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Abstract—In this paper, the implementation of a distributed
primal-dual learning algorithm over realistic wireless networks
is investigated. In the considered model, the users and one
base station (BS) cooperatively perform a distributed primal-
dual learning algorithm for controlling and optimizing wireless
networks. In particular, each user must locally update the primal
and dual variables and send the updated primal variables to
the BS. The BS aggregates the received primal variables and
broadcasts the aggregated variables to all users. Since all of
the primal and dual variables as well as aggregated variables
are transmitted over wireless links, the imperfect wireless links
will affect the solution achieved by the distributed primal-dual
algorithm. Therefore, it is necessary to study how wireless factors
such as transmission errors affect the implementation of the
distributed primal-dual algorithm and how to optimize wireless
network performance to improve the solution achieved by the
distributed primal-dual algorithm. To address these challenges,
the convergence rate of the primal-dual algorithm is provided in
a closed form while considering the impact of wireless factors
such as data transmission errors. Simulation results show that
the proposed distributed primal-dual algorithm can reduce the
gap between the target and obtained solution compared to the
distributed primal-dual learning algorithm without considering
imperfect wireless transmission.

Index Terms—Dual method, convergence rate, resource allo-
cation.

I. INTRODUCTION

Due to the explosive growth in data traffic, machine learning

and data driven approaches have recently received much

attention and are anticipated to be a key enabler for the to

be developed sixth generation (6G) wireless networks [1] in-

cluding vehicular to everything networks. Nowadays, standard

machine learning approaches require centralizing the training

data on a single data center or cloud. Since massive data

samples need to be uploaded to the data center, transmission

delay can be very high and user privacy is not guaranteed

in standard centralized machine learning approaches. How-

ever, low-latency and privacy requirements are important in
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the emerging application scenarios, such as unmanned aerial

vehicles, extended reality (XR) services, autonomous driving,

which makes centralized machine learning approaches inap-

plicable. Moreover, due to limited communication resources,

it is impractical for all the wireless devices that are engaged in

learning to transmit all of their collected data to a data center

that uses a centralized learning algorithm for data analytic or

network self-organization [1]–[11].

Therefore, it becomes increasingly attractive to process data

locally at edge devices. This has led to the emergency of

distributed optimization methods. In distributed optimization,

each node can compute on its own data and sends the results

to its neighbours or a central node. Distributed optimization

has many applications, such as user selection optimization,

resource allocation optimization, trajectory optimization, and

distributed machine learning design [12].

Distributed optimization algorithms fall within two main

classes: distributed primal algorithms [13], [14] and distribut-

ed primal-dual algorithms [15]. Combining the advantages

of distributed optimization and machine learning, distributed

learning frameworks are needed to enable wireless devices to

collaboratively build a shared learning model with training

taken place locally. One of the most promising distributed

learning algorithms is the emerging federated learning [16],

[17] framework is anticipated in future Internet of Things (IoT)

systems. In federated learning, wireless devices can coopera-

tively execute a learning task by only uploading local learning

models to the base station (BS) instead of sharing the entirety

of their training data. Since the data center cannot access the

local data sets at the users, distributed machine learning can

protect data privacy of the users. Using gradient sparsification,

a digital transmission scheme based on gradient quantization

was investigated in [16]. To implement federated learning

over wireless networks, the wireless devices must transmit

their local training results over wireless links [17], which can

affect the performance of federated learning due to limited

wireless resources (such as time and bandwidth). Due to the

advantage of fast convergence for primal distributed primal-

dual algorithms, it is meaningful to investigate the combination

of distributed learning and primal-dual algorithms. However,

978-1-6654-1368-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 9
4t

h 
Ve

hi
cu

la
r T

ec
hn

ol
og

y 
Co

nf
er

en
ce

 (V
TC

20
21

-F
al

l) 
| 

97
8-

1-
66

54
-1

36
8-

8/
21

/$
31

.0
0 

©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
VT

C2
02

1-
FA

LL
52

92
8.

20
21

.9
62

53
64

Authorized licensed use limited to: University College London. Downloaded on December 01,2022 at 09:19:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. A distributed learning algorithm over wireless communication
systems.

the above works [16], [17] ignored considering distributed

learning and primal-dual algorithms with taking transmission

error into consideration.

The main contribution of this paper is a novel framework

that enables the implementation of a primal-dual learning algo-

rithm over a realistic wireless network. Our key contributions

include:

• We study the performance of the distributed primal-

dual learning algorithm over wireless communication net-

works. For the considered primal-dual learning algorithm,

we provide the convergence rate while considering the

impact of wireless factors such as data transmission error.

• Simulation results show that the proposed distributed

primal-dual algorithm can reduce the gap between the

target and the obtained solution by up to 52% compared

to the distributed primal-dual algorithm without consid-

ering imperfect wireless transmission.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a network in which a set N of N users and one

BS jointly implement a distributed learning problem with the

primal-dual algorithm, as shown in Fig. 1. Each user n has a

local dataset Dn. Due to data privacy issue, only user n can

access dataset Dn.

A. Primal-Dual Model

The users and the BS use the distributed primal-dual al-

gorithm for solving the following machine learning problem

[18], [19]:

min
x

f(x) �
1

N

N
∑

n=1

fn(x,Dn) (1)

s.t. gm(x) ≤ 0, ∀m ∈ M, (1a)

where fn(x,Dn) is the loss function, gm(x) is the constraint

function, M = {1, · · · ,M}, and M is the number of con-

straints1. The optimization variable x stands for the weight

1For different learning tasks, the loss function will be different. For
example, quadric function for linear regression and log function for logistic
regression. For the constraints, gm(x) can be box constraints in the logistic
regression.

vector of the machine learning problem. For simplicity, we

use fn(x) to represent fn(x,Dn) in the following.

Using the distributed primal-dual algorithm, the Lagrange

function of problem (1) can be given by

L(x,λ) = 1

N

N
∑

n=1

fn(x) +

M
∑

m=1

λmgm(x)

=
1

N

N
∑

n=1

(

fn(x) +
M
∑

m=1

λmgm(x)

)

, (2)

where λ = [λ1, · · · , λM ]T is the Lagrange multiplier associ-

ated with constraint (1a). For each user n, we define the local

Lagrange function as

Ln(x,λ) = fn(x) + λTg(x), (3)

where g(x) � [g1(x), · · · , gM (x)]T . The sub-gradients of

local Lagrange function can be given by

∇xLn(x,λ) = ∇fn(x) + λT∇g(x), (4)

and

∇λLn(x,λ) = g(x). (5)

Based on the definition of the local Lagrange function, the

distributed primal-dual learning algorithm is proposed to solve

the following maximin problem [19]:

max
λ

min
x

1

N

N
∑

n=1

Ln(x,λ). (6)

The distributed primal-dual learning algorithm used to solve

problem (6) is given in Algorithm 1. In Algorithm 1, each

user updates the dual variable λ(t+1) and obtains a copy of

the primal variable yn(t + 1). Note that α(t) is a dynamic

step size for the sub-gradient descend procedure. The BS

aggregates the obtained copies of primal variables from all

users and broadcasts the aggregated vector x to all users. After

a sufficient number of iterations, such as T iterations, each user

can obtain the primal variable solution as in (10).

B. Wireless Communication Model
For the uplink transmission, orthogonal frequency division

The total number of RBs is D. Let bln ∈ {0, 1} denote the RB

association index, i.e., bln = 1 implies that RB l is assigned

to user n and bln = 0 otherwise. Since each user can occupy

at most one RB and each RB should be occupied by only one

user, we have

D
∑

l=1

bln ≤ 1,

N
∑

n=1

bln = 1. (11)

When user n is assigned with RB l, the uplink transmission

rate of user n is

rln = B log2

(

1 +
pnβld

−ζ
n on

Il +BN0

)

, (12)

where B is the bandwidth of each RB, pn is the transmission

power of user n, βl is the reference channel gain between the

user and the BS on RB l at the reference distance 1 m, dn is
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Algorithm 1 Distributed Primal-Dual Learning Algorithm

1: Initialize primal variable x(0) = 0 and dual variable

λ(0) = 0.

2: for t = 0, 1, · · · , T
3: parallel for user n ∈ N
4: Update the dual and primal variables:

λ(t+ 1) = λ(t) + α(t)∇λLn(x(t),λ(t)), (7)

yn(t+ 1) = x(t)− α(t)∇xLn(x(t),λ(t)). (8)

5: Each user sends yi(t) to the BS.

6: end for

7: The BS computes

x(t+ 1) =
1

N

N
∑

n=1

yn(t+ 1) (9)

and broadcasts the value to all users.

8: Set t = t+ 1.

9: end for

10: Output weighted average value of the primal variable

x̂(T ) =

∑T−1
t=0 α(t)x(t)
∑T−1

t=0 α(t)
. (10)

the distance between user n and the BS, ζ is a pathloss factor,

and on ∼ exp(1) is the small scale fading.

Due to the randomness of wireless communication channel,

the user may transmit data with errors. For user n with RB l,
the error rate is defined as

qln = P(rln < R), (13)

where R is the minimum rate for transmitting the updated

primal variables to the BS. To calculate the value of qln, we

have the following lemma.

Lemma 1. The data error rate of user n with RB l is

qln = 1− exp

(

−Dln

pn

)

, (14)

where Dln = (2R/B−1)(Il+BN0)

βld
−ζ
n

.

Proof: Based on (12) and (13), we have

qln = P(rln < R)

= P

(

on <
(2R/B − 1)(Il +BN0)

pnβld
−ζ
n

)

= 1− exp

(

− (2R/B − 1)(Il +BN0)

pnβld
−ζ
n

)

, (15)

where the last equality follows from on ∼ exp(1).
Since user n can occupy any one RB, the data error rate of

user n is

qn =

D
∑

l=1

blnqln. (16)

In the considered system, if the received primal variable

yn from user n contains errors, the BS will not use it for

the update of the aggregated primal variables. Let Cn(t) ∈
{0, 1} indicate that whether user n transmits primal variable

yn in time t contains error or not. In particular, Cn(t) = 1
shows that yn received by the BS does not contain any data

error; otherwise, we have Cn(t) = 0. The BS computes the

aggregated primal variable as2

x(t+ 1) =

∑N
n=1 Cn(t)yn(t+ 1)
∑N

n=1 Cn(t)
, (17)

where

Cn(t) =

{

1, with probability 1− qn
0, with probability qn

. (18)

C. Problem Formulation
We aim to jointly optimize the RB allocation and power

control for all users to minimize the gap of the solution

achieved by the distributed primal-dual algorithm and the

optimal solution that the distributed primal-dual algorithm

targets to achieve, which is given as

min
B,p

E(f(x̂(T ))− f(x∗)) (19)

s.t.

D
∑

l=1

bln ≤ 1, ∀l ∈ N , (19a)

N
∑

n=1

bln = 1, ∀n ∈ N , (19b)

N
∑

n=1

pn ≤ Pmax, (19c)

bln ∈ {0, 1}, ∀l, n ∈ N , (19d)

0 ≤ pn ≤ Pn, ∀n ∈ N , (19e)

where B = {bln}N×N , p = [p1, · · · , pN ]T , E(f(x̂(T )) −
f(x∗)) denotes the gap of the solution x(T ) achieved by the

distributed primal-dual algorithm with T iterations and the

optimal solution x∗ that the distributed primal-dual algorithm

targets to achieve, Pmax is the maximum total transmit power

of all users, and Pn is the maximum transmit power of user n.

Constraints (19a) and (19b) indicate that each user can occupy

only one RB and each RB can be assigned with only one user.

Constraint (19c) shows that the sum transmit power of all users

cannot exceed a given value, which guarantees that the energy

consumption of the whole system is limited.

III. ALGORITHM DESIGN

A. RB Allocation

In practical scenarios, such as IoT systems, there are a large

number of users. Due to the limited bandwidth resource for

wireless communications, we assume that the total number of

2Note that the denominator in (17) is zero only for the case that Cn(t) = 0
for all n with probability ΠN

n=1
qn. Since the probability ΠN

n=1
qn approaches

zero when the number of users is large, we ignore the case that Cn(t) = 0
for all n.
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Algorithm 2 Dynamic User Association Scheme

1: InputInputInput: RB allocation probability matrix B = {bln}D×N .

2: Initialize the set of users with assigned RB E = ∅ and the

set of users without any associated RB F = N .

3: for l = 1 : 1 : D do

4: Uniformly generate a variable u in interval [0, 1].
5: Scale the probability of users without any associated

RB as

bln =
bln

∑

s∈F bsn
, ∀l ∈ F . (20)

6: Calculate the user id nl for occupying RB l, which

should satisfy
∑

s<nl,s∈F
bsn ≤ u ≤

∑

s≤nl,s∈F
bsn. (21)

7: Update E = E ∪ {nl} and F = F \ {nl}.

8: end for

RBs is D, which is smaller than the total number of users, i.e.,

D < N . In this case, all users cannot be served at the same

time. To ensure that all users can be involved the distributed

primal-dual learning framework, we consider the dynamic user

association scheme. The basic idea is that only a small number

of users can be served under a given probability model at each

time and all users can be involved during the whole distributed

primal-dual learning process. To be specific, denote bln as the

probability that RB l is allocated to user n. Due to that fact

that each RB can be occupied by only one user during each

transmission, we have the following constraint

N
∑

n=1

bln = 1, ∀l ∈ D, (22)

where D = {1, 2, · · · , D} is the set of all RBs.

With given RB allocation probability matrix B =
{bln}D×N , the dynamic user association scheme is presented

in Algorithm 2. In Algorithm 2, each RB is assigned iteratively

as shown at step 3. At step 4 in Algorithm 2, a random variable

is generated to determine one user, which can be assigned

with RB l. The user is selected based on the RB allocation

probability matrix B according to step 5. The sets of users

with and without assigned RB are updated at step 6.

B. Convergence Analysis

Problem (19) is hard to solve since the accurate formu-

lation of the objective function is difficult to derive. In this

section, we provide the convergence analysis of the proposed

distributed primal-dual learning Algorithm 1, which is helpful

in simplifying the objective function in problem (19).

To analyze the convergence rate of Algorithm 1, we make

the following three assumptions:

Assumption 1. Compact Feasible Set: The feasible set of

primal variable x satisfying (1a) is non-empty, compact, and

convex. Denote R as the smallest radius of the ℓ2 ball with

original center that contains the feasible set, i.e., ‖x‖ ≤ R for

all x satisfying (1a). Furthermore, this feasible set is known

by all users.

Assumption 2. Slater Condition: There exists a solution x

such that gm(x) < 0, ∀m ∈ M. Further assume that gm(0) =
0, ∀m ∈ M.

Assumption 2 indicates that the primal problem in (1) and

the dual problem (6) have the same optimal objective value,

and the optimal dual variable λ∗ has a finite value. Denote S
as the finite maximum value for λm(t), i.e., λm(t) < S.

Assumption 3. Lipschitz Continuous: Both functions fn(x)
and gm(x) are convex on the feasible set, and the first-order

derivative of functions fn(x) and gm(x) are bounded by L,

i.e.,

‖∇fn(x)‖ ≤ L, ‖∇gm(x)‖ ≤ L, ∀n ∈ N ,m ∈ M, (23)

where L < ∞ is a constant.

Based on the above assumptions, the convergence of Algo-

rithm 1 is shown in the following theorem.

Theorem 1. If the BS and the users implement Algorithm 1

over T iterations, the upper bound of E(f(x̂(T )) − f(x∗))
can be given by

E(f(x̂(T ))− f(x∗))≤R2 +
∑N

n=1 d1(1− qn)

d2(1− q0)
(24)

where d1 =
∑T−1

t=0 L2((1 + MS)2 + MR2)α(t)2, d2 =

2
∑T−1

t=0 α(t) and q0 = maxn∈N qn.

Theorem 1 provides an upper bound of the gap between

f(x̂(T )) and f(x∗). If we let the step size α(t) (for example

α(t) = 1/t) satisfy
∑∞

t=0 α(t) = ∞ and
∑∞

t=0 α(t)
2 < ∞,

we have limT→∞ E(f(x̂(T )) − f(x∗)) = 0, which implies

that x̂(T ) approaches the optimal solution.

Theorem 2. If the BS and the users implement Algorithm 1

over T iterations and the step size α(t) is chosen as α(t) =
R√
1+t

, the upper bound of E(f(x̂(T ))− f(x∗)) can be given

by:

E(f(x̂(T ))− f(x∗))

≤R(1 +
∑N

n=1(1− qn)L
2((1 +MS)2 +MR2) lnT )

2(1− q0)
√
T

.

(25)

According to the upper bound (25), the convergence rate of

the Algorithm 1 is given by O(T− 1

2 ). Theorem 2 implies that

the obtained solution approaches the optimal solution as the

number of iterations grows.

IV. SIMULATION RESULTS

There are N = 100 users uniformly in a square area of

size 500 m × 500 m with the BS at the center. The path loss

model is 128.1 + 37.6 log10 d (d is in km). The bandwidth

of each RB is 1 MHz and the noise power spectral density

is N0 = −174 dBm/Hz. The maximum transmit power of

each user is set as Pn = 5 dBm. To show the performance

of the distributed primal-dual learning algorithm, we consider
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Fig. 2. Convergence behaviour of the distributed primal-dual learning
algorithm.

the similar parameters as in [19]. In particular, each user trains

the learning model using the MNIST dataset.

The convergence of the distributed primal-dual learning

algorithm is shown in Fig. 2. In the figure, we compare the

proposed algorithm with the conventional algorithm which

ignores the wireless affect. For the conventional algorithm,

each user transmits with equal transmit power and RB alloca-

tion is randomly assigned. From this figure, we find that the

distributed primal-dual learning algorithm has an oscillatory

behavior.
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Fig. 3. Test accuracy versus the the number of communication rounds with
N = 100 and Pn = 1 dBm.

We compare the proposed algorithm with two baselines:

the fixed power control algorithm with only optimizing RB

allocation (labelled as ‘FPC’) and the fixed RB allocation

algorithm with only optimizing power control (labelled as

‘FRBA’).

Figs. 3 shows the test accuracy versus the number of

communication rounds. From this figure, it is found that the

test accuracy has an increasing trend. It is also found that the

proposed algorithm achieves the highest test probability.

The proof of Theorems 1 and 2 can be similarly derived as

in [19]. Based on Theorem 2, the objective function of problem

(19) can be approximated. Then, an iterative algorithm can be

used to solve problem (19) by optimizing A and p iteratively.

V. CONCLUSIONS

In this paper, we have investigated the convergence op-

timization problem of a distributed primal-dual learning al-

gorithm over wireless communication networks via jointly

optimizing RB allocation and power control. We have provided

a closed-form expression for the expected convergence rate

of a distributed primal-dual learning algorithm that considers

the transmission errors over wireless communications. Based

on this convergence rate, an iterative algorithm has been

proposed. Simulation results have shown the superiority of

the proposed solution.
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cal federated learning across heterogeneous cellular networks,” arXiv

preprint arXiv:1909.02362, 2019.
[9] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy

efficient federated learning over wireless communication networks,”
arXiv preprint arXiv:1911.02417, 2019.

[10] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.

Commun. Shanghai, China: IEEE, May 2019, pp. 1–7.
[11] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and

A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for on-
device federated learning,” arXiv preprint arXiv:1910.06378, 2019.

[12] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” arXiv preprint arXiv:1909.07972, 2019.
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