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Abstract—Cell-free (CF) massive multiple-input multiple-
output (M-MIMO) technology plays a prominent role in the
beyond fifth-generation (5G) networks. However, designing a
high performance CF M-MIMO detector is a challenging task
due to the presence of pilot contamination which appears when
the number of pilot sequences is smaller than the number of
users. This work proposes a CF M-MIMO detector referred
to as CF expectation propagation (CF-EP) that incorporates
the pilot contamination when calculating the posterior belief.
The simulation results show that the proposed detector achieves
significant improvements in terms of the bit-error rate and sum
spectral efficiency performances as compared to the ones of the
state-of-the-art CF detectors.

Index Terms—Cell-free massive MIMO, distributed massive
MIMO, expectation propagation, detection, pilot contamination.

I. INTRODUCTION

Cell-free (CF) massive multiple-input multiple-output (M-
MIMO) technology has been proposed to deliver ubiquitous
coverage and high service quality for beyond fifth-generation
(5G) networks [1]. The access points (APs), known as the
base station antennas in standard MIMO literature, are ge-
ographically distributed. The APs are managed by a central
processing unit (CPU). Each user equipment (UE) is served
simultaneously by all APs and therefore experiences no cell
boundaries. This CF M-MIMO system provides additional
diversity, increases the coverage probability, and mitigates the
inter-cell interference, leading to a higher spectral efficiency
(SE) and energy efficiency [2]–[4]. One of the critical issues
is to design a detector for CF M-MIMO system which can
overcome various impairments, in particular the pilot contam-
ination, i.e. interference caused by pilot-sharing UEs [3].

The performance of the classical maximum ratio combining
(MRC) detector in a CF M-MIMO system, referred to as CF-
MRC detector, has been investigated in [2]. The CF-MRC
detector estimates the transmitted symbols by multiplying
corresponding received signals with the complex conjugate
of the channel matrix. Although the CF-MRC detector can
achieve an extremely low computational complexity, it fails
to overcome the pilot contamination impact, which leads to
a severe performance degradation [3]. To deal with the pilot
contamination in CF M-MIMO systems, a modified minimum
mean square error (MMSE) detector, referred to as CF-MMSE,
has been proposed in [5]. It is shown to significantly out-
perform the CF-MRC detector by incorporating the statistical

channel estimation error which contains the pilot contam-
ination term when detecting the symbols. Specifically, the
variance of the channel estimation error is incorporated into
the regularization factor in case of the CF-MMSE detector. To
further improve the performance of the CF-MMSE detectors,
interference cancellation techniques have been combined with
the CF-MMSE detectors as proposed in [3], [4], [6]. It is
widely known that the MMSE with successive interference
cancellation (SIC) detectors can achieve a high reliability
performance at the cost of a higher computational complexity
compared to the standard MMSE detector [7]. The CF-MMSE-
SIC detector, combining the CF-MMSE scheme with the SIC
scheme has been proposed in [3]. Unfortunately, the CF-
MMSE-SIC detector provides only a minor performance gain
compared to the CF-MMSE detector.

Recently, Bayesian machine learning techniques, called
expectation propagation (EP) [8] and approximate message
passing (AMP) [9], have been employed for detection to
reduce the reliability performance gap between ML and sub-
optimal detectors in the collocated M-MIMO systems. In [9],
the AMP algorithm has been shown to achieve a near opti-
mal performance for independent and identically distributed
(i.i.d.) Rayleigh fading channels. However, it performs poorly
for non-i.i.d Rayleigh fading channels [10], [11]. The EP
algorithm is an iterative algorithm used to infer estimates
of the transmitted symbols by approximating their posterior
probability density function (pdf) with factorizable Gaussian
posterior belief [8]. For each posterior belief, EP retains only
expectations such as mean and variance. The factorizable
belief not only greatly reduces the complexity of the posterior
pdf inference, but also enables the EP to achieve a near optimal
performance [12].

We propose a novel iterative CF M-MIMO detector based
on the EP algorithm, referred to as the CF-EP detector. The
main contributions are summarized as follows:

• To the best of our knowledge, this is the first Bayesian
detector for CF M-MIMO systems which can achieve
a high detection reliability in the presence of the pilot
contamination.

• The Gaussian posterior belief calculation of the original
EP detector [8] is modified for systems with the pilot
contamination, which is the main performance degrada-
tion factor in CF M-MIMO systems.
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Fig. 1: Cell-free expectation propagation (CF-EP) detector

The simulation results demonstrate a significant BER and SE
performance improvements compared to the state-of-the-art
[2]–[5] with a comparable computational complexity.

Notations: I denotes an identity matrix. For any matrix A,
the notations AT , AH , tr(A), and A† stand for transpose,
conjugate transpose, trace, and pseudo-inverse of A, respec-
tively. ‖q‖ denotes the Frobenius norm of vector q. q∗ denotes
the complex conjugate of a complex number q. E[x] is the
mean of random vector x, and Var[x] = E

[
(x− E[x])

2 ]
is its variance. NC(xk : ck, vk) represents a complex single
variate Gaussian distribution for a random variable xk with
mean ck and variance vk. Let x = [x1, · · · , xK ]T and
c = [c1, · · · , cK ]T .

II. SYSTEM MODEL

We consider an uplink CF M-MIMO system which consists
of L geographically distributed single-antenna APs, serving
K single antenna UEs, where K << L. All APs send their
pilot and data signals to the CPU which then estimates the
channel state information (CSI) and transmitted symbols. We
use a block fading model, where the channel between the k-th
UE and the l-th AP is expressed as

hl,k =
√
βl,kgl,k. (1)

Here, gl,k ∼ NC (0, 1) is the complex small scale fading co-
efficient and βl,k is the complex large-scale fading coefficient
that describes geometric pathloss and shadowing. We assume
that βl,k is known to the CPU. The channel is considered to be
constant in time-frequency blocks of τc channel uses. Note that
precise value of hl,k is unavailable to the receiver. Therefore,
the channel is estimated by using the minimum mean-square
error criterion, i.e. minimization of E[‖hl,k − ĥl,k‖2], where
ĥl,k denotes the MMSE channel estimate of UE k from AP l.
This results in an optimal estimation quality [13].

A. Uplink Pilot Transmission and MMSE Channel Estimation

The channels between UEs and APs are estimated by
using τ mutually orthogonal pilot signals φ1, . . . ,φτ with
φi ∈ Cτ×1, ‖φi‖2 = τ, and i = 1, . . . , τ . The pilots are
randomly assigned to the UEs. In practice, τ < K which
results in a pilot contamination [2]. Let tk be the index of
the pilot signal assigned to the k-th UE, 1 ≤ k ≤ K.
Obviously, tk ∈ {1, . . . , τ}. We group UEs into τ sets
S1, . . . ,Sτ such that all UEs in the set use the same pilot,
i.e. Si , {k ∈ {1, . . . ,K}|tk = i} for 1 ≤ i ≤ τ . At AP l,
the received pilot zl ∈ Cτ×1 is given as follows,

zl =
√
p

K∑
i=1

hl,iφti + vl, (2)

where p is the uplink transmit power of a UE1 and vl ∈
Cτ×1 ∼ NC(0, σ2I) is an additive Gaussian noise with zero
mean and variance σ2 equal to the noise power.

The MMSE channel estimate of UE k from AP l is given
in [3] as

ĥl,k =

√
pτβl,k

σ2 + pτ
∑
i∈Stk

βl,i
×

φHtk√
τ

zl (3)

By substituting zl in (2) into (3), we obtain

ĥl,k =

√
pτβl,k

σ2 + pτ
∑
i∈Stk

βl,i
×

√pτ ∑
i∈Stk

hl,i + ṽl

 , (4)

where each element in ṽl follows a Gaussian distribution
with zero mean and variance σ2. From (4) and (1), we can
easily verify that E

[
ĥl,k

]
= 0 and αl,k , E

[
ĥl,k(ĥl,k)∗

]
=

pτβ2
l,k

σ2+pτ
∑

i∈Stk
βl,i

, ĥl,k ∼ NC (0, αl,k). Therefore, the channel

estimation error of UE k from AP l

εl,k = hl,k − ĥl,k (5)

follows a Gaussian distribution with mean zero and variance
Cl,k , E[εl,k(εl,k)∗] = βl,k − αl,k. The channel estimation
error from the k-th UE to all APs is defined in a vector
form as εk , [ε1,k, . . . , εL,k]T , where εk ∼ NC (0,Ck). The
covariance matrix Ck is an L × L diagonal matrix whose
diagonal elements are C1,k, . . . , CL,k. The channel estimation
error matrix for K UEs, E , [ε1, · · · , εK ] can be written as

E = H− Ĥ. (6)

Since εl,k ∼ NC (0, Cl,k), the channel estimation error matrix
E is normally distributed with zero mean and covariance
matrix D , E

[
E(E)H

]
=
∑K
k=1 Ck, i.e. E ∼ N (0,D).

B. Uplink Data Transmission

All UEs map their information bit streams to symbols that
belong to constellation of M -QAM, Ω, where ‖Ω‖2 = M .
The k-th user symbol is denoted as xk. The average symbol
energy is Ex , E[|xk|2] = 1. The channel matrix between
UEs and APs and its estimate are denoted as H ∈ CL×K and
Ĥ ∈ CL×K , respectively. The (l, k)-th elements of H and Ĥ
are defined by (1) and (3), respectively. The received signal
of all APs, y = [y1 . . . yL]T , available at the CPU, is given as

y = Hx + n, (7)

where n ∼ NC(0, σ2I) is a Gaussian noise and x =
[x1, · · · , xK ]T is uniformly distributed on ΩK . By substituting
Ĥ in (6) into (7), we obtain

y = Ĥx + Ex + n︸ ︷︷ ︸
w

, (8)

at the CPU. To detect the symbols we can use the MMSE
channel estimate Ĥ, which introduces the channel estimation
error E as explained in the Section IIA. Considering that

1All UEs are assumed to transmit with equal power.



E [Ex + n] = 0 and Var [Ex + n] = D + σ2I, we define
a new noise vector w ∼ NC(0,D + σ2I).

III. CELL-FREE EXPECTATION PROPAGATION DETECTOR

In this section, we propose a novel CF M-MIMO detector
based on the EP concept [8]. Our detector takes the effect
of the pilot contamination into consideration. We refer it as
the cell-free expectation propagation (CF-EP) detector with
the architecture shown in Fig. 1. The CF-EP consists of
two modules: the observation module calculating the poste-
rior beliefs based on the received signal and the estimation
module yielding soft transmitted symbol estimates. The CF-
EP iteratively exchanges the outputs of both modules until the
convergence criterion is satisfied.

A. The Observation Module

Given the received signal y in (8), the posterior distribution
of the transmitted symbols is characterized by

p(x|y) =
p(y|x)

p(y)
× p(x) ∝ NC

(
y : Ĥx,D + σ2I

)
︸ ︷︷ ︸

p(y|x)

K∏
k=1

p(xk)︸ ︷︷ ︸
p(x)

,

(9)

where p(xk) = 1
M

∑
x∈Ω δ(xk − x) is a priori pdf of xk, δ

is the Dirac delta function, and p(y) is omitted as it does not
depend on the distribution of x. A direct calculation of (9)
results in a prohibitively intensive computation as we need to
consider all possible combinations of the symbols. Therefore,
EP is used to iteratively construct a Gaussian approximation to
the true posterior distribution of the transmitted symbol vector.

Concretely, the EP constructs a Gaussian posterior belief
p(t)(x|y) ≈ p(x|y), where t is the iteration number. This
involves replacing p(x) in (9) with a distribution from the ex-
ponential family, χ(t)(x) ∝ NC

(
x : (λ(t))−1γ(t), (λ(t))−1

)
[14]. Here, λ(t) is a K × K diagonal matrix with diago-
nal elements λ

(t)
k > 0 and γ(t) = [γ

(t)
1 , . . . , γ

(t)
K ]T . Both

λ
(t)
k and γ

(t)
k are complex numbers with λ

(0)
k = 1 and

γ
(0)
k = 0. To calculate the Gaussian posterior belief, we

first treat x as a random vector and approximate p(y|x)

as NC

(
x : Ĥ†y,

(
ĤH(D + σ2I)−1Ĥ

)−1)
. Note that the

matrix D corresponds to the channel estimation error variance
which is caused by the pilot contamination, defined in Section
IIA. The Gaussian posterior belief is then expressed as

p(t)(x|y) ∝p(y|x) · χ(t)(x)

∝NC

(
x : Ĥ†y,

(
ĤH(D + σ2I)−1Ĥ

)−1)
· NC

(
x : (λ(t))−1γ(t), (λ(t))−1

)
∝NC

(
x : µ(t),Σ(t)

)
. (10)

We can compute the product of two Gaussians in (10) by
using the Gaussian product property2, given in Appendix A.1
of [15]. By using this property, we obtain the variance and
mean of p(t)(x|y) as

Σ(t) =
(
ĤH(D + σ2I)−1Ĥ + λ(t)

)−1
(11a)

µ(t) = Σ(t)
(
ĤH(D + σ2I)−1y + γ(t)

)
. (11b)

Remark 1 (CF-EP Gaussian posterior belief): The Gaussian
posterior belief p(t)(x|y) in the CF-EP detector is different
from that in the existing EP detector, i.e. equation (27)
in [8], as the channel estimation error containing the pilot
contamination term is incorporated in the proposed CF-EP
detector, specifically in (10).

We then compute p(t)(y|x) based on p(t)(x|y),

p(t)(y|x) ,
p(t)(x|y)

χ(t)(x)

∝
NC

(
x : µ(t),Σ(t)

)
NC

(
x : (λ(t))−1γ(t), (λ(t))−1

) ∝ NC

(
x : x

(t)
obs,V

(t)
obs

)
,

(12)

where x
(t)
obs = [x

(t)
obs,1, . . . , x

(t)
obs,K ] and V

(t)
obs is a K × K

diagonal matrix with v
(t)
obs,k as the k-th diagonal element,

which can be expressed as

v
(t)
obs,k =

Σ
(t)
k

1− Σ
(t)
k λ

(t)
k

(13a)

x
(t)
obs,k = v

(t)
obs,k

(
µ
(t)
k

Σ
(t)
k

− γ(t)k

)
. (13b)

Here, µ(t)
k is the k-th element of vector µ(t) and Σ

(t)
k is the

k-th diagonal element of matrix Σ(t). The pair
(
x
(t)
obs,V

(t)
obs

)
from (11) is then forwarded to the estimation module.

B. The Estimation Module

Based on p(t)(y|x) provided by the observation module, the
estimation module computes a new posterior belief

p̂(t)(x|y) ∝ p(t)(y|x)p(x). (14)

This is different from the Gaussian posterior belief p(t)(x|y)
in (10), obtained based on χ(t)(x) from exponential families.
In fact, the EP algorithm is used to ensure a similarity
between the mean-variance pairs of p(t)(x|y) and p̂(t)(x|y).
This similarity is specified in [16] by the moment matching
(MM) condition, minimizing the Kullback-Leibler divergence
between posterior beliefs. The MM condition is expressed as
follows

Ep(t)(x|y)[x] ∼ Ep̂(t)(x|y)[x], (15)

2The product of two Gaussians results in another Gaussian, NC(x : a,A) ·
NC(x : b,B) ∝ NC(x : (A−1 + B−1)−1(A−1a + B−1b), (A−1 +
B−1)−1.
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Fig. 2: The average number of iterations of the CF-EP detector

where Ep̂(t)(x|y)[x] denotes the first two moments, i.e. the
mean and variance of x with respect to p̂(t)(x|y). Furthermore,
the mean and variance of p̂(t)(x|y)[x] are given in [8] as

V(t) = E

[∣∣∣x− x̂(t)
∣∣∣2] (16a)

x̂(t) = c(t)
∑

x∈ΩK

xp(t)(y|x). (16b)

Here, c(t) is the normalization constant to ensure that∑
x∈ΩK p̂(t)(x|y) = 1. The iteration of the CF-EP detector

will be terminated when

‖Ep(t)(x|y)[x]− Ep̂(t)(x|y)[x]‖ ≤ 10−4, (17)

i.e. when (15) is satisfied, or once the algorithm once the
maximum number of iterations Tmax is reached. Hard esti-
mates of the transmitted symbols are then made from x̂(T ),
by comparing its Euclidean distance from the transmitted M -
QAM symbol sets Ω where T is the last iteration number.

Until (15) is satisfied, the estimation module will re-evaluate
the Gaussian posterior belief, p(t)(x|y), by first calculating
χ(t+1)(x) based on the p̂(t)(x|y), expressed as

χ(t+1)(x) ,
p̂(t)(x|y)

p(t)(y|x)

∝
NC
(
x : x̂(t),V(t)

)
NC

(
x : x

(t)
obs,V

(t)
obs

)
= NC

(
x : (λ(t+1))−1γ(t+1), (λ(t+1))−1

)
, (18)

where

λ(t+1) = (V(t))−1 − (V
(t)
obs)

−1 (19a)

γ(t+1) = (V(t))−1x̂(t) − (V
(t)
obs)

−1x
(t)
obs. (19b)

Note that λ and γ are referred to as the updating parameters
as they are used to update the Gaussian posterior beliefs. We
smoothen the update of (λ,γ) by using a convex combination
with the former values,

λ(t+1) = (1− η)λ(t+1) + ηλ(t) (20a)

γ(t+1) = (1− η)γ(t+1) + ηγ(t), (20b)

where η ∈ [0, 1] is a weighting coefficient.
The estimation module sends the updating parameters

(γ(t+1),λ(t+1)) to the observation module, as illustrated in
Fig. 1. The complete pseudo-code is shown in Alg. 1. One can
also compute the SE of the CF-EP detector by using signal-
to-interference-noise ratio, given in [17] as

SECF−EP
k =

(
1− τp

τc

)
E
[
log2

(
1 + SINRCF−EP

k

)]
, (21)

where SINRCF−EP
k = K

tr
(
V

(T )
obs

) .

Algorithm 1 CF-EP detector

1: Input: γ(0) = 0,λ(0) = I, η = 0.7, t = 0, Tmax = 10
2: Output: Hard symbol estimates from x̂(t)

3: for t = 1, . . . , Tmax do
The Observation Module:

4: Compute Σ(t) and µ(t) in (11)
5: Compute v(t)obs,k and x(t)obs,k in (13), k = 1, . . . ,K

The Estimation Module:
6: Compute V(t) and x̂(t) in (16)
7: Compute λ(t+1) in (19a) and smoothen it using (20a)
8: Compute γ(t+1) in (19b) and smoothen it using (20b)
9: if (17) is satisfied then

10: break
11: end if
12: end for
13: T := t
14: Calculate hard symbol estimates from x̂(T )

IV. NUMERICAL RESULTS

We follow the simulation setup used in [3]. Specifically, we
consider L = 100 single-antenna APs, randomly deployed in
a 1×1 km area, serving K = 60 randomly located UEs, in an
urban environment complying with 3GPP Urband Microcell
model [18]. The large scale fading coefficient is given as

βl,k[dB] = −30.5− 36.7log10

(
dl,k
1m

)
+ Fl,k, (22)

where dl,k is the distance between AP l and UE k and
Fl,k ∼ NC(0, 42) is the shadow fading. The shadowing terms
from an AP to different UEs are correlated as E[Fl,kFl,i] =
422−δk,i/9m, where δk,i is the distance between UE k and UE
i. The pilots are randomly indexed and assigned to all UEs. We
employ 4-QAM modulation scheme and set the signal-to-noise
ratio (SNR) 25 dB. We evaluate the performance depending
on the pilot-to-user ratio defined as τ/K. Finally, we compare
the performance of our proposed detector with the CF-MRC
[2], CF-MMSE [5], and CF-MMSE-SIC [3] detectors.

A. Convergence and Complexity Analyses

We first analyse the convergence behaviour of the proposed
CF-EP detector by plotting the average number of iterations
needed to satisfy the MM condition in (15). It can be seen from
Fig. 2 that the CF-EP detector needs less than 6 iterations to
converge for various pilot-to-user ratios, τ/K.



Detector Complexity
CF-MRC O(NK)

CF-MMSE O(N2K)

CF-MMSE-SIC O(
∑K−1

k=0 (N − k)2(K − k))
CF-EP O(N2KT )

Table I: Computational complexity comparison
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Fig. 3: The BER and sum SE performances of CF-MRC [2],
CF-MMSE [5], CF-MMSE-SIC [3], and CF-EP detectors with
L = 100,K = 60, M = 4, SNR = 25 dB

As tabulated in Table 1, the computational complexity of
the CF-EP detector is slightly higher than the MMSE detector
depending on its number of iterations. The CF-EP requires on
average 2−6 iterations to converge. Therefore, the complexity
order of the CF-EP detector remains the same as the CF-
MMSE detector. Note that the detector will be implemented
at the CPU, which is assumed to be equipped with a high
performance computer. Therefore, a minor increase in the
computational complexity will not be a critical issue.

B. Performance Analysis

To analyse the proposed detector’s performance, we plot
the BER and sum SE over the random users locations versus
the pilot-to-user ratio. Fig. 3a demonstrates that the CF-EP
detector outperforms the CF-MMSE-SIC and the CF-MMSE
detectors in terms of BER, for all pilot-to-user-ratio τ/K.
More specifically, the CF-EP detector can achieve BER 10−4

with around 25% lower pilot-to-user ratio than the CF-MMSE
and CF-MMSE-SIC detectors. In Fig. 3b, the CF-EP detector
demonstrates 26% and 11% sum SE improvements compared
to the CF-MMSE and CF-MMSE-SIC detectors, respectively.
From these facts, we conclude that the developed EP based
detector, dealing with the pilot contamination impact, achieves
a significant performance gain compared to the existing CF
M-MIMO detectors.

V. CONCLUSION

We propose a novel EP based detector for CF M-MIMO
systems, namely the CF-EP detector. Our simulation results
show that the BER and sum SE performances of the CF-EP
detector are better than those of the state-of-the-art CF M-
MIMO detectors with comparable computational complexity.
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