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Abstract—Due to the nonlinear distortion in Orthogonal
frequency division multiplexing (OFDM) systems, the timing
synchronization (TS) performance is inevitably degraded at the
receiver. To relieve this issue, an extreme learning machine
(ELM)-based network with a novel learning label is proposed to
the TS of OFDM system in our work and increases the possibility
of symbol timing offset (STO) estimation residing in inter-
symbol interference (ISI)-free region. Especially, by exploiting the
prior information of the ISI-free region, two types of learning
labels are developed to facilitate the ELM-based TS network.
With designed learning labels, a timing-processing by classic
TS scheme is first executed to capture the coarse timing metric
(TM) and then followed by an ELM network to refine the TM.
According to experiments and analysis, our scheme shows its
effectiveness in the improvement of TS performance and reveals
its generalization performance in different training and testing
channel scenarios.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) sys-
tem is pervasively applied in modern communication systems,
such as wireless local area networks (WLAN) [1] and the
upcoming fifth-generation (5G) wireless communication sys-
tem [2]. In the OFDM system, the overall performance heavily
relies on the process of timing synchronization (TS). Thus,
in the past two decades, lots of classic TS schemes emerged
for OFDM systems. However, a large number of non-linear
devices or blocks usually exist in the OFDM system, e.g.,
high power amplifier (HPA), digital to analog converter (DAC),
thereby causing nonlinear distortion [3] and degrading the
receiver’s TS performance. To this end, the nonlinear distortion
needs to be considered in the OFDM system design. Owing to
the lack of consideration for nonlinear distortion, the existing
TS schemes are facing great challenges.

Due to the prominent ability to cope with nonlinear dis-
tortion, machine learning has drawn considerable attention
in recent years [4], [5]. Machine learning, especially deep
learning (DL), has been widely applied in wireless commu-
nication systems [5]–[9], e.g., signal detection [5], precoding
[6], channel state information (CSI) feedback [7], and channel
estimation [8], [9]. However, there are limited DL-based
proposals for the TS scheme subject to nonlinear distortion.
Compared with DL-based approaches, the extreme learning

machine (ELM) is raised in [10], which is a single hidden
layer feed-forward neural network with no requirement of
gradient back-propagation. Relative to DL-based networks,
the ELM network presents many advantages, such as less
time-consuming for network training and good generalization
performance [10].

In this paper, we introduce the ELM-based network into the
TS of the OFDM system to improve the adaptability of the
existing classic TS scheme [11] against nonlinear distortion.
Considering that the learning ability of a neural network is
influenced by learning labels to a certain extent [12] and the
ELM-based network is no exception, we develop the learning
label to enhance the learning ability of ELM-based networks
for TS in OFDM systems.

The remainder of this paper is structured as follows. In
Section II, we present the system model. The designed learning
label for the ELM-based TS network is proposed in Section III
and illustrated in Section IV. Numerical results and analysis
are presented in Section V, and Section VI concludes our work.
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Fig. 1. System model.

ar
X

iv
:2

10
7.

13
17

7v
1 

 [
ee

ss
.S

P]
  2

8 
Ju

l 2
02

1



II. SYSTEM MODEL

Considering a system model in Fig. 1, the transmitter
encounters nonlinear distortion and the receiver is combined
by the classic synchronizer and ELM network. Supposing N
sub-carriers for each OFDM symbol, the nth received sample
r (n) in time domain can be represented by

r (n) =

L−1∑
l=0

h (l) s̃ (n− θ − l)ej(
2πnυ
N +φ) + w (n), (1)

where θ, ν, and φ stand for the unknown STO, carrier
frequency offset, and initial phase, respectively. w (n) is the
complex additive white Gaussian noise (AWGN) with zero-
mean and variance σ2, i.e., w (n) ∼ CN

(
0, σ2

)
. h (l),

l = 0, 2, · · · , L − 1, represents the channel impulse response
(CIR) with a memory of L-length samples. s̃ (n) is the OFDM
signal suffered from nonlinear distortion at transmitted, i.e.,

s̃ (n) = fdis{s (n)}, (2)

where fdis{·} denotes an universal process for nonlinear
distortion, e.g., PA, DAC with hardware imperfections. s (n)
is the undistorted OFDM signal, which can be expressed as

s (n) =

N−1∑
k=0

d (k) ej
2πnk
N , (3)

where d (k), k = 0, 1, · · · , N − 1, is the kth frequency-
domain symbol, which satisfies E{|d (k) |2} = σ2

d with σd
being constant. In (1)-(3), the discrete-time index n satisfies
−Ng ≤ n ≤ N − 1, where Ng stands for the length of cyclic
prefix (CP). Without loss of generality, Ng > L is assumed.

With the received samples in (1), an classic TS synchronizer
is first performed to calculate the TM, and then an ELM-
based network is applied to alleviate the impacts of nonlinear
distortion and refine the TM for TS.

III. LEARNING-LABEL DESIGN

In machine learning, a good label usually facilitates the
learning ability of the neural network [12]. To enhance the
learning ability of ELM-based network, an effective label
design needs to be concerned.

For expression convenience, a general label-vector form,
denoted as T ∈ RNd×1, is employed by using a time-indexed
sequence, i.e.,

T = [T0, T1, · · · , Tn, · · · , TNd−1]
T
, (4)

where Nd is an observed window length within TM, and Tn,
n = 0, 1, · · · , Nd − 1, corresponds to the nth label value in a
window of Nd samples of TM.

A. Learning Label Using One-hot encoding
In [13], a label using one-hot encoding is considered.

Tn =

{
1, n = θ +Ng + 1
0, others , (5)

however, the label in (5) is vulnerable to be interfered with
multi-path, noise, and nonlinear distortion, etc. Also, this label
lacks tolerance in timing errors, and thus degrades the TS
performance of OFDM system.

B. Exploiting the midpoint of ISI-free region

For the cases where the length of CP is larger than the length
of multi-path, the midpoint of ISI-free region is relatively
stable. Therefore, we exploit the superiority of the midpoint
of ISI-free region, making the STO estimation reside in the
ISI-free region. The label form can be expressed by

Tn =

{
1, n = nc
0, others , (6)

where nc denotes the time index of the midpoint of ISI-free
region, i.e., nc = θ+b(Ng+L+1)/2c. In this paper, the label
in (6) is called as midpoint-based learning label and denoted
by Tmid, which is expressed as

Tmid = [0nc−1, 1,0Nd−nc ]
T
, (7)

where 0 denotes an all-zeros row vector. For the label Tmid, its
performance of STO estimation is further improved compared
with the label in [13]. Even so, only the midpoint of ISI-free
region within TM is considered, while the full use of prior
information of ISI-free region is not being considered. This
impels us to further improve the learning-label design.

C. Exploiting the prior information of ISI-free region

Since the TS of OFDM system only requires the STO
estimation to determine one of valid time indexes in the ISI-
free region, the full use of prior information of ISI-free region
needs to be considered in the label design. By taking the full
prior information of ISI-free region into account, we set the
values of Tn inside ISI-free region as 1, while setting the
values of Tn outside ISI-free region as 0, i.e.,

Tn =

{
1, θ + L ≤ n ≤ θ +Ng + 1
0, others . (8)

In this paper, the label in (8) is referred as ISI-free-based
learning label and denoted by TISI-free, which is constructed
as

TISI-free =
[
0θ+L−1,1Ng−L+2,0Nd−Ng−θ−1

]T
, (9)

where 1 denotes an all-ones row vector. Since the TISI-free
enhances the robustness against interference and enlarges the
tolerance for timing error, the output of network could be
regarded as a refined TM. Therefore, training ELM using
TISI-free could guide the current STO estimation into the correct
timing range of ISI-free.

IV. ELM-BASED TS SCHEME

In this section, we employ ELM network combined with
developed learning label to tackle the TS problem.

A. Timing Preprocessing

To improve the efficiency of ELM learning, the classic
synchronizer is used as a timing preprocessing to execute the
knowledge discovery. By using Schmidl’s scheme in [11], the
timing preprocessing is performed to coarsely capture the TM.
The time preprocessing is given by

M (d) =
|P (d)|2

|R (d)|2
, (10)



where d is the trial value to search the start point of
OFDM symbol in a window of Nd samples. P (d) and
R (d) stand for the autocorrelation function and normalized
function separately [11]. Considering the observed TM with
length Nd, the TM vector g ∈ RNd×1 can be given by
g = [M (0),M (1), · · · ,M (d) , · · · ,M(Nd − 1)]

T .
The TM contains coarse features of unknown STO and non-

linear distortion, which could be regarded as the knowledge for
ELM learning. For further facilitating the training and testing
of ELM network, the TM vector g is normalized by

g =
g

‖g‖2
. (11)

With the normalized TM vector g, the combination of ELM
network and designed learning label is employed for the TS in
OFDM systems to relieve the nonlinear distortion and refine
the TM.

B. Network Training and Testing
In this subsection, we present the ELM-based TS network

for OFDM system, in which the offline and online procedures
are separately elaborated in the following.

1) Off-line training specification: In this phase, we use the
ELM to learn the complex relationship of output and input, in
which the training data-set {(gi,Ti)}Nti=1 ∈ RNd×1 consists of
normalized TMs g̃i and learning label Ti. During the off-line
training procedure, all the elements of input weight matrix
W ∈ CÑ×Nd and hidden bias b ∈ CÑ×1 are randomly
selected [10], in which Ñ is the number of hidden neurons.

In ELM, the ith hidden layer output Hi is presented as

Hi = σ (Wg̃i + b) , (12)

where σ (·) is hyperbolic tangent (tanh) activation function.
By collecting Nt samples of Hi, a hidden layer output matrix
is constructed as H = [H1,H2, · · · ,Hi, · · · ,HNt ]. Corre-
spondingly, a label matrix T̃ ∈ RNd×Nt is obtained by loading
Nt samples of Ti, i.e., T̃ = [T1,T2, · · · ,Ti, · · · ,TNt ].

With H and T̃, an optimized output weight matrix Υ ∈
CNd×Ñ is obtained by

Υ = T̃H†. (13)

So far the offline training is completed, and then the online
deployment could be implemented according to W, b, and Υ.

2) Online running: In this phase of ELM testing, the
received signals r (n) are first inputted to the classic syn-
chronizer for knowledge discovery. Then, we feed normalized
TM g̃ into the trained ELM network to obtain refined TM
O ∈ RNd×1, i.e.,

O = Υ · σ (Wg̃ + b). (14)

By expressing O as {Od}Nd−1d=0 , the STO estimation is obtained
by θ̂ = arg max0≤d≤Nd−1|Od|

2. It seems that straightforward
since the complicated work has been released to the training
phase of ELM-based TS. Besides, the known network pa-
rameters (i.e., W, b, and Υ) can accelerate the processing
of ELM-based TS networks according to parallel processing
mode, which leads to a low processing delay.

V. EXPERIMENTAL ANALYSIS

In this section, numerical results are provided to illustrate
the performance of ELM-based TS scheme for OFDM system.
The basic parameters and definitions involved in the simula-
tions are given in the following.

A. Parameter Setting

In the simulations, the basic parameters N = 64, Ng = 16,
Nd = 2 (N +Ng) = 160, Ñ = 8 (N +Ng) = 640, Nt = 217

are considered, respectively. The signal-to-noise ratio (SNR) in
decibel (dB) is defined as SNR (dB) = 10 log10

(
σ2
P /σ

2
)

[14].
Without loss of generality, σ2

P = σ2
d is considered in the simu-

lations, i.e., the preamble and data are assigned the same trans-
mitted power. According to [15], the error probability of TS
means that probability of STO estimation falling outside of the
ISI-free region, i.e., Pe,TS = Pr

{
θ̂ /∈ [θ + L, θ +Ng + 1]

}
.

In the simulations, the nonlinear amplitude A (r) and phase
φ (r), r = |s (n) |, are defined as A (r) = αar/

(
1 + βar

2
)

and
Φ (r) = αφr

2/
(
1 + βφr

2
)

respectively, in which αa = 1.96,
βa = 0.99, αφ = 2.53, and βφ = 2.82 [16]. Also, the error
vector magnitude (EVM) is used to evaluate the distortion
intensity [17], i.e.,

EVM (%) =

√∑
|s̃ (n)− sref (n)|2∑
|sref (n)|2

, (15)

where sref (n) denotes the nth reference signal amplified by
HPA linearly, i.e., transmitted signal without distortion.

For expression convenience, “Ref [13]”, “Prop Tmid”, and
“Prop TISI-free” are employed to denote the ELM-based TS
scheme with the label used in [13] and the label in (6), and
the label in (8), respectively. The classic TS scheme proposed
in [11] serves as a baseline and is referred to as “SC corr” in
the simulations. Meanwhile, we employ “TS Learn” to repre-
sent the ELM-based TS scheme without timing preprocessing,
i.e., directly employing the received signal as the network
input.

TS_Learn

SC_corr

Ref_[13]

Prop_Tmid

Prop_TISI-free

Fig. 2. Comparison of TS error probability, where N = 64, Ng = 16,
L = 8, and EVM = 40% are considered.



B. Error probability of TS

The effectiveness of the proposed ELM-based TS is ver-
ified in terms of error probability curves in Fig. 2, where
L = 8 and EVM = 40% are considered. From Fig. 2,
the error probability of “TS Learn” is higher than those of
“SC corr”, “Ref [13]”, “Prop Tmid”, and “Prop TISI-free” for
all the SNR values. This demonstrates that the ELM-based
TS network cannot work well without timing preprocessing.
Meanwhile, the error probability of “SC corr” is improved
by “Ref [13]” for low SNRs (e.g., SNR < 10dB), yet
“Ref [13]” is inapplicable due to the relatively high error
probability at the high SNR region (e.g., SNR > 10dB).
Nevertheless, the lower error probabilities of “Prop Tmid” and
“Prop TISI-free” retain the feasibility for practical applications
in the relatively high SNR region, e.g., Pe,TS < 0.5 × 10−2

for “Prop TISI-free” when SNR ≥ 12dB. It is also worth noting
that, “Prop TISI-free” reaches the smallest error probability, and
this confirms the designed rationality of “Prop TISI-free”. To
sum up, “Prop Tmid” and “Prop TISI-free” possess the effective
improvement in the reduction of error probability.

SC_corr

Ltest = 12

Ltest = 10Ltest = 8

(a) “Prop Tmid”

SC_corr

Ltest = 12Ltest = 10

Ltest = 8

(b) “Prop TISI-free”

Fig. 3. Generation performance against the impacts of L.

(a) “Prop Tmid”

(b) “Prop TISI-free”

Fig. 4. Generation performance against the impacts of η.

C. Generalization Analysis

Fig. 3 and Fig. 4 plot the error probability of TS against the
impacts of L and η, respectively. For expression convenience,
the subscript “train” and “test” are used to distinguish between
training and testing values of L (or η). Except for the param-
eters that need to discuss, other parameters remain the same
as those in Fig. 2.

1) Generalization against L: Fig. 3 gives the error prob-
ability of TS to generalization against the impacts of L. In
this simulation, Ltrain = 8, Ltrain = 10, and Ltrain = 12 are
employed for training phase, while different testing values
of Ltest (i.e., Ltest = 8, Ltest = 10, and Ltest = 12)
are considered for each value of Ltrain. From Fig. 3(a)
to Fig. 3(b), for each case of Ltest, the error probabili-
ties of “Prop Tmid” and “Prop TISI-free” are lower than that
of “SC corr”. It is also worth noting that the error prob-
abilities of “Prop Tmid” and “Prop TISI-free” increase with
the enlarged difference between Ltest and Ltrain. Especially,
Fig. 3(b) reveals that the generalization of “Prop TISI-free” is



worse than that of “Prop Tmid”. Although the timing-error-
probability performance of “Prop TISI-free” degrades obviously
when Ltest − Ltrain is enlarged, “Prop TISI-free” still reaches
the smallest error probability in most cases. To sum up,
“Prop Tmid” and “Prop TISI-free” possess a relatively good TS
performance when Ltest 6= Ltrain, yet further improvement on
the generalization of “Prop TISI-free” is needed.

2) Generalization against η: To test the generalization of
the proposed TS scheme against the impacts of η, Fig. 4 gives
the error probability of TS. In this simulation, ηtrain = 0.05,
ηtrain = 0.2, and ηtrain = 0.35 are employed for training
phase, while different testing values of ηtest (i.e., ηtest = 0.05,
ηtest = 0.2, and ηtest = 0.35) are considered for each value of
ηtrain. From Fig. 4(a) to Fig. 4(b), it could be observed that,
the error probabilities of “Prop Tmid” and “Prop TISI-free” are
smaller than that of “SC corr”, which indicates the effective-
ness of “Prop Tmid” and “Prop TISI-free” in the reduction of
TS error probability, even for ηtest 6= ηtrain. For “Prop Tmid”
and “Prop TISI-free”, the variation of TS error probability is
enlarged with the enlarged difference between ηtest and ηtrain,
but this influence of varying η is not obvious on the error
probabilities of “Prop Tmid” and “Prop TISI-free”. Namely,
although the generalization performances of “Prop TISI-free”
and “Prop TISI-free” are relatively degraded when ηtest 6= ηtrain,
this two types of proposed schemes still reach the lower error
probability than “SC corr” does. As a result, “Prop Tmid” and
“Prop TISI-free” possess a good TS performance against η when
the training η is not the testing η.

VI. CONCLUSION

In this paper, an ELM-based TS scheme is proposed for the
TS in OFDM system with nonlinear distortion. For the task of
TS in an ELM-based network, the trained ELM model with
timing preprocessing achieves a far smaller TS error prob-
ability than that without timing preprocessing. Meanwhile,
with the ELM network used in our TS scheme, not only the
nonlinear distortion is suppressed, but also the TM is refined.
Especially, two types of novel labels exploiting the prior
information of ISI-free regions are investigated. According
to the analysis and simulations, the proposed ELM-based TS
scheme presents the effectiveness in the reduction of TS error
probability, and reveals its generalization for the cases where
the training and testing channels are of different parameters
of L (or η).
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