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Abstract—A new machine learning (ML) technique termed
as federated learning (FL) aims to preserve data at the edge
devices and to only exchange ML model parameters in the
learning process. FL not only reduces the communication needs
but also helps to protect the local privacy. Although FL has
these advantages, it can still experience large communication
latency when there are massive edge devices connected to the
central parameter server (PS) and/or millions of model param-
eters involved in the learning process. Over-the-air computation
(AirComp) is capable of computing while transmitting data by
allowing multiple devices to send data simultaneously by using
analog modulation. To achieve good performance in FL through
AirComp, user scheduling plays a critical role. In this paper, we
investigate and compare different user scheduling policies, which
are based on various criteria such as wireless channel conditions
and the significance of model updates. Receiver beamforming
is applied to minimize the mean-square-error (MSE) of the
distortion of function aggregation result via AirComp. Simulation
results show that scheduling based on the significance of model
updates has smaller fluctuations in the training process while
scheduling based on channel condition has the advantage on
energy efficiency.

Index Terms—Federated learning, over-the-air computation,
user scheduling, receiver beamforming

I. INTRODUCTION

The availability of big data makes data-driven artificial

intelligent applications such as image recognition and au-

tonomous driving ever increasingly realistic. Nowadays, ad-

vanced machine learning (ML) techniques usually comprise

training and inference processes that work in a centralized

manner. However, distributed devices such as smart sensors or

unmanned aerial vehicles (UAVs) have massive locally gener-

ated data and need to make real-time decisions, which render

it extremely difficult to transmit data for central processing

through wireless channels. Thanks to the rising capacity of

computation, storage, and power at edge devices, they can

perform ML tasks using locally collected raw data, which can

largely reduce the communication overhead and latency.

Although raw data is preserved and used locally and does

not have to be uploaded to a central parameter server (PS),

edge devices still need to coordinate with PS to establish the

global model. A new machine learning technique named as

federated learning (FL) appears to help address this issue [1].

FL keeps the collected data locally and trains the ML model on

edge devices. Only model parameters are transmitted to the PS

for aggregation to attain the global model through averaging.

There are usually a large number of edge devices connected

to the PS and all the devices contend for limited wireless

bandwidth. FL only selects a small subset of edge devices

for model update in each communication round [2]–[4]. Since

the devices collect the data from their local environment, the

data on different devices can be heterogeneous or non-i.i.d

(independent and identically distributed). Thus it is important

to select the most relevant devices for model update based on

certain scheduling criteria in each round. In [4], three schedul-

ing policies, i.e., random scheduling, round robin, proportional

fairness in terms of probability, group, and channel condition

separately are proposed. It considered the channel conditions

but neglected the data distribution on different devices.

To achieve spectrum efficiency, advanced transmission tech-

niques can be used in model parameter uploading. Non-

orthogonal multiple access (NOMA) [5] allows multiple de-

vices to share the channel and transmit data simultaneously,

which reduces the aggregation latency compared with the

conventional time-based scheme. NOMA users use different

transmit powers and successive interference cancellation (SIC)

is applied at the PS side. The authors in [6] investigated

the performance of FL under NOMA with 7x performance

gain without loss of accuracy. However, it doesn’t provide

the security feature and the number of users that can transmit

simultaneously is still limited due to the decoding at the re-

ceiver side. In [7], FL via over-the-air computation (AirComp)

is presented. It employed the superposition nature of a wireless

multiple-access channel to aggregate the model parameters

while transmitting. PS deals with the aggregated model but

not the individual, and does not have to decode the received

signals like in nominal NOMA transmission. Therefore it is not

only communication efficient but also computation efficient.

Additionally, since PS cannot decode the received signal, it

provides security features for FL as the dishonest PS cannot

infer the local data with the aggregated model.

The power control for AirComp in fading channels that

minimizes the computation error is presented in [8] [9].

Authors in [10] evaluated the performance of AirComp in both

digital approach and analog approach. In [11], the learning rate

optimization of federated learning under AirComp is explored.

However, no existing work has considered the user scheduling

schemes for FL under AirComp that are significant to improve
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FL performance.

In this work, we focus on FL via AirComp to improve both

communication and computation efficiency. It employs the

superposition nature of a wireless multiple-access channel so

that multiple edge devices can transmit the model parameters

simultaneously and PS does not need to decode the analog

aggregated signals. To minimize the aggregated signal error,

receiver beamforming design is applied. We explore different

scheduling schemes including channel based one, model up-

date based one, and a hybrid one based on both channel and

model update.

The rest of the paper is organized as follows. Section II

introduces the system model, AirComp scheme, and problem

formulation. Section III presents several different user schedul-

ing policies. Simulation results are shown in Section IV. Lastly,

section V concludes the paper.

II. SYSTEM MODEL

We consider an AirComp system with M edge devices, each

with a single antenna connected to the PS that is equipped with

N antennas. Multiple edge devices are allowed to transmit

simultaneously on the same channel. The number of edge

devices participating in the model update in each communi-

cation round is limited in order to minimize the distortion

error and maximize the testing model performance. Assume

the maximum number of selected devices for transmitting in

each round is K under AirComp [7]. The main notations used

in the paper are summarized in Table I.

TABLE I
SUMMARY OF NOTATIONS

Notation Definition

M; K; W The total number of edge devices connected to PS; the
maximum number of edge devices participating FL in
each round; the intermediate number of edge devices
when considering both model update and channel con-
dition

N; T; SK The number of antennas at PS; the total number of
communication round; Selected edge device set

xk; yk; θk; Features of a data point sample on device k; corre-
sponding label of data point; parameter set describe the
mapping from xk to yk

F (·); f(·); η Global loss function; local loss function; learning rate

Dk; |Dk| Dataset on user k; cardinality of the dataset Dk

hk; bk; sk Channel vector of user k; transmitter scaling factor of
user k; normalized local update at one time slot

P0; φk(·); ψ(·) Maximum transmit power; pre-processing function of
user k; post-processing function at PS

r; a; n Received signal vector; receiver beamforming vector;
additive noise

g; ĝ; τ summation result before post-processing; estimation of
g; normalizing factor

A. FL System

In FL, each edge device performs machine learning tasks

using locally collected and stored data. For device k, data

sample xk has a label yk. Model parameters θk is used to

capture the mappings from xk to yk. Each device executes

stochastic gradient descent (SGD) updates to minimize the

loss function that describes the loss of model parameter θk at

sample xk. The loss function at device k is given by

Fk(θk) =
1

|Dk|
∑

xk∈Dk

f(xk,yk; θk), (1)

where Dk is the local dataset on device k, |Dk| is the cardinal-

ity of Dk, f(xk,yk; θk) is the empirical loss function. The en-

tire empirical loss function across dataset {D1,D2, . . . ,DK}
can be written as

F (θ) =

K
∑

k=1

|Dk|
|D| Fk(θk), (2)

where |D| = ∑K

k=1 |Dk|, θ is the global model parameters by

averaging the aggregation result

θ(t+ 1) =
1

K

K
∑

k=1

θk(t+ 1). (3)

To reduce the communication overhead, the local model

update ∆θk(t+1) rather than the local model θk(t+1) itself

is uploaded. Thus the aggregation result can be written as

θ(t+ 1) = θ(t) +
1

K

K
∑

k=1

∆θk(t+ 1), (4)

where ∆θk(t+1) , θk(t+1)−θk(t), is defined as the local

model update at devices k.
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t

t
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Fig. 1. FL Model Update

Fig. 1 shows the FL update model.

B. AirComp Scheme

AirComp performs transmission and computation simulta-

neously over the air. Unlike traditional orthogonal multiple

access schemes, AirComp allows multiple transmission via the

same channel simultaneously. It performs analog modulation

and waveform superposition and no individual decoding is

needed at the receiver side. Since AirComp does not decode

the signal at the PS side, PS does not know the model

parameters of the individual user. Thus it cannot infer local

data information of individual users, providing a more secured

transmission scheme.

Since the aggregation takes place during over-the-air trans-

mission, the received signal at PS is given by

r =

K
∑

k=1

hkbksk + n, (5)



where hk is the channel vector between device k and PS, bk
is the transmitter scaling factor, sk is normalized local update

sk at one time slot, where sk , θk with unit variance, i.e.

||sk||22 = I , n ∼ CN (0, σ2I) is the noise vector. The transmit

power constraint at device k is E(|bksk|2) = |bk|2 ≤ P0,

where P0 is the maximum transmit power.

The target function at the PS side that is computable

over-the-air can be written as v = ψ(
∑K

k=1 φk(sk)), where

φk(x) = |Dk|x is the pre-processing function of user k, and

ψ(x) = 1
|D|x is the post-processing function at PS side. The

weighted summation of transmitted signal is

g =

K
∑

k=1

φk(sk). (6)

The received signal at PS is r. Then the estimated value at

after beamforming is

ĝ =
1√
τ
aHr =

1√
τ
aH

K
∑

k=1

hkbksk +
aHn√
τ
, (7)

where τ is the normalizing factor and a is the receiver

beamforming vector. The distortion of ĝ with respect to the

target value g, which quantifies the AirComp performance, is

measured by the mean-square-error (MSE) given by

MSE(ĝ, g) = E(|ĝ − g|2)

=

K
∑

k=1

| 1√
τ
aHhkbk − φk|2 +

σ2||a||2
τ

.
(8)

We choose parameters bk and a to minimize the MSE.

Supposing the receiver beamforming vector a is given, the

transmitter scaling factor bk can be selected by using a

uniform-forcing transmitter as [12]

bk =
√
τφk

(aHhk)
H

||aHhk||2
. (9)

The normalizing factor τ can be calculated as

τ = P0 min
k

||aHhk||2
φ2k

. (10)

Then the corresponding MES problem can be calculated as

MSE =
||aH||2σ2

τ
=
σ2

P0
max

k

φ2k||aH||2
||aHhk||2

. (11)

To achieve the best performance, the following minimum

mean square error is applied.

min
a

max
k

φ2k||aH||2
||aHhk||2

. (12)

It can be formulated into a more friendly way as

min
a

||a||2

s.t.
||aHhk||2

φ2k
≥ 1.

(13)

Eq. (13) is a quadratically constrained quadratic program-

ming (QCQP) problem with non-convex constraints, which is

still hard to solve. In [12], the same problem can be solved

by semidefinite programming (SDP), improved by successive

convex approximation (SCA). After the receiver vector a is

solved, all other parameters can also be calculated. And the

minimum MSE can be obtained.

Algorithm 1 summarizes the SDP and SCA method to

optimize the receiver vector.

Algorithm 1 Receiver Optimization by SDP and SCA

1: SDP method to obtain A∗

2: if rank(A∗ 6= 1) then

3: ã∗ =
√
λ1u1

4: Set ck = [Re(ã∗Hhk), Im(ã∗Hhk)], ∀k
5: repeat

6: SCA method solve
||ck||

2

φ2

k

≥ 1 to obtain a and ck

7: until criteria satisfied

8: else

9: a =
√
λ1u1

10: end if

Here, A∗ = minA tr(A) and , A = a∗aH , λ1 is the largest

eigenvalue of A∗ and u1 is the corresponding eigenvector. ck
is the auxiliary variable.

Algorithm 2 summarizes the proposed FL process under

AirComp settings.

Algorithm 2 FL in AirComp

Initialization: θ0, T .

2: for each FL update round t do

PS sends θt to all users

4: for each user i in parallel do

Calculate local gradients: θt
i = θt

i − η∇Fi(θ).
6: end for

PS selects K users based on scheduling algorithm.

8: Selected users send gradients ∇Fk(θ) to the PS simul-

taneously via AirComp.

PS samples the received signal to get aggregated model.

10: end for

III. USER SCHEDULING POLICIES

There are usually a large number of edge devices connected

to the PS. Although AirComp allows multiple users to upload

their model simultaneously, the maximum number of users

participating in model update in each round is normally still

smaller than the total number of users [7]. Here, we consider

an FL system with a total of M devices connected to the PS

while K devices can be scheduled in each round, K < M . We

propose three user scheduling policies, one considers channel

conditions from communication perspective, one considers

the significance of local model update from computation

perspective, and one considering both. Correspondingly the

three scheduling policies are named channel based scheduling,

model update based scheduling, and hybrid scheduling.

A. Channel Based Scheduling

Channel based scheduling selects K users that have the

highest channel gains, i.e.,

SK = max
[K]

{||h1(t)||, . . . , ||hM (t)||}. (14)



here, ||hk(t)|| =
√

∑N

i=1 |hik(t)|2 is the l2-norm channel

gain of device k. Before scheduling, each client needs to

send a small amount of information to PS so that the PS

can perform channel estimation. Compared with the model

gradient transmission, the time to transmit this small amount

of information can be safely ignored.

Since multiple antennas are equipped in PS, channel gain is

in a vector form. From Eq. (11), a larger channel gain results

in a smaller MSE when other parameters are fixed.

In this scheduling scheme, users can start local computation

until they are selected. Thus, energy-constrained edge devices

such as IoT devices can be more power efficient.

B. Model Update Based Scheduling

This scheduling scheme considers the significance of the

model update as the user selection criteria. l2-norm is used

to evaluate the significance of model update. Edge device k,

k = 1, ...,M , first computes the model update ∆θk(t) and

then sends its l2-norm of model update ||∆θk(t)||2 to the PS.

Then PS selects K devices with the largest ||∆θk(t)||2 value,

that is

SK = max
[K]

{||θ1(t)||, . . . , ||θM (t)||}. (15)

This scheme requires all the users to perform local compu-

tation and send their l2-norm of model update to the PS.

It causes energy dissipation for the unselected devices and

the transmission of model update for all the users can also

cause channel congestion. For devices with low computation

abilities, it may take a long time for them to finish the local

computation and upload their model update. The stragglers

will reduce system performance.

C. Hybrid Scheduling

Channel gain and the significance of model update can both

affect the performance of FL. Thus both are considered in

the hybrid scheduling. PS first selects W devices with the

highest channel gains and then selects K devices with the

largest model update from W devices, K ≤W ≤M . In this

strategy, the energy of unselected devices can be saved since

only selected devices need to perform local computation.

Channel based scheduling can help reduce computation

needs at local devices while model update based schedul-

ing can help improve the FL training performance. Hybrid

scheduling intends to balance the tradeoff between the two.

D. Complexity Analysis

For each client, supposing the computation time to finish

the ML task is tp, the communication time for PS channel

estimation is to and the communication time to upload model

gradients is tu. The corresponding time complexity is summa-

rized in Table II.

IV. SIMULATION RESULTS

In this section, we present the performance of feder-

ated learning under AirComp with different user scheduling

schemes. The channel parameters are given as follows. There

TABLE II
COMPLEXITY ANALYSIS

Channel Based
Scheduling

Model update
Based Scheduling

Hybrid
Scheduling

Communication M∗to+K∗tu K ∗ (to + tu) M ∗ to +
K ∗ tu

Computation K ∗ tp M ∗ tp W ∗ tp

are M = 1000 users uniformly distributed in a disk region

with a cell size of 500 m. The transmit signal to noise

ratio P0
σ2 is fixed at 42 dB, channel path loss exponent is

α = 3. The number of antennas at PS is N = 4. In each

communication round, the channel vector keeps constant for

the same user while it varies across different users and/or

different communication rounds. We further have K = 10 and

W = 20. The learning task is trained by using the MNIST

(Modified National Institute of Standards and Technology)

dataset [13] with a fully connected neural network called

LeNet-300-100, where the first hidden layer consists of 300
neurons and the second layer consists of 100 neurons. The

hyperparameters are summarized in Table III. The learning

stages are divided into two phases, namely training phase and

testing phase. Similarly, the dataset also split into two parts,

90% of them are training set and the rest are the testing

set. The testing accuracy is used to evaluate the learning

performance. To make the proposed scheduling schemes more

convincing, non-i.i.d data [14] is used here, i.e., every user

has a varying data size and distribution.

TABLE III
HYPERPARAMETERS

Learning

rate size (η)

Batch

size (B)

FL

Round (T )

Training

set size

Testing

set size

0.01 10 60 90% 10%

Fig. 2. Channel Based Scheduling

Fig. 2 shows the testing accuracy for the channel based

scheduling. The random channel scheduling selects the client

with different channel conditions in a uniform distribution.

Compared with random channel scheduling, channel based

scheduling achieves a much higher testing accuracy during the

updating process but it experiences much larger fluctuations.

This is because the MSE (defined in equation (8)) achieved

by the channel based scheduling is much smaller than that

achieved by the random scheduling and non-i.i.d data causes



the testing accuracy to drop in some rounds due to the incon-

sistency of the data updated. For random channel scheduling,

the testing accuracy experiences smaller fluctuations because

the impact from channel conditions plays down the impact

from the non-i.i.d data distribution.

Fig. 3. Model Update Based Scheduling

Fig. 3 gives the testing results when users with the largest

model update values are selected. Compared with the schedul-

ing that randomly selects model updates, the testing results of

scheduling that selects the largest model updates are much

smoother and the testing results of random scheduling are

quite close to the model update based scheduling. In FL the

gradients rather than the model parameters are uploaded here.

As most of the gradient values are close to 0, there is no

much difference between model update based scheduling and

random scheduling [15].

Fig. 4. Hybrid Scheduling

In Fig. 4, three scheduling schemes are compared. The

model update based scheduling makes the testing result

smoother while the channel based scheduling shows the lowest

testing accuracy. The hybrid scheduling achieves the per-

formance that falls in between the above two schemes. In

model update based scheduling, all edge devices perform local

computing, and devices with the largest model update values

are scheduled for uploading. Thus the dataset is not non-i.i.d

and the testing accuracy curve is quite smooth. However, the

model update based scheduling consumes more computations

than the other two scheduling policies since all simulated edge

devices need to perform local computing for the ML tasks.

And local devices tend to consume energy for computing.

Hybrid scheduling gives a good trade-off between the testing

accuracy performance and local device energy consumption.

V. CONCLUSION

AirComp based FL is not only communication efficient

by allowing multiple devices to transmit simultaneously but

also computation efficient since FL server only needs to

have aggregated model parameters rather than the individual

model parameter. To further investigate the AirComp based

FL performance, in this paper, we proposed three different

user scheduling policies, i.e., channel based scheduling, the

model update based scheduling, and a hybrid scheduling that

consider both channel conditions and model update priorities.

Simulation results show that the channel based scheduling

has the least device computation needs but gives the lowest

testing accuracy performance while the model update based

scheduling gives the best testing accuracy result but has the

highest computation needs. The hybrid scheduling basically

gives the performance trade-off between the two.
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