovative metric based on CA-CFAR detection, and validated
with experimental measurements using two Universal Software
Radio Peripherals, along with a fan and an electric train as
radar targets. The conclusion of that analysis is that, thanks to
the decoupled range and Doppler radar processing, simple novel
methods such as Average Removal are efficient alternatives to
the computationally intensive ECA which is currently the state-
of-the-art in CR.

Index Terms—Passive radars, Wi-Fi, OFDM, Clutter removal,
CA-CFAR

I. INTRODUCTION

For many applications, it is useful to perform indoor
monitoring, i.e. to remotely monitor movements of people
or objects in buildings. Examples include control of building
evacuations and intrusion detection [1], assistance of security
staffs in airports or public places [2], or human movements
classification [3]. Indoor monitoring with radar is of interest
when cameras do not have line-of-sight or cause privacy
concerns. Radars can estimate the distance of targets based
on signals propagation time (range processing), and the speed
of targets thanks to the Doppler effect (Doppler processing).

Furthermore, it is possible to perform indoor monitoring
with a minimal budget by using a passive bistatic radar.
Bistatic means that the transmitter (TX) and the receiver (RX)
are not colocated. Passive means that TX is a non-cooperative
source of opportunity. It has been shown in the last years that
Wi-Fi signals, based on Orthogonal Frequency-Division Mul-
tiplexing (OFDM) modulation, can be an interesting source of
opportunity thanks to their quasi-ubiquitous availability [1].
This work focuses on Wi-Fi-based passive radar, in which TX
is a non-controlled Wi-Fi access-point and RX is an antenna

capturing a potential direct signal from TX and signal echoes
that reflected on targets. The output of the passive radar is a
2D range-Doppler map (RDM) where targets are identified by
amplitude peaks. In this work, it is assumed that TX and RX
share the same clock to avoid any carrier frequency offset.

Radar processing can be performed in two ways. The clas-
sical approach, denoted here as simultaneous approach, is to
perform range and speed processing simultaneously, usually by
means of a 2D cross-correlation function (2D-CCF) [1]. How-
ever another approach, denoted here as decoupled approach,
obtains better results by exploiting the characteristics of
OFDM to perform the range processing and the Doppler pro-
cessing separately [4]. This decoupling also allows to perform
range processing with channel estimation techniques from
OFDM-based telecommunications, e.g. Frequency-Domain
Maximum Likelihood channel Estimation (FDMLE) or Time-
Domain MLE [5]. With that approach the Doppler processing
is performed by a Discrete Fourier Transform (DFT), im-
plemented as a Fast Fourier Transform (FFT)1, that reveals
the Doppler frequency shifts due to the target movement.
A window has to be applied prior to this FFT to reduce
target leakage, as explained in Section III-C. The decoupled
approach is followed in this work, and illustrated on Fig. 1.

RDM

ModulationBits
OFDM 

mapping

𝐶𝑅1
Range 

processing
Doppler 

processing
𝐶𝑅2CFAR

CPIFFT

Channel

Noise

WiFi Transmitter TX

Passive Radar Receiver RX

Window

Fig. 1. Passive radar block scheme - Decoupled approach

1The FFT is used to implement the DFT because it is equivalent and
implemention-wise more efficient. This also applies for the Inverse DFT
(IDFT), implemented as an Inverse FFT (IFFT).



The challenge addressed in this work is the clutter removal
(CR). The clutter denotes in this work the unwanted echoes
from static objects. They are located at DC (zero Doppler shift
because of zero speed) on the RDM. However the windowing
prior to the Doppler FFT brings the main problem of clutter
removal: if there is no windowing, the DC clutter can be
removed easily by just cancelling the DC component after
the FFT. However, due to the windowing, the windowed DC
clutter features a main lobe that is spread on the low frequency
bins (both negative and positive) potentially hiding real targets
moving at low speed.

The widely used clutter removal technique is called Ex-
tended Cancellation Algorithm (ECA); a method based on
least-squares that builds a clutter subspace and projects the
received signal on the subspace orthogonal to the clutter
[1], [6]. This is mainly used because with the simultaneous
approach, the user is forced to remove clutter before the 2D-
CCF. In the decoupled approach illustrated on Fig. 1, ECA
would thus take place in the CR1 block. Enhancements of
ECA have been proposed in [7].

The decoupled approach allows to apply clutter removal
methods of lower complexity than ECA [4]. With this ap-
proach, clutter removal is performed between range and speed
processing, in the CR2 block. Our work investigates this
track further, by proposing simple clutter removal methods
for the decoupled approach to further reduce computation
complexity, and by extending the comparison with ECA by
not only assessing how well clutter is removed but also how
clutter removal affects low speed target detection with a Cell
Averaging Constant False Alarm Rate (CA-CFAR) detector.

This paper is structured as follows: in Section II and
Section III, the system model and radar processing steps are
briefly summarized. In Section IV, different clutter removal
methods are presented. In Section V, their consequences on
the CA-CFAR threshold computation are compared using
simulations and their efficiency is assessed on experimental
measurements using two Universal Software Radio Peripherals
(USRPs).

As a convention, lowercase letters correspond to time-
domain signals (e.g. x), and uppercase letters to frequency-
domain signals (e.g. X). Bold uppercase letters denote matri-
ces of time-domain signals (e.g. X), and bold uppercase cal-
ligraphic letters denote matrices corresponding to frequency-
domain signals (e.g. X ).

II. SYSTEM MODEL

For the sake of simplicity, it is considered that one known
OFDM symbol of size Q is transmitted continuously N times,
forming a stream of identical symbols. This OFDM symbol
can be a field from the Preamble of a 802.11ac Wi-Fi packet
[8]. However, no guard bands are used in the OFDM spectrum,
this problem being treated separately in [5]. The time-domain
known OFDM symbol is the IDFT of known frequency-
domain complex QAM or PSK symbols [9]. The transmitted

stream can be represented by a matrix X where each column,
denoted with index k, is one OFDM symbol:

X[i, k] =
1

Q

Q/2−1∑
q=−Q/2

X [q, k] ej2πqi/Q (1)

where X is the matrix of frequency-domain complex QAM or
PSK symbols, q = −Q2 , ...,

Q
2 − 1 is the subcarrier index and

i = 0, 1, ..., Q− 1 is the time samples index (often called fast
time index). The time between two consecutive time samples
is defined as ts = 1/BW where BW is the bandwidth of the
system. The column index k = 0, 1, ..., N − 1 refers to the
OFDM symbol index (often called slow time index). The time
between two consecutive OFDM symbols, i.e. the duration of
one OFDM symbol, is defined as T .

The environment containing stationary obstacles and mov-
ing targets is modelled by a channel impulse response (CIR)
discretized into delay bins. The CIR changes between the
different OFDM symbols due to Doppler shifts. Hence, the
different CIRs, one per OFDM symbol, can be stacked in a
matrix H whose elements are H[i, k]. The distance between
TX and the r-th target is defined as dTX,r, the distance
between the target and RX as dr,RX , and the bistatic distance
of the target as dr = dTX,r+ dr,RX . The CIRs delay bins are
[9]:

H[i, k] =
∑

τr∈ bin i

ar e
−j2πfcτr ej2πfrkT (2)

where ar is the complex amplitude of the multipath component
(MPC) reflecting on the r-th target,

τr = dr/c (3)

is the propagation delay of this MPC (where c is the speed
of light in vacuum) and fc is the carrier frequency. The prop-
agation delay is discretized with the sampling time ts, such
that the CIRs from (2) contain peaks at indexes ir =

⌊
τr
ts

⌉
for

each target r, i.e. at the discrete index being the closest to the
continuous delay value. Each delay bin directly corresponds to
a distance (range) bin since range and delay are linked by (3).
The Doppler frequency shift is here assumed to be maximal to
simplify the analysis, thus the bistatic angle of the target [10]
is not considered. In this simplified case, with a wavelength λ,
the Doppler frequency shift of the r-th target moving at speed
vr is:

fr =
2vr
λ

(4)

Each time-domain received signal is the convolution of one
transmitted OFDM symbol with the CIR. This is equivalent to
a product in the frequency domain:

Y [q, k] = H[q, k]X [q, k] +W [q, k], (5)

where Y and H are respectively the matrices of frequency-
domain received signal and channel transfer function (CTF)
for each transmitted OFDM symbol with index k. W is a
matrix in which each column is the FFT of a i.i.d. sequence
of Additive White Gaussian Noise samples.



III. RADAR PROCESSING

A. Range Processing

Range processing consists of computing the bistatic dis-
tance, dr, for each target r. In this work, this is achieved by
performing channel estimation, i.e. estimating the CIR. The
frequency domain CTF is estimated by FDMLE [9] for each
OFDM symbol. The estimates can be stacked in a matrix Ĥ,
in the same way as the transmitted signal matrix:

Ĥ[q, k] = Y [q, k] / X [q, k]. (6)

The estimated time-domain CIRs are then obtained by an IFFT
on each column of Ĥ, i.e. one IFFT per OFDM symbol:

Ĥ[i, k] =
1

Q

Q/2−1∑
q=−Q/2

Ĥ[q, k]ej2πqi/Q. (7)

Ĥ is often denoted as the range-slow time map in radar
applications. It contains the estimated delay τ̂r of each target
r, that allows to compute the target bistatic distance d̂r = c τ̂r.
The range resolution is expressed as dres = c ts/2. The
802.11ac standard allows bandwidth up to 160 MHz, yielding
dres = 0.9375 m. If the Doppler shift is low, which is the
case for low speed targets, the received OFDM symbols can
be averaged by groups of M symbols before the channel
estimations to reduce the impact of noise [10].

B. Doppler Processing

A length-N FFT is then computed across the channel
estimations, i.e. across the rows of the range-slow time map
Ĥ, to estimate the Doppler frequency shift of the targets.
It yields the already mentioned RDM, denoted ĤD, whose
elements are ĤD[i, n], where n is the frequency bin index of
the Doppler FFT. The frequency resolution is fres = 1

NT . The
computation of the target speed with (4) has a speed resolution
vres = fresλ/2. More details on Doppler processing can be
found in [10].

C. Windowing

Target energy can leak on neighboring frequency bins if
its Doppler frequency is not exactly an integer multiple of
the frequency resolution. To reduce this leakage, a window is
applied, prior to the Doppler FFT, on each row of the range-
slow time map: each row is thus multiplied element-wise with
the window coefficients vector. A Blackman window is used,
because of its efficient reduction of the leakage, at the cost of
having a wide main lobe. However, as already explained, due
to the windowing the DC clutter is spread on the low frequency
bins, potentially hiding real targets moving at low speed. The
whole challenge of clutter removal is thus to remove the clutter
without affecting low speed targets.

D. CA-CFAR

To separate targets from the noise floor on the RDM, a
threshold is applied on each cell of the RDM. The most
common technique is CA-CFAR, for which the threshold is
based on the noise power estimate σ̂2

n on a band of size D

centered on the RDM cell. Here the band is 1-dimensional
along the range dimension of the RDM [10]. The threshold
is expressed as VT = D (P

−1/D
FA − 1) σ̂2

n, where PFA is the
probability of false alarm, set here at 10−5. The CA-CFAR
thresholds can be stacked in a matrix VT , in which each
element VT [i, n] is the threshold for the RDM cell ĤD[i, n].
More details on CA-CFAR can be found in [10].

IV. CLUTTER REMOVAL METHODS

A. ECA

ECA is fully described in [6]. The main drawbacks of this
method are the complexity of the computation of a large
pseudo-inverse matrix, and the fact that the matrix to invert
can be badly conditioned, resulting in a loss of precision.

B. Average Removal

Average Removal is the novel technique introduced here
to remove clutter before it is windowed, hence before it can
hide potential low speed targets. It takes advantage of the
decoupled approach by subtracting the average of each row i
from the range slow time map, i.e. the complex mean on each
range bin accross the channel estimations, before performing
the windowing and the Doppler FFT. Indeed the average of a
row is equal to the DC value of the FFT of the row, i.e. the
clutter before windowing. This technique takes place in the
CR2 block of Fig. 1. It has the advantage to offer a much
lower computational complexity than ECA, and not to suffer
from the conditioning problems mentioned in Section IV-A.

C. Delay Line Canceller

Another alternative that is considered in this work is the use
of a highpass filter to remove the clutter before windowing.
The simplest approach is to resort to a Delay Line Canceller
(DLC) filter, whose impulse response is [11]

g[k] = δ[k]− δ[k − 1] (8)

where δ[k] denotes the Kronecker delta. It is convolved with
each row of the range-slow time map before windowing, i.e.
on each range bin across channel estimates. Equation (8)
implies that only the difference between channel estimation
coefficients at slow time index k and at k − 1 remains after
filtering. Hence the clutter, that is static, is removed. The
amplitude of the filter frequency response proves to be equal
to [11]

|G[n]| = 2 sin
(nπ
N

)
. (9)

This sinusoidal shape creates a distortion on the RDM, as
illustrated later on Fig. 4.

V. PERFORMANCE ANALYSIS

A. Numerical results

Two simulations scenarii are considered to assess the
performance of the clutter removal methods. Their parame-
ters are given in Table I. The resulting speed resolution is
vres = 1.0615 m/s. The carrier frequency was not set in the
5 GHz frequency band to be coherent with the experiments



presented later in Section V-B, for which this band had to be
avoided due to potential interference with the public Wi-Fi of
the building.

TABLE I
SIMULATION PARAMETERS

fc BW N M T Q
2.3 GHz 160 MHz 15360 240 4 µs 512

1) Scenario 1, clutter only: This scenario is used to only
assess the clutter attenuation obtained by CR algorithms. In
this scenario, only one clutter component is present, and it
is successively placed at different distances from RX. Let
us denote as P the number of frequency bins occupied by
the clutter main lobe around the DC bin. Ideally, the clutter
should be entirely removed from the range-Doppler map, so
the components of the P bins around the DC bin should have
their amplitude reduced to the noise floor. The performance
metric is the Root Mean Square Error (RMSE) between the
RDM Ĥ

clutter
D with clutter processed by clutter removal methods

at the clutter range bin iC on P frequency bins centered around
the DC bin and a RDM Ĥ

noise
D with only noise (no clutter nor

target), as a function of the distance between clutter and RX:

RMSECR =

√√√√√ 1

P

P/2∑
n=−P/2

∣∣∣ Ĥ
clutter
D [iC , n]− Ĥ

noise
D [iC , n]

∣∣∣2
(10)

The result is displayed on Fig. 2. DLC cannot be assessed
in this scenario because it distorts the noise floor due to its si-
nusoidal shape (see (9)), altering the RMSE metric artificially.
Average Removal and ECA curves are superimposed and they
are at the theoretical noise level, meaning that they cancel the
clutter regardless of the distance between it and RX.
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Fig. 2. Comparison scenario 1 - RMSE between clutter and noise amplitude,
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2) Scenario 2, clutter and target: This scenario is used to
assess how CR affects a low speed target, at range bin itar
and speed bin ntar, in the presence of clutter. Ideally, the
target should not be affected by the clutter removal, meaning
that its detection by a CA-CFAR detector should not change.
The metric used to quantify this is the ratio between the target
peak amplitude in the RDM ĤD[itar, ntar] and the CA-CFAR

threshold for this RDM cell, VT [itar, ntar], as a function of
the target speed. This ratio is expressed in dB:

η [dB] = 20 log10

(
ĤD[itar, ntar] / VT [itar, ntar]

)
(11)

One clutter component and one target are present at the same
range bin itar = iC . The metric is computed for the case
where there is no CR method applied, as a reference, and
then for the different cases where CR methods are applied. It
is computed for each target speed. Ideally, for each CR method
η should be as high as possible and equal or higher than in the
case without CR because the target has to be detected without
being affected by the CR method. The target is set at 10 m
from TX and 9 m from RX. The result of this simulation is
displayed on Fig. 3.
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The first observation is the high value of η, due to two
reasons. Firstly, the CA-CFAR threshold VT [itar, ntar] is
low w.r.t. the target amplitude due to the limited noise
power. Secondly, the averaging combined with the SNR
gain of the Doppler FFT yields a high SNR, hence a high
ĤD[itar, ntar] / VT [itar, ntar] ratio.
η[dB] is positive, meaning that the target is properly de-

tected. However for target speeds 0 < v < vres, the target is
hidden below the clutter so η without CR is only measuring
the clutter. Only with CR the target is properly detected. For
target speeds below vres/2, η is higher without CR. This is
because at those speeds most of the target energy is located
at the DC bin and is thus cancelled by CR. However η is still
above 0 dB, meaning that the target is still detectable at very
low speeds. For those speeds, DLC is the best CR method.
For higher target speeds, ECA and Average Removal give a
higher and more stable η than the DLC.

B. Experimental measurements

The performance of the clutter removal methods can then
be validated by measurements. The experimental setup is
detailed in [5]. It consists of two USRPs X310, along with one
metallic fan and one electric train as targets. Measurements are
performed with custom OFDM signals featuring a bandwidth
of 160 MHz. The different components of the targets are
highlighted with black rectangles on the top plot of Fig. 4.
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Fig. 4. Measurements RDM - No CR (top) and DLC (bottom)

On the top plot of Fig. 4, no clutter removal was applied
and it can be noticed that an important clutter component is
present at several range bins. On the bottom plot, DLC was
applied. As expected from the sine in (9), it distorts the RDM,
yielding high amplitude RDM cells at high speeds. This does
not alter the detection process. Indeed, for one Doppler bin,
the target and the noise at all range bins undergo the same
distortion, meaning that the ratio between target amplitude
and CA-CFAR threshold does not vary if the threshold is
computed on a one-dimensional band along the range axis.
However, since each Doppler bin n is multiplied by a different
value of G[n], this distortion prevents the use of the Doppler
dimension to estimate the noise for CA-CFAR, and also
prevents alternative thresholding approaches, e.g. the use of
one unique threshold for the whole RDM. More generally, all
filtering-based approaches would suffer from this problem. A
possible improvement would be to generalize the DLC to a
higher order filter to reduce the distortion, so that the filter
gain doesn’t vary significantly between Doppler bins, except
for the DC bin.

On the top and bottom plots of Fig. 5 respectively, ECA and
Average Removal are applied. Clutter is properly removed, and
both methods give the same visual result.

From this whole comparison of the different clutter removal
methods, it can be concluded that Average Removal yields the
same performance as ECA, while presenting a much lower
computational complexity and avoiding matrix conditioning
problems. DLC also gives decent results but has the inconve-
nience to distort the RDM as illustrated on Fig. 4.

VI. CONCLUSIONS

The separation of range and Doppler processing in Wi-
Fi-based passive bistatic radar was exploited to investigate
new clutter removal methods yielding lower computational
complexity and lower sensitivity to matrix conditioning than
the commonly used Extensive Cancellation Algorithm. Those
methods were compared to ECA using a standard RMSE met-
ric and a more involved metric related to CA-CFAR detection.
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Fig. 5. Measurements RDM - ECA (top) and Average Removal (bottom)

They were also tested on experimental measurements using
OFDM signals with a bandwidth of 160 MHz. It turned out
that filtering-based clutter removal is a viable approach, yet not
suited for all detection methods, and that Average Removal is
an efficient low-complexity alternative to ECA.
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