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Abstract—We consider the problem of max-min fairness for
uplink cell-free massive multiple-input multiple-output which is
a potential technology for beyond 5G networks. More specifically,
we aim to maximize the minimum spectral efficiency of all
users subject to the per-user power constraint, assuming linear
receive combining technique at access points. The considered
problem can be further divided into two subproblems: the
receiver filter coefficient design and the power control problem.
While the receiver coefficient design turns out to be a generalized
eigenvalue problem, and thus, admits a closed-form solution, the
power control problem is numerically troublesome. To solve the
power control problem, existing approaches rely on geometric
programming (GP) which is not suitable for large-scale systems.
To overcome the high-complexity issue of the GP method, we first
reformulate the power control problem intro a convex program,
and then apply a smoothing technique in combination with an
accelerated projected gradient method to solve it. The simulation
results demonstrate that the proposed solution can achieve almost
the same objective but in much lesser time than the existing GP-
based method.

Index Terms—Cell-free massive MIMO, max-min fairness,
power-control, gradient

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO)

can be considered as the most recent development of dis-

tributed massive MIMO [1], whereby a large number of access

points (APs) serve a group of users in a large area of ser-

vice. Cell-free massive MIMO has been receiving increasing

attention as a potential backbone technology for beyond 5G

networks due to the massive performance gains compared to

the colocated massive MIMO [1]. While the research on cell-

free massive MIMO has been focusing on the downlink, that

is not the case for the uplink. For uplink cell-free massive

MIMO, linear receivers are commonly employed at APs to

combine users’ signals. As a result, an important problem

is to jointly design linear combining and users’ powers to

maximize a performance measure. In the following, we attempt

to provide a comprehensive survey, but by no means inclusive,

on the previous studies on this line of research.

In [2], the maximum-ratio combining (MRC) technique was

employed at the APs based on local channel estimates to detect

signals from single-antenna users. Closed-form expression for

achievable spectral efficiency (SE) is derived, which is then

used to formulate a max-min fairness problem. To solve this

problem, the work of [2] applies an alternating optimiza-

tion (AO) method by solving two subproblems: the linear

combining coefficient design which is in fact a generalized

eigenvalue problem, and the power control problem which is

quasi-linear, and thus, can be solved by a bisection method

with linear programming. A similar problem is considered in

[3], except the zero-forcing scheme was used at APs, and a

similar solution to [2] is proposed. In [4], the local minimum

mean square error (L-MMSE) combining is adopted at each

AP. A similar AO method was presented to solve the max-min

fairness problem. In particular, the power control subproblem

(when the L-MMSE coefficients are fixed) is approximated as

a geometric programming (GP) problem. In [5], the problem

of max-min fairness for a group of users is considered, while

imposing quality of service (QoS) constraints on the remaining

users. This problem is also solved using a GP approach, which

avoids the need of a bisection search as done in [2]. Other

studies in the existing literature such as [6], [7] also exploit

GP to solve the power control problem. This is also the case

in [8] where the problem of the total energy efficiency (EE)

maximization, subject to the per-user power and per-user QoS

constraints, is considered. The problem of SE maximization

for cell-free massive MIMO with non-orthogonal multiple ac-

cess (NOMA) is in studied [9]. Again, the considered problem

is solved using the sequential successive convex approximation

method in combination with GP.

The main feature of all the above-mentioned studies is that

they need to solve a single geometric program or a series of

linear programs to solve the incurred power control problems.

It is well known that these second-order methods requires

very high complexity, and thus, are not preferred for large-

scale problems. This is why the existing literature for the

uplink of cell-free massive MIMO has been limited to small-

scale scenarios whereby the number of APs is around a few

hundreds (less than 250 in all aforementioned papers, to be

precise). Thus, the potential of cell-free massive MIMO in

large-scale settings has remained unknown. We aim to fill this

gap of the current literature in this paper.

We assume MRC at APs using local channel estimates and

consider the problem of max-min fairness subject to power

constraint at each user. Similar to the known approaches, the

considered problem is split into two optimization subproblems.

While the linear receiver coefficient design is a generalized

eigenvalue problem which admits closed-form solution as
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in previous studies, we propose a more scalable numerical

method that can reduce the run-time to solve the power control

problem significantly. In this regard, our contributions are

summarized as follows:

• We reformulate the power control problem, which is

nonconvex in the original form, into a convex program.

Due to the nature of the max-min optimization, the

objective of the equivalent convex program is nonsmooth,

which can pose some numerical challenges.

• We propose the use of Nesterov’s smoothing technique

[10] to approximate the objective of the equivalent convex

function. This allows us to apply an accelerated projected

gradient (APG) method that solves the approximated

problem very fast. In particular, our proposed method

only requires the computation of the gradient of the

objective and closed-form expressions for projections.

• We avail of the proposed method to explore the perfor-

mance gains of cell-free massive MIMO in large-scale

settings. In particular, we find that having more APs may

be more beneficial than more antennas per AP, given the

number of the total antennas is kept the same.

Notations: Bold lower and upper case letters represent vectors

and matrices. CN (0, a) denotes a complex Gaussian random

variable with zero mean and variance a. XT and XH stand for

the transpose and Hermitian of X, respectively. xi is the i-th
entry of vector x; [X]i,j is the (i, j)-th entry of X. Notation

ei denotes the i-th unit vector, i.e., the vector such that ei = 1
and ej = 0, ∀j 6= i. ∇f(x) represents the gradient of f(x).
‖·‖ denotes the Euclidean or l2 norm; | · | is the absolute value

of the argument.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an uplink cell-free massive MIMO scenario

where K users are jointly served by M APs and each

AP is equipped with L antennas. The users and APs are

randomly distributed in a coverage area. We model the chan-

nel coefficients between the m-th AP and the k-th user as

hmk = β
1/2
mk gmk, where βmk is large-scale fading coefficient

and gmk ∈ CL×1 ∼ CN (0, 1) is the vector of small-scale

fading coefficients for all antennas at the m-th AP.

A. Uplink Training and Channel Estimation

We denote the length of the coherence interval and the

uplink training phase in data symbols as Tc and Tp, respec-

tively. By
√

Tpψk ∈ CTp×1, we denote the pilot sequence

transmitted from the k-th user to the AP, where ‖ψk‖2 = 1.

For ζp being the transmit power of each pilot, the m-th AP

receives the L× Tp matrix given as

Yp
m =

√

ζpTp

K
∑

k=1

hmkψ
H
k +Np

m, (1)

where Np
m ∈ CN×Tp ∼ CN (0, 1) is the noise matrix during

pilot transmission. Note that we have normalized the channel

coefficients hmk by the square root of the true noise power,

σN , and thus the noise power in (1) is unity. To estimate the

channel estimate at each AP, the matrix in (1) is first multiplied

with ψk to get y
p
mk = Yp

mψk, and then finding the minimum

mean-square error (MMSE) estimate as [1]

ĥmk = E{hmk

(

y
p
mk

)H}
(

E{yp
mk

(

y
p
mk

)H}
)−1

y
p
mk

= cmky
p
mk,

where

cmk =

√

ζpTpβmk

ζpTp

∑K
i=1 βmi

∣

∣ψH
kψi

∣

∣

2
+ 1

. (2)

The mean square of any element of ĥmk is given by

νmk = E{
∣

∣

∣[ĥmk]n

∣

∣

∣

2

} =
ζpTpβ

2
mk

ζpTp

∑K
i=1 βmi

∣

∣ψH
i ψk

∣

∣

2
+ 1

. (3)

B. Uplink Payload Data Transmission

All the users simultaneously transmit payload data to the m-

th AP during the payload interval Tc−Tp. (Here the downlink

transmission is ignored.) We denote by sk the symbol to be

transmitted from the k-th user where E{|sk|2} = 1. The

transmitted signal from the k-th user is xk =
√
ηksk, where

ηk = E{|xk|2} is the power at the k-th user. The received

signal vector from all users at the m-th AP is expressed as

yu
m =

K
∑

k=1

hmk
√
ηksk + nu

m, (4)

where nu
m ∈ CL×1 ∼ CN (0, 1) is the noise at the m-th

AP during the uplink transmission. The power at user k must

satisfy the following power constraint

ηk ≤ η(max), ∀k, (5)

where η(max) is the maximum transmit power. In this paper,

similar to [7], [8], MRC is used at each AP. For further

improve the performance of the signal detection at the central

processing unit (CPU), each AP m multiples the resulting

signal with a weighting coefficient umk for the k-th user. As

a result, the aggregated received signal at the CPU is given by

rk =

M
∑

m=1

umkĥ
H
mky

u
m. (6)

C. Achievable Uplink Spectral Efficiency

To detect sk, the combined signal at the CPU in (6) is

split into desired signal, beamforming uncertainty, inter-user

interference, and total noise for the k-th user. From this step,

it was shown in [1] that the following spectral efficiency for

the k-th user is achievable

Sek(η,u) =

(

1− Tp

Tc

)

log2
(

1 + γk(η,u)
)

, (7)

where γk(η,u) is the corresponding signal-to-interference

plus noise ratio (SINR) for the k-th user defined as

γk(η,u) =
uH
k

(

νkkν
H
kkηk

)

uk

uH
k

(
∑K

i6=k νkiν
H
kiηi +

1
L

∑K
i=1 Dkiηi +

1
LRk

)

uk

,

(8)

where η = [η1; η2; . . . ; ηK ], uk = [u1k;u2k; . . . ;uMk], u =
[u1;u2; . . . ;uK], Dki ∈ R

M×M
+ is a diagonal matrix with



[Dki]m,m = νmkβmi, Rk ∈ R
M×M
+ is a diagonal matrix with

[Rk]m,m = νmk, and

νki ,
∣

∣ψ
H
kψi

∣

∣

[

ν1k
β1i

β1k
; ν2k

β2i

β2k
; . . . ; νMk

βMi

βMk

]

. (9)

D. Problem Formulation

To deliver fairness of all users in the system, we consider

the maximization of the minimum SE problem, which is

mathematically stated as

(P1) :















maximize
uk,η

min
1≤k≤K

Sek(η,u)

subject to ‖uk‖ = 1, ∀k,
0 ≤ η ≤ η(max)/L.

(10)

It is easy to see that the above problem is equivalent to

maximizing the minimum of the SINR of individual users,

which is given by

(P2) :















maximize
uk,η

min
1≤k≤K

γk(η,u)

subject to ‖uk‖ = 1, ∀k,
0 ≤ η ≤ η(max)/L.

(11)

Due to the coupling of uk and η in problem (10), it is quite

natural to decouple problem (P1) into two subproblems: the

receiver coefficient design and the power control problem. We

remark that this method has been widely used in the previous

studies. We detail these two problems in the following section

and, in particular, present our novel solution for the power

control problem.

III. PROPOSED SOLUTION

A. Receiver Coefficient Design

For the receiver coefficient design, we fix the power al-

location variable η and solve the following problem to find

uk, ∀k:

(P3) :

{

maximize
uk

min
1≤k≤K

γk(η,u)

subject to ‖uk‖ = 1, ∀k.
(12)

This problem can be independently solved for each user to

maximize the SINR at each user [5]. Let us define Ak =
νkkν

H
kkηk and Bk =

∑K
i6=k νkiν

H
kiηi+

1
L

∑K
i=1 Dkiηi+

1
LRk.

Then (P3) is reduced to the following problem for each k:

(P4) :







maximize
uk

u
H
k Akuk

uH
k
Bkuk

subject to ‖uk‖ = 1.
(13)

We note that problem (P4) is a generalized eigenvalue prob-

lem. According to [11, Lemma B.10], the solution to (P4) is

given by

u∗
k =

ũk
∥

∥ũk

∥

∥

(14)

where ũk =
√
ηkB

−1
k νkk. We remark that the receiver coeffi-

cient design has been presented in the previous studies known

to us. Our contributions in the paper are those in handling the

power control problem when the receiver coefficients are held

fixed. We provide the details in the next subsection.

B. Power Control Problem

After updating the receiver coefficients uk, ∀k, we need to

find the power coefficients to further improve the objective of

(P3), which leads to the following power control problem:

(P5) :

{

maximize
η

min
1≤k≤K

γk(η,u)

subject to 0 ≤ η ≤ η(max)/L.
(15)

To solve the above problem, existing methods reformulate it

using an epigraph form, written as

(P6) :















maximize
η,t

t

subject to 0 ≤ η ≤ η(max)/L,

t ≤ γk(η,u), ∀k.
(16)

There are two main drawbacks of such a method. First, the

number of constraints in (P6) has been increased by K .

This is not preferred for large-scale problems, i.e. when K is

relatively large. Second, problem (P6) is in fact a GP which

can be solved by off-the-shelf convex solvers. The major issue

of GP is that it requires very high complexity, compared to

other standard convex problems, and thus is not suitable for

large scale problems. To overcome this complexity issue in

the current literature, we propose a more numerical scalable

method in what follows.

1) Convex Reformulation: To derive the proposed method,

we first reformulate the nonconvex objective function in (P5)
as

maximize min
1≤k≤K

1

γ−1
k (η)

⇐⇒ minimize max
1≤k≤K

γ−1
k (η),

(17)

where

γ−1
k (η) =

uH
k

(
∑K

i6=k νkiν
H
kiηi +

1
L

∑K
i=1 Dkiηi +

1
LRk

)

uk

uH
k

(

νkkν
H
kkηk

)

uk

= η−1
k





K
∑

i6=k

akiηi +

K
∑

i=1

bkiηi + ck



 . (18)

In the above equation, aki, bki, and ck are defined as

aki =
uH
kνkiν

H
kiuk

uH
kνkkν

H
kkuk

, bki =
(1/L)uH

kDkiuk

uH
kνkkν

H
kkuk

,

ck =
(1/L)uH

kRkuk

uH
kνkkν

H
kkuk

. (19)

Note that we have simply written γ−1
k (η) instead of γ−1

k (η,u)
since u is fixed. Now we use a change of variables to convert

the posynominal in (18) into a convex function. Specifically,

we define θi = log ηi or ηi = eθi and reformulate (18) as

fk(θ) = γ−1
k (θ) = e−θk

(

K
∑

i6=k

akie
θi +

K
∑

i=1

bkie
θi + ck

)

=
K
∑

i6=k

akie
(ei−ek)

Tθ +
K
∑

i=1

bkie
(ei−ek)

Tθ + cke
−e

T
kθ.

(20)



Let f(θ) = max
1≤k≤K

fk(θ). Then (P5) can be reformulated as

(P7) :

{

minimize
θ

f(θ) = max
1≤k≤K

fk(θ)

subject to θ ≤ θmax,
(P7)

where θ(max) = log(ηmax/L). As mentioned earlier, we can

consider an epigraph form of (P7), which can be solved

by convex solvers. But this will increase the complexity. A

numerical difficulty in solving (P7) is due to the fact that f(θ)
is nonsmooth. To overcome this issue, we apply Nesterov’s

smoothing technique to approximate the function f(θ) by the

following log-sum-exp function [10]

f(θ; τ) =
1

τ
log

1

K

∑K

k=1
eτfk(θ), (21)

where τ > 0 is the positive smoothness parameter. It was

shown in [10] that f(θ) + logK
τ ≥ f(θ; τ) ≥ f(θ). In other

words, f(θ; τ) is a differentiable approximation of f(θ) with

a numerical accuracy of logK
τ . Thus, with a sufficiently high

τ , f(θ) can be replaced by f(θ; τ) and we can consider the

following problem

(P8) :

{

minimize
θ

f(θ; τ)

subject to θ ∈ Θ , {θ|θ ≤ θmax}.
(P8)

2) Accelerated Projected Gradient Method: We are now in

a position to propose an efficient algorithm to solve (P8),
which is essentially an APG [12]. The description of the

proposed algorithm is provided in Algorithm 1. Note that

α > 0 is called the step size which should be sufficiently small

to guarantee its convergence. Also, the notation PΘ(u) denotes

the projection onto Θ, i.e., PΘ(u) = argmin
{

‖x− u‖ | x ∈
Θ
}

.

Algorithm 1 Proposed APG Algorithm for Solving (P8)

1: Input: θ0 > 0, α > 0
2: θ1 = θ0; t0 = t1 = 1; n = 1
3: repeat

4: yn = θn + tn−1−1
tn

(θn − θn−1)

5: θ
n+1 = PΘ(y

n − α∇f(yn))

6: tn+1 = 0.5
(

1 +
√

4t2n + 1
)

;

7: n = n+ 1
8: until convergence

9: Output: θ
∗

There are two main operations of Algorithm 1, namely:

finding the gradient of f(θ; τ), and the projection onto the

feasible set Θ. The details of these two operations are given

in the following.

Gradient of f(θ; τ): It is easy to see that the gradient of

f(θ; τ) is given by

∇f(θ; τ) =
1

∑K
k=1 exp

(

τfk(θ)
)

∑K

k=1
eτfk(θ)∇fk(θ),

(22)

where ∇fk(θ) is found as

∇fk(θ) =
K
∑

i6=k

akie
(ei−ek)

Tθ
(

ei − ek
)

+

K
∑

i=1

bkie
(ei−ek)

Tθ
(

ei − ek
)

− cke
−e

T
kθek. (23)

Projection onto Θ: For a given x ∈ RK×1, PΘ(x) is the

solution to the following problem:

minimize
θ∈RK×1

{

‖θ − x‖2
∣

∣

∣ θ ≤ θ(max)
}

. (24)

It is straightforward to check that the solution to the above

problem is θ = [θ1; θ2; . . . ; θK ], where

θk =

{

xk, xk ≤ θk

θ(max), xk > θk
, k = 1, . . . ,K. (25)

In summary, combining the receiver coefficient design and

the power control problem, the proposed algorithm for the

considered problem is outlined in Algorithm 2.

Algorithm 2 Proposed APG-based Algorithm for Solving

(P1)

1: Input: θ0 > 0; m = 1
2: repeat

3: For fixed θm−1, find optimal um = [um
1 ;um

2 ; . . . ;um
K ]

using (14)

4: For fixed um, find θm = θ∗ using Algorithm 1

5: m = m+ 1
6: until convergence

7: Output: θm,um

C. Complexity Analysis

We now provide the complexity analysis of the proposed

algorithm for one iteration using the big-O notation. It is

clear that the complexity of Algorithm 2 is dominated by

the computation of four quantities: the receiver coefficients

um, the smooth approximate objective function f(θ; τ), the

gradient of f(θ; τ), and the projection onto Θ. The compu-

tation of each uk requires the calculation of the inverse of

Bk. Normally this step requires the complexity of O(M3).
However, by exploiting the specific structure of Bk, in the

Appendix we show that the complexity of this step is reduced

to O
(

(K−1)M2
)

. This massive computation saving when M
is large has not been reported in the existing literature. Ac-

cordingly, the complexity for updating the receiver coefficient

um is O(K2M2). It is easy to see that KM multiplications

are required to compute Sek(η). Therefore, the complexity

of finding f(η) is O(K2M). Similarly, we can find that the

complexity of ∇fk(θ) is O(K2M). The projection of η onto

Θ is given in (25), and thus the complexity of the projection

is O(K). In summary, the per-iteration complexity of the

proposed algorithm for solving (P4) is O(K2M2).

IV. NUMERICAL RESULTS

We evaluate the performance of our proposed method in

terms of the achievable rate and the time complexity. In the



considered cell-free massive MIMO system, we randomly

distribute the APs and the users over a D × D km2. The

large-scale fading coefficient between the m-th AP and the

k-th user is generated as β̄mk = PLmk.zmk, where PLmk

is the path loss between the m-th AP and the k-th user, and

zmk represents the log-normal shadowing between the m-th

AP and the k-th user with mean zero and standard deviation

σsh, respectively. In this paper, we adopt the three-slope path

loss model and model parameters as in [13]. The noise power

is given by B × kB × T0 ×W , where B = 20 MHz denotes

the bandwidth, kB = 1.381× 10−23 (Joule/Kelvin) represents

the Boltzmann constant, T0 = 290 (Kelvin) denotes the noise

temperature, and W = 9 dB shows the noise figure. The

length of the coherence time and the uplink training phase

are set to Tc = 200, Tp = 20, respectively. If not otherwise

mentioned, we set the power transmit power for downlink data

transmission and uplink training phase (before normalization)

as ζu = 0.2 W and ζp = 0.2 W.

In the first numerical experiment, we compare Algorithm 2

with the method in [5], [7] which solves (10) using GP for

the power control problem. We refer to this method as the

GP-based method in this section. For this method, we use the

convex solver MOSEK [14] through the modeling tool CVX

[15] in the GP mode to solve the power control problem in

(P1). Figure 1 shows the convergence of Algorithm 2 and the

GP-based method to solve (P1) for three randomly generated

channel realizations.

1 2 3 4 5

1.6

1.8

2

2.2

2.4

2.6

Iteration index

M
in

im
um

SE
(b

it/
s/

H
z)

Channel 1
Channel 2
Channel 3
GP-based method [7]
Algorithm 2

Fig. 1. Convergence of Algorithm 2 and the GP-based algorithm for
three random channel realizations. The relevant parameters are taken as
M = 150, K = 20, L = 1,D = 1.

We can see that both methods reach almost the same objec-

tive for all three considered channel realizations. The marginal

difference is due to a moderate value of the smoothness

parameter τ in (21). The main advantage of our proposed

method over the GP-based method is that each iteration of

the proposed method is very memory efficient and computa-

tionally cheap, and hence, can be executed very fast. As a

result, the total run-time of the proposed method is far less

than that of the GP-based method as shown in Table I. In

Table I, we report the actual run-time of both methods to

solve the max-min problem. Here, we run our codes on a 64-bit

Windows operating system with 16 GB RAM and Intel CORE

i7, 3.7 GHz. Both iterative methods are terminated when the

difference of the objective for the latest two iterations is less

than 10−5.

TABLE I
COMPARISON OF RUN-TIME (IN SECONDS) BETWEEN ALGORITHM 2 AND

THE GP-BASED METHOD. HERE, K = 20 AND D = 1.

APs GP-based Method Proposed Method

120 3.67 0.80

160 3.79 1.21

200 4.08 1.86

240 4.42 2.45

In the next experiment, we plot the cumulative distribution

function (CDF) of the per-user SE (bit/s/Hz) for 300 channel

realizations shown in Fig. 2. We consider two large-scale

scenarios: (i) K = 25,M = 500 and (ii) K = 50,M = 1000.

Note that the ratio between the number of APs to the number

of users is the same for two cases. It can be seen in Fig. 2 that

as the number of the users increases, the per-use SE slightly

decreases. We also observe that the per-user SE differs in the

range of 0.1 bit/s/Hz which means that the fairness is indeed

achieved among the users.

3.55 3.65 3.75 3.85 3.95 4.05
0

0.2

0.4

0.6

0.8

1

Per-user SE (bit/s/Hz)

C
D

F

K = 25,M = 500
K = 50,M = 1000

Fig. 2. CDF of per-user achievable SE for two scenarios K = 25,M = 500

and K = 50,M = 1000. The number of antennas at each AP is L = 1.

Finally, we investigate the effect of increasing the number of

antennas per AP on the minimum achievable SE. Specifically,

we plot the minimum achievable SE with respect to the number

of antennas for both M = 250 and M = 500 APs. The

number of users is fixed to K = 50. As expected, the minimum

achievable SE increases with the number of antennas per AP

but the increase tends to be small when the number of antennas

is sufficiently large. The reason is that for a large number

of APs channel harderning and favorable propagation can be

achieved by a few antennas per AP. Specifically, we can see



that the SE for the case of 500 APs and 5 antennas per AP is

larger than the SE for the case of 250 APs and 10 antennas

per AP. Therefore, for large-scale cell-free massive MIMO

having more APs with a few antennas each tends to be more

beneficial than having fewer APs with more antennas each.
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Fig. 3. Maximized minimum achievable SE with respect to the number of
antenna at each AP for K = 50, D = 1.

V. CONCLUSION

In this paper, we have proposed a low-complexity method

for maximizing the minimum achievable SE in the uplink

of the cell free massive MIMO subject to per-user power

constraint, assuming the MRC technique at APs. As in previ-

ous studies, we have divided the min-max problem into two

subproblems: the receiver coefficient design and the power

control problem. For the power control problem, the existing

solutions rely on GP which requires high complexity. To

overcome this issue, we have reformulated the power control

problem into a convex form and then proposed an efficient

numerical algorithm based on Nesterov’s smoothing technique

and APG. Our proposed solution only requires the first order

information of the objective and the projection, both of which

are given in the closed-form. We have numerically shown that

our proposed solution practically achieves the same objective

as the GP-based method but in much lesser time. We have used

the proposed method to study the performance of the large-

scale systems up to 1000 APs for which the known methods

are not suitable. We have also shown that a large-scale cell-

free massive MIMO having more APs with a few antennas

has better performance than a similar system having a fewer

APs with more antennas per AP.

APPENDIX

In this appendix, we show that the complexity of computing

uk is O(KM2). Without loss of generality, let us consider the

inverse of Bk for user 1. It is obvious that we can write B−1
1

as

B−1
1 =

(

K
∑

i=2

ν1iν
H
1iηi + D̃1

)−1

= D̃−1
1 − D̃−1

1 ν12ν
H
12D̃

−1
1

1 + νH
12D

−1
k ν12

(26)

where D̃1 = 1
L

∑K
i=1 D1iηi +

1
LR1 +

∑K
i=3 ν1iν

H
1iηi. If we

further express D̃1 in terms of the inverse of 1
L

∑K
i=1 D1iηi+

1
LR1 +

∑K
i=4 ν1iν

H
1iηi and keep on repeating this step,

then finally we need to compute the inverse of the term
1
L

∑K
i=1 D1iηi +

1
LR1 which is a diagonal matrix, and thus

only requires O(M). The complexity of each step in the

above process is O(M2), and thus the computation of B−1
1 is

O
(

(K−1)M2
)

. Multiplying B−1
1 with ν11 to obtain u1 takes

additional O(M), and thus, the complexity of the computation

of u1 stands at O
(

KM2
)

.
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